畜牧兽医学报  2022, Vol. 53 Issue (1): 188-199. DOI: 10.11843/j.issn.0366-6964.2022.01.019    PDF    
安格斯妊娠母牛异食行为的营养代谢异常及其与肠道菌群相关性研究
李紫仟1, 陈卓1, 任强林1, 马义诚1, 叶倩文1, 夏瑞阳1, 王金泉1, 赵红琼1, 马忠祥3, 李红波2, 姚刚1     
1. 新疆农业大学动物医学学院, 乌鲁木齐 830052;
2. 新疆畜牧科学院畜牧研究所, 乌鲁木齐 830011;
3. 新疆刀郎阳光农牧科技股份有限公司, 麦盖提县 844600
摘要:牛异食行为(PICA)是以舔食、啃咬一些无营养价值异物为特征的一种异常行为,大多研究认为,PICA是因某些营养素紊乱和生活环境受限所致。业已证明,肠道菌群与宿主营养代谢关系密切,肠道菌群-肠-脑(micro-biota-gut-brain,MGB)轴与动物行为之间的相关性研究日益被揭示。但PICA牛的营养代谢物变化与其肠道菌群组成和结构变化关系缺乏研究。本研究拟对PICA母牛的肠道菌群组成结构变化与无PICA临床症状的健康牛进行分析比较,以期探明肠道菌群变化与PICA的关系。在针对某集约化安格斯肉牛繁育场PICA牛临床调查基础上,试验选取年龄相同、体重相近、同一舍饲条件下正常妊娠母牛和典型异食行为的妊娠母牛各10头,分为对照组(Ctrl)和异食组(PICA),采集血液和毛发样本对其矿物质元素、脂溶性维生素(VA、VD、VE)、17种游离氨基酸和血清蛋白质进行检测比较,同时采集粪便,分析两组牛的肠道菌群组成结构。结果发现,与Ctrl组相比,PICA组血清中异亮氨酸(Iso)和苯丙氨酸(Phe)含量显著升高(P < 0.05);虽然PICA组的肠道菌群组成结构的α-多样性和β-多样性与Ctrl组相比,均无显著差异(P>0.05),但其中,颤螺菌属(Oscillospira)和CF231相对丰度显著降低(P < 0.05)。Pearson相关分析发现,Iso与CF231相对丰度呈显著负相关(P < 0.05),Phe与Tenericutes呈显著负相关(P < 0.05)。结果提示,肉牛血清中Iso和Phe的改变以及肠道菌群中颤螺菌属(Oscillospira)和CF231相对丰度的变化可能与安格斯肉牛异食行为的产生密切相关。本研究为通过调控肠道菌群治疗PICA提供了一种可能性。
关键词安格斯肉牛    异食行为    营养代谢物    肠道菌群    
The Relationship between the Malnutritional Metabolism and Gut Microbiota Changes in Pregnant Angus Beef Cows with PICA
LI Ziqian1, CHEN Zhuo1, REN Qianglin1, MA Yicheng1, YE Qianwen1, XIA Ruiyang1, WANG Jinquan1, ZHAO Hongqiong1, MA Zhongxiang3, LI Hongbo2, YAO Gang1     
1. College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
2. Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830011, China;
3. Xinjiang Daolang Sunshine Agriculture and Animal Husbandry Technology Co., Ltd., Maigaiti 844600, China
Abstract: PICA behavior of cattle refers to an abnormal behavior characterized by licking and gnawing some foreign matters without nutritional value, which is often considered to be caused by some nutrients disorders and living environmental confinement. It has been proven that a strong association between gut microbiota and host nutritional metabolism is existed. The link between gut microbiota-gut-brain axis(MGB) and the animal behavior is being revealed. However, there is a lack of enough investigation on the relationship between the occurrence of PICA and the changes of gut microbiota in cattle. In this paper the gut microbiota was compared between PICA cows and the normal ones in order to reveal the possible correlation between gut microbiota and PICA behavior. After the clinical survey for PICA cows in an Angus cow breading farm, 10 healthy Angus pregnant cows as control group (Ctrl) and their 10 counterparts with typical PICA behavior as PICA group (PICA) were chosen.Blood and hair samples were collected to measure the minerals, fat-soluble vitamins (VA, VD, VE), and 17 free amino acids and total serum proteins. Feces samples were collected and the composition and the structure of gut microbiota were analyzed and compared. The results showed that the serum content of Iso and Phe in PICA cows were significantly higher than those in the Ctrl group(P < 0.05). Though the α-diversity and β-diversity of gut microbiota in PICA cows were not significantly different from those in the Ctrl group(P>0.05), the relative abundance of Oscillospira and CF231 were significantly lowered than those in the Ctrl groups (P < 0.05)。Pearson correlation analysis showed that there was a significant negative correlation between Iso content and the relative abundance of CF231, as well as Phe and Tenericutes (P < 0.05). The results suggest that the changes of Iso and Phe contents in the serum and the changes of Oscillospira and CF231 relative abundance in gut microbiota could be associated with the generation of PICA behavior in Angus cows, which provides a possibility for developing a therapeutic way to treat PICA via gut microbiota manipulation.
Key words: Angus beef cow    PICA    nutritional metabolites    gut microbiota    

牛异食行为(PICA)的发生是由营养、环境、机体代谢等多种因素引起,多发生在早春和冬季,临床表现为舔食、啃咬一些无营养价值异物[1]。许多研究者认为,饲料中矿物质、维生素等营养元素的不足是引发牛异食行为的主要原因,当饲料中维生素A、D、E含量不能满足动物需求,引起的代谢机能紊乱也会导致异食行为的发生;患有前胃迟缓或某些寄生虫也是诱发异食行为的原因之一[2-3]。肉牛多采用集约化饲养,外界环境如温度、湿度、空气质量、病原体含量等多种因素都可能诱发机体生理代谢异常,导致PICA的产生[4-5]。肠道菌群是动物机体最复杂的微生态系统,与宿主的生理、免疫、健康和疾病密切相关。目前,动物行为与肠道菌群-肠-脑(microbiota-gut-brain,MGB)轴之间的相关越来越受到研究者的重视,更有研究者认为,所有的疾病都始于肠[6]。Bonaz等[7]指出,肠菌群与迷走神经不能直接相互作用,而是通过肠道菌群的代谢和介导肠道上皮细胞分泌对迷走神经进行调控,从而影响动物的行为。刘海鹏[8]在通过对味觉嗜好性与小肠的运动调节的研究中表明,迷走神经对小肠运动有着关键的调节作用,反之,肠道菌群失调能够影响肠道的蠕动,进而影响神经系统。Kaakoush等[9-10]研究了专用肠内营养(exclusive enteral nutrition, EEN)治疗克罗恩病(CD)的病人,发现EEN治疗下CD病人肠道菌群种类丰富度增加,降低了疾病相关的炎症因子,反过来,肠道菌群丰度的降低可能增加炎症因子的产生。牛异食行为的发生和影响因素已有大量研究报道,但对发生异食行为牛的肠道菌群变化缺乏足够的研究。本研究在对安格斯肉牛PICA行为的临床调查基础上,测定PICA肉牛血液和毛发中的矿物质、脂溶性维生素和游离氨基酸等营养代谢物,同时对其肠道菌群的结构和丰度进行分析,探查了肠道菌群变化与PICA发生的相关性,以期为通过调控肠道菌群防治PICA行为提供研究基础和理论依据。

1 材料与方法 1.1 动物及食粪行为观察

对某商品安格斯肉牛养殖场659头安格斯牛进行了食粪调查。所有牛均为初产母牛,分别在9:00和20:00饲喂全混合日粮(TMR,表 1)和自由饮水,8:00~20:00用摄像机记录食粪尿行为的发生。

表 1 全混合日粮组成及营养价值 Table 1 Composition and nutritive value of TMR
1.2 动物分组与样本收集

临床调查结束后,随机抽取10头无临床异食症状的作为正常对照牛(Ctrl)和10头发生异食临床症状牛(PICA),采集下列相关样本进行病原学调查。

血液样品: 在清晨空腹状态下经颈静脉采血,分离血清保存于-20 ℃,主要用于脂溶性维生素、游离氨基酸及总蛋白测定。

毛发样品: 从牛头上剪下毛发样本,然后保存在4 ℃中,主要用于矿物质测定。

粪便样品: 使用一次性无菌PE手套于牛直肠采取粪便,密封后储存在液氮容器中。主要用于肠道菌群测定。

1.3 检测指标

1.3.1 矿物元素   对被毛中钠(Na)、磷(P)、钙(Ca)、铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)和锌(Zn)离子的测定采用微波消解(ETHOS 1, MILESTONE)、电感耦合等离子光谱仪(Optima 8000,Perkin Elmer,美国)以及电感耦合等离子质谱仪(iCAPQ,Perkin Elmer,美国)检测。

1.3.2 脂溶性维生素   采用高效液相色谱法(1260, Agilent, USA)测定血清中脂溶性维生素A、D、E的含量。

1.3.3 游离氨基酸和总蛋白   血清中天冬氨酸(Asp)、谷氨酸(Alu)、胱氨酸(Cys)、丝氨酸(Ser)、甘氨酸(Gly)、组氨酸(His)、精氨酸(Arg)、苏氨酸(Thr)、丙氨酸(Ala)、脯氨酸(Pro)、酪氨酸(Tyr)、缬氨酸(Val)、蛋氨酸(Met)、亮氨酸(Leu)、异亮氨酸(Iso)、苯丙氨酸(Phe)、赖氨酸(Lys)的游离氨基酸采用液相色谱仪(1260,美国安捷伦)测定,总蛋白(TP)用凯氏定氮法(K9840,济南汉能仪器有限公司)测定。

1.3.4 肠道菌群测定   使用粪便DNA提取试剂盒DP328(天恩生化技术(北京)有限公司)提取粪便DNA。用分光光度计测定DNA浓度和纯度,琼脂糖凝胶电泳检测DNA质量。PCR扩增目的序列。PCR扩增产物经2%琼脂糖凝胶电泳检测后,用凝胶提取试剂盒Axygen收集。根据电泳的初步定量结果,对回收的PCR扩增产物进行荧光定量。测序文库用Illumina公司的TruSeq Nano DNA LT Libray Prep Kit制备,测序前用Agilent BioAnalyzer和Agilent High Sensity DNA Kit进行质量检验。使用Promega QuantiFluo系统中的Quant-it Pico Green dsDNA检测试剂盒对合格的测序文库进行定量。将合格测序文库的定量结果按测序量按一定比例混合,NaOH变性后在MiSeq测序仪上用MiSeq Reagent Kit V3(600个循环)进行2×300 bp的双端测序,序列长度在200~450 bp之间。选择V3和V4可变区进行高通量测序和分析,对PICA组的肠道菌群组成结构的α-多样性(T检验)和β-多样性(Anosim & Adonis检验)进行差异分析,比较差异差异菌门和菌属(T检验),并采用Perason相关分析方法对差异营养成分和菌群组成进行相关分析。

1.3.5 差异氨基酸和差异菌群相关性分析   数据采用“Mean±SD”表示,采用GraphPad Prism 8.2.1统计软件进行T检验(T-test)方法对组间差异显著性进行检验,P < 0.05差异显著,P < 0.01表示差异极显著,对差异血液氨基酸指标和差异菌群进行Pearson相关性分析,0 < r < 1表示正相关,-1 < r < 0表示负相关;*表示差异显著,**表示差异极显著。

2 结果 2.1 PICA临床症状调查结果

本次调查结果显示,659头安格斯肉牛中有285头牛出现明显的采食粪尿行为,占总头数43.2%,采食粪尿情况多发生在10:00至18:00之间,临床表现为舔食粪便和泥土,患牛易惊恐,对外界刺激敏感性增高,逐渐消瘦、贫血,常发生消化不良,食欲不振,在发病初期多便秘,其后下痢或便秘和下痢交替出现。

图 1 安格斯妊娠母牛的食粪行为 Fig. 1 PICA behavior of Angus pregnant cows
2.2 营养代谢物测定结果

2.2.1 正常牛与异食行为牛被毛中矿物质含量比较   对Ctrl组和PICA组被毛中的矿物质含量进行了T-test检验(表 2),结果显示,Ctrl组与PICA组被毛中矿物质含量均无显著性差异(P>0.05)。

表 2 正常牛与异食牛毛发中矿物质元素结果 Table 2 Minerals in the hair of Ctrl and PICA cows 

2.2.2 脂溶性维生素A、D、E测定   Ctrl组和PICA组血清中脂溶性维生素含量如表 3所示,两组脂溶性维生素含量无显著性差异(P>0.05)。

表 3 正常牛与异食牛血液中维生素A、D、E结果 Table 3 Vitamin A, D and E in the blood of Ctrl and PICA cows

2.2.3 蛋白质与氨基酸差异性比较   Ctrl组与PICA组血清中17种游离氨基酸的含量如图 2所示,与Ctrl组相比,PICA组中Iso和Phe显著升高(P < 0.05),其他氨基酸在组间均无显著性差异。

组间进行T-test检验,*表示差异显著(P < 0.05), **表示差异极显著(P < 0.01)。下同 Unpaired T-test was conducted in each item between Ctrl and PICA, * showed the significant difference (P < 0.05), while ** showed the extremely significant difference (P < 0.01). The same as below 图 2 Ctrl和PICA牛之间血清游离氨基酸和总蛋白差异性比较 Fig. 2 Comparison of serum free amino acids and total protein between Ctrl and PICA cows
2.3 肠道菌群物种组成分析

2.3.1 各水平微生物分类单元ASV/OTU的数量   如图 3所示,Ctrl组与PICA组肠道菌群在门、纲、目、科、属水平上均无显著性差异著。

图 3 Ctrl和PICA组ASV/OTU在不同分类水平上的数量及其差异 Fig. 3 The number and difference of ASV/OTU between Ctrl and PICA groups at different classification

2.3.2 各水平物种组成差异分析   在Ctrl组和PICA组肠道菌群中共检测到31个门,其中相对丰度排名前20位的门和属如图 4所示。有9个门的相对丰度在0.1%以上,其中相对丰度在10%以上的最大的2个门是厚壁菌门(Firmicuts) 和拟杆菌门(Bacteroidetes),其余的是TM7、螺旋体菌门(Spirochaetes)、放线菌门(Actinobacteria)、软壁菌门(Tenericutes)、蓝细菌门(Cyanobacteria)、疣微菌菌门(Verrucomicrobia)和变形杆菌门(Proteobac- teria)。属水平上共检出451个属,对其中相对丰度在0.1%以上的前20个属统计如图 4,只有梭状芽孢杆菌属的相对丰度在5%以上。

图 4 Ctrl和PICA牛之间门和属水平上的肠道菌群组成(前20) Fig. 4 The composition of gut microbiota at the level of phylum and genus between Ctrl and PICA cows(Top 20)

2.3.3 Alpha-diversity分析   对PICA和Ctrl组牛肠道菌群进行α多样性分析(图 5),结果表明,Ctrl组与PICA组肠道微生物的Chao1、Simpson、Shannon、Pielou-e、Goods_coverage、Observed-species和Faith_PD指数均无显著性差异(P>0.05)。

图 5 Ctrl和PICA组肠道菌群α多样性指数 Fig. 5 Index of alpha diversity of gut microbiota between Ctrl and PICA cows groups

2.3.4 Beta-diversity分析   经Weighted UniFrac based PCoA和Weighted UniFrac UPGMA聚类树分析,Ctrl与PICA组之间肠道菌群分布聚集如图 6。Axis1(PCoA1)的贡献率为16.2%,Axis2(PCoA2)的贡献率为11.7%。两组间菌群不呈现明显独立分布。

图 6 肠道菌群UPGMA聚类树和距离矩阵PcoA分析 Fig. 6 UPGMA cluster tree and distance matrix PCoA analysis of gut microbiota

2.3.5 门和属水平上肠道菌群差异   如图 7所示,对Ctrl和PICA组相对丰度大于0.1%的菌门、菌属进行差异性比较,结果显示与Ctrl组相比,PICA组中柔壁菌门(Tenericutes)显著升高(P < 0.05)。而颤螺菌属(Oscillospira)和CF231菌属显著降低(P < 0.05)。

图 7 Ctrl和PICA牛肠道中门水平和属水平菌群差异 Fig. 7 The differential phyla and genera in gut microbiota between Ctrl and PICA cows

2.3.6 Pearson相关分析   经Pearson相关分析(图 8),结果提示,Iso与CF231呈显著负相关(P < 0.05),Phe与Tenericutes呈显著负相关(P < 0.05)。

图 8 差异菌群与差异氨基酸Pearson相关性分析 Fig. 8 Pearson correlation analysis of differential genera and amino acids
3 讨论

安格斯肉牛是著名的优良肉牛品种,肉用性能良好,早熟易肥,肉质细嫩、净肉率高、大理石花纹明显;较耐粗饲,饲料转化率高。本研究对安格斯肉牛养殖场母牛异食行为进行了调查,发现其发生率为43.2%。异食行为的产生对肉牛的食欲、生产能力都有很大影响,现有观点认为,矿物质元素的缺乏是导致异食行为发生的重要致病因素[2, 11-18]。Nikvand等[19]的研究结果表明,异食行为的肉牛相较于正常牛血液中铁、钾、氯、磷含量显著降低,而铜、锌、钙、镁、钠含量差异不显著。脂溶性维生素是反刍动物机体维持正常代谢和生理机能所必需的低分子有机化合物,几乎参与所有的新陈代谢反应,如维持细胞功能及酶活性,调节碳水化合物、蛋白质、脂肪的代谢,且具有不可替代的作用[18]。王永卫等[20]对宁夏固原地区牛瞎眼病的研究发现,大部分瞎眼病牛还伴有舔墙、嚼缰绳、啃槽、吃石头、食毛、叼瓦块等异食癖现象,大多异食行为的病牛血浆中VA的含量低于正常水平(20 μg·dL-1)[21],因此VD和VE等多种维生素的缺乏可能是引起骨组织代谢障碍和脑脊髓压升高,同时也是造成犊牛精神异常并导致异食行为发生的原因[22]。本研究通过对安格斯肉牛血液维生素A、D、E的检测发现,PICA组与Ctrl组相比无显著性差异,VA和VD含量与他人研究中正常牛含量一致[23-24],但VE的含量明显低于Ghaffari等[25]研究中正常牛血液VE的含量(1.82~4.99 mg·L-1)。虽然本研究中PICA与Ctrl组之间VE的含量无显著差异,但仍然明显低于他人研究中健康牛血液中VE的含量,提示VE的缺乏可能是导致PICA行为的原因。

牛血清中的游离氨基酸种类和含量不仅反映牛机体营养代谢状况,也可反映某些疾病的发病机制[26-27]。Phe和Iso是动物的必需氨基酸,具有参与营养神经递质和分泌激素作用[28]。目前,已有研究证明,机体中Phe过高能够引起血清中的尿素氮浓度升高,同时,血清尿素氮浓度的增高意味着体内氨基酸平衡状况较差,影响机体的正常生理功能进而影响动物的日常行为[25]。Suárez-Belloch等[29-30]的研究证明,Phe与神经系统的发育也有着重要的关系,Phe过高会引起苯丙氨酸羟化酶的降低,从而导致苯丙氨酸代谢物的堆积,抑制其他氨基酸通过血脑屏障,减少脑组织神经递质的合成,进而损伤神经系统,引起动物异常行为。本研究中PICA组牛血液中Phe的含量显著高于Ctrl组,提示血液中Phe的含量与肉牛异食行为有关。Iso是已知的支链氨基酸,异常浓度下能够促进脂肪代谢[31],异亮氨酸缺乏的饮食抑制了十二指肠、空肠和回肠中葡萄糖转运蛋白表达[32],而异亮氨酸对肌管葡萄糖摄取和肌糖转运蛋白(GLUT1和GLUT4)表达有促进作用[32-37]。然而,它发挥作用的潜在机制仍不清楚。总体而言,支链氨基酸通过胰岛素依赖或非胰岛素依赖的方式调节肌肉或肠道葡萄糖转运蛋白的表达,这些发现具有重要的意义[32]。本研究比较了PICA组和Ctrl组血液中Iso的含量,结果显示,PICA组显著高于Ctrl组,血液中Iso的含量可能还会与肉牛异食行为的产生相关。平衡的Iso和Phe能够促进动物正常生长,血液中含量过高或过低都会影响机体对其他氨基酸的吸收利用[37],影响动物营养代谢,这些血液游离氨基酸的差异性也会引起氨基酸代谢的不平衡,从而导致动物的某些营养缺乏,影响营养神经递质和激素的分泌,进而产生PICA,这些问题尚需进一步研究。

最近研究表明,肠-脑轴促进了大脑和肠道之间联系和交流,影响着动物的情绪和行为[38]。肠道菌群对中枢神经系统和神经内分泌系统起着调节和扰动的重要作用[17]。许多疾病的发生均与肠道菌群的改变有关,饲喂益生菌或粪菌移植的方法对肠道菌群的调节已被用于治疗某些神经疾病,包括自闭症和抑郁症以及相关的胃肠道疾病[39-45]。越来越多的研究发现,肠道微生物群的改变与肥胖和2型糖尿病有关[46-48],在饮食诱导肥胖的小鼠模型中,小鼠肥胖的发生与Tenericutes菌门丰度的改变呈正相关[49]Oscillospira是梭状芽胞杆菌中的一种厌氧细菌属,广泛存在于草食动物的胃肠道中。Gophna等[50]推断出,Oscillospira的代谢能够产生短链脂肪酸丁酸盐,丁酸盐又被认为是糖发酵的主要产物[51],而且丁酸盐能也够促进肠道细胞的成熟和对营养物质的吸收。有研究指出,Oscillospira的降低可能会使得动物机体对营养物质的代谢吸收降低,从而影响机体内环境稳态[48-49]。此外,丁酸盐对动物肠-脑轴的调节也具有一定作用[52]。在本研究中,PICA组肉牛肠道菌群中Oscillospira的相对丰度显著低于Ctrl组,提示肠道菌群Oscillospira丰度的降低在影响机体对营养物质吸收的同时还影响动物的神经系统甚至影响动物的情绪和行为,CF231普遍存在于反刍动物胃肠道内,参与瘤胃内初级和次级胆汁酸合成进而影响肠道对饲料的消化吸收[51-55],但关于CF231对牛肠-脑轴的影响未见研究,本研究中,PICA组肉牛肠道菌群中CF231的相对丰度显著低于Ctrl组,pearson相关分析结果显示,机体血液中Iso的含量与肠道菌群中CF231的丰度呈显著负相关,Phe与Tenericutes呈显著负相关。

4 结论

本研究提示,安格斯肉牛异食行为的发生可能与血液中异亮氨酸和苯丙氨酸的改变以及肠道菌群中颤螺菌属(Oscillospira)和CF231的变化有关,本研究为进一步探索动物肠道菌群-营养代谢和行为变化的关系奠定了基础,为通过调控肠道菌群防治PICA行为提供了线索。

参考文献
[1]
LI H, WANG K, LANG L, et al. Study the use of urea molasses mltinutrient block on pica symptom of cattle[J]. Journal of Food Agriculture & Environment, 2014, 12(3): 415-419.
[2]
WHITLOCK R H, KESSLER M J, TASKER J B. Salt (sodium) deficiency in dairy cattle: polyuria and polydipsia as prominent clinical features[J]. Cornell Vet, 1975, 65(4): 512-526.
[3]
BETHKE R M, EDGINGTON B H. The calcium-phosphorus ratio in animal nutrition[J]. J Anim Sci, 1928(1): 13-16.
[4]
ONMAZ A C, GÜNEŞ V, ÇINAR M, et al. Hematobiochemical profiles, mineral concentrations and oxidative stress indicators in beef cattle with pica[J]. Ital J Anim Sci, 2019, 18(1): 162-167. DOI:10.1080/1828051X.2018.1501283
[5]
STURMEY P, WILLIAMS D E. Etiology[M]//Pica in Individuals with Developmental Disabilities. Switzerland: Springer International Publishing, 2016: 29-38.
[6]
GASBARRINI G, BONVICINI F, GRAMENZI A. Probiotics history[J]. J Clin Gastroenterol, 2016, 50(S2): S116-S119.
[7]
BONAZ B, SINNIGER V, PELLISSIER S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation[J]. J Physiol, 2016, 594(20): 5781-5790. DOI:10.1113/JP271539
[8]
刘海鹏. 大鼠味觉嗜好性对小肠运动的影响及其机制的研究[D]. 石家庄: 河北师范大学, 2007.
LIU H P. Effect of taste preference on small intestine peristalsis in rats and its mechanism[D]. Shijiazhuang: Hebei Normal University, 2007. (in Chinese)
[9]
KAAKOUSH N O, DAY A S, HUINAO K D, et al. Microbial dysbiosis in pediatric patients with Crohn's disease[J]. J Clin Microbiol, 2012, 50(10): 3258-3266. DOI:10.1128/JCM.01396-12
[10]
GERASIMIDIS K, BERTZ M, HANSKE L, et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition[J]. Inflamm Bowel Dis, 2014, 20(5): 861-871. DOI:10.1097/MIB.0000000000000023
[11]
AYTEKIN I, ONMAZ A C, KALNBACAK A, et al. Circulating mineral element concentrations in Sakiz crossbred lambs with pica disorder[J]. Revue Med Vet, 2010, 161(7): 332-335.
[12]
AYTEKIN I, ONMAZ A C, AYPAK S U, et al. Changes in serum mineral concentrations, biochemical and hematological parameters in horses with pica[J]. Biol Trace Elem Res, 2011, 139(3): 301-307. DOI:10.1007/s12011-010-8660-y
[13]
MEYER H, LOHSE K. Ca and P supply of ruminants in the 19th and beginning of 20th century in Middle Europe[J]. Dtsch Tierarztl Wochenschr, 2002, 109(1): 34-37.
[14]
NESER J A, DE VRIES M A, DE VRIES M, et al. Enzootic geophagia of calves and lambs in Northern Cape and Northwest and the possible role of chronic manganese poisoning[J]. S Afr J Anim Sci, 2000, 30(S1): 105-106.
[15]
SMITH J W, ADEBOWALE E A, OGUNDOLA F I, et al. Influence of minerals on the aetiology of geophagia in periurban dairy cattle in the derived savannah of Nigeria[J]. Trop Anim Health Prod, 2000, 32(5): 315-327. DOI:10.1023/A:1005269107863
[16]
OLSON K C. Management of mineral supplementation programs for cow-calf operations[J]. Vet Clin North Am Food Anim Pract, 2007, 23(1): 69-90. DOI:10.1016/j.cvfa.2006.11.005
[17]
PATTERSON C. Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs, and goats, 11th edition.Volumes 1 and 2[J]. Can Vet J, 2017, 58(10): 1116.
[18]
程春梅. 胆碱与维生素E对肉牛生产性能影响的营养调控研究[D]. 贵阳: 贵州大学, 2017.
CHENG C M. Effects of choline and vitamin E on the nutritional regulation of beef production performance[D]. Guiyang: Guizhou University, 2017. (in Chinese)
[19]
NIKVAND A A, RASHNAVADI M, TABANDEH M R. A study of pica in cattle in Iran[J]. J Vet Behav, 2018, 23: 15-18. DOI:10.1016/j.jveb.2017.10.006
[20]
王永卫, 付广建, 杨奇, 等. 固原市郊区牛瞎眼综合征调查研究[J]. 西北农业学报, 2007, 16(4): 184-190.
WANG Y W, FU G J, YANG Q, et al. Investigation and research on blind syndrome in cattle at suburb of Guyuan[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(4): 184-190. DOI:10.3969/j.issn.1004-1389.2007.04.042 (in Chinese)
[21]
张周. 奶牛高效饲养与疾病防治手册[M]. 陕西: 西北农林科技大学出版社, 2005.
ZHANG Z. Handbook of efficient feeding and disease control of dairy cows[M]. Shaanxi: Northwest A&F University Press, 2005. (in Chinese)
[22]
王永卫. 固原地区牛瞎眼病病因与防治研究[D]. 杨凌: 西北农林科技大学, 2007.
WANG Y W. The research on cause and treatment of blind ophthalmopathy of cattle in Guyuan area[D]. Yangling: Northwest A&F University, 2007. (in Chinese)
[23]
李伟, 韩永胜, 宋雪莹, 等. 不同月龄纯种和牛主要血液指标变化规律的研究[J]. 现代畜牧科技, 2019(7): 1-2, 4.
LI W, HAN Y S, SONG X Y, et al. Study on variation of main blood indexes of Wagyu cattle at different ages[J]. Modern Animal Husbandry Science & Technology, 2019(7): 1-2, 4. (in Chinese)
[24]
HOLCOMBE S J, WISNIESKI L, GANDY J, et al. Reduced serum vitamin D concentrations in healthy early-lactation dairy cattle[J]. J Dairy Sci, 2018, 101(2): 1488-1494. DOI:10.3168/jds.2017-13547
[25]
GHAFFARI M H, BERNHÖFT K, ETHEVE S, et al. Technical note: Rapid field test for the quantification of vitamin E, β-carotene, and vitamin A in whole blood and plasma of dairy cattle[J]. J Dairy Sci, 2019, 102(12): 11744-11750. DOI:10.3168/jds.2019-16755
[26]
SOCHA M T, PUTNAM D E, GARTHWAITE B D, et al. Improving intestinal amino acid supply of pre- and postpartum dairy cows with rumen-protected methionine and lysine[J]. J Dairy Sci, 2005, 88(3): 1113-1126. DOI:10.3168/jds.S0022-0302(05)72778-8
[27]
杨昕涧, 曹阳春, 郑辰, 等. 日粮添加亮氨酸和苯丙氨酸对荷斯坦公犊生长性能及血清代谢物的影响[J]. 中国农业科学, 2017, 50(21): 4196-4204.
YANG X J, CAO Y C, ZHENG C, et al. Effect of leucine and phenylalanine supplementation on growth performance and serum metabolites of Holstein male calves[J]. Scientia Agricultura Sinica, 2017, 50(21): 4196-4204. DOI:10.3864/j.issn.0578-1752.2017.21.014 (in Chinese)
[28]
ALAMSHAH A, SPRECKLEY E, NORTON M, et al. L-phenylalanine modulates gut hormone release and glucose tolerance, and suppresses food intake through the calcium-sensing receptor in rodents[J]. Int J Obesity, 2017, 41(11): 1693-1701. DOI:10.1038/ijo.2017.164
[29]
SUÁREZ-BELLOCH J, GUADA J A, LATORRE M A. The effect of lysine restriction during grower period on productive performance, serum metabolites and fatness of heavy barrows and gilts[J]. Livest Sci, 2015, 171: 36-43. DOI:10.1016/j.livsci.2014.11.006
[30]
MORAES T B, JACQUES C E D, ROSA A P, et al. Role of catalase and superoxide dismutase activities on oxidative stress in the brain of a phenylketonuria animal model and the effect of lipoic acid[J]. Cell Mol Neurobiol, 2013, 33(2): 253-260. DOI:10.1007/s10571-012-9892-5
[31]
USHAKOVA A A, GUBKINA H A, KACHUR V A, et al. Effect of experimental hyperphenylalaninemia on the postnatal rat brain[J]. Int J Dev Neurosci, 1997, 15(1): 29-36. DOI:10.1016/S0736-5748(96)00081-0
[32]
ZHANG S H, ZENG X F, REN M, et al. Novel metabolic and physiological functions of branched chain amino acids: a review[J]. J Anim Sci Biotechnol, 2017, 8: 10. DOI:10.1186/s40104-016-0139-z
[33]
MARCZUK J, BRODZKI P, BRODZKI A, et al. The concentration of free amino acids in blood serum of dairy cows with primary ketosis[J]. Pol J Vet Sci, 2018, 21(1): 149-156.
[34]
CONNOLLY S, DONA A, WILKINSON-WHITE L, et al. Relationship of the blood metabolome to subsequent carcass traits at slaughter in feedlot Wagyu crossbred steers[J]. Sci Rep, 2019, 9: 15139. DOI:10.1038/s41598-019-51655-2
[35]
LI Y, XU C, XIA C, et al. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology[J]. Vet Quart, 2014, 34(3): 152-158. DOI:10.1080/01652176.2014.962116
[36]
ZHANG H Y, WU L, XU C, et al. Plasma metabolomic profiling of dairy cows affected with ketosis using gas chromatography/mass spectrometry[J]. BMC Vet Res, 2013, 9: 186. DOI:10.1186/1746-6148-9-186
[37]
SUN L W, ZHANG H Y, WU L, et al. 1H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis[J]. J Dairy Sci, 2014, 97(3): 1552-1562. DOI:10.3168/jds.2013-6757
[38]
ARNETH B M. Gut-brain axis biochemical signalling from the gastrointestinal tract to the central nervous system: Gut dysbiosis and altered brain function[J]. Postgrad Med J, 2018, 94(1114): 446-452. DOI:10.1136/postgradmedj-2017-135424
[39]
RATUSCO P, ZIEGLER J. Role of probiotics in managing gastrointestinal dysfunction in children with autism spectrum disorder: an update for practitioners[J]. Adv Nutr, 2018, 9(5): 637-650. DOI:10.1093/advances/nmy031
[40]
HUANG R X, WANG K, HU J N. Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials[J]. Nutrients, 2016, 8(8): 483. DOI:10.3390/nu8080483
[41]
GOLNIK A E, IRELAND M. Complementary alternative medicine for children with autism: a physician survey[J]. J Autism Dev Disord, 2009, 39(7): 996-1005. DOI:10.1007/s10803-009-0714-7
[42]
KANG D W, ADAMS J B, GREGORY A C, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study[J]. Microbiome, 2017, 5: 10. DOI:10.1186/s40168-016-0225-7
[43]
PÄRTTY A, KALLIOMÄKI M, WACKLIN P, et al. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial[J]. Pediatr Res, 2015, 77(6): 823-828. DOI:10.1038/pr.2015.51
[44]
GRIMALDI R, GIBSON G R, VULEVIC J, et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs)[J]. Microbiome, 2018, 6: 133. DOI:10.1186/s40168-018-0523-3
[45]
王燕, 滕晓晓, 杨柠芝, 等. 粪菌移植法治疗非特异病原性羔羊腹泻的效果初报[J]. 畜牧兽医学报, 2020, 51(8): 1878-1885.
WANG Y, TENG X X, YANG N Z, et al. Preliminary report of the therapeutic effect of fecal microbiota transplantation on non-specific pathogenic diarrhea in suckling lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1878-1885. (in Chinese)
[46]
LI J, ZHANG H, WANG G, et al. Correlations between inflammatory response, oxidative stress, intestinal pathological damage and intestinal flora variation in rats with type 2 diabetes mellitus[J]. Eur Rev Med Pharmacol Sci, 2020, 24(19): 10162-10168.
[47]
LIU C G, SHAO W, GAO M, et al. Changes in intestinal flora in patients with type 2 diabetes on a low-fat diet during 6 months of follow-up[J]. Exp Ther Med, 2020, 20(5): 40.
[48]
MA R C W, GLUCKMAN P D, HANSON M A, et al. Maternal obesity and developmental priming of risk of later disease[M]//MAHMOOD T, ARULKUMARAN S. Obesity. London: Elsevier, 2013: 193-212.
[49]
TIGCHELAAR E F, BONDER M J, JANKIPERSADSIN S A, et al. Gut microbiota composition associated with stool consistency[J]. Gut, 2016, 65(3): 540-542. DOI:10.1136/gutjnl-2015-310328
[50]
GOPHNA U, KONIKOFF T, NIELSEN H B. Oscillospira and related bacteria - From metagenomic species to metabolic features[J]. Environ Microbiol, 2017, 19(3): 835-841. DOI:10.1111/1462-2920.13658
[51]
LEE J H, KUMAR S, LEE G H, et al. Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle[J]. Int J Syst Evol Microbiol, 2013, 63(Pt11): 4196-4201.
[52]
GUILLOTEAU P, SAVARY G, JAGUELIN-PEYRAULT Y, et al. Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk-fed calves[J]. J Dairy Sci, 2010, 93(12): 5842-5850. DOI:10.3168/jds.2009-2751
[53]
HORNBY P J, MOORE B A. The therapeutic potential of targeting the glucagon-like peptide-2 receptor in gastrointestinal disease[J]. Expert Opin Ther Targets, 2011, 15(5): 637-646. DOI:10.1517/14728222.2011.556620
[54]
PLAIZIER J C, AZEVEDO P, SCHURMANN B L, et al. The duration of increased grain feeding affects the microbiota throughout the digestive tract of yearling Holstein steers[J]. Microorganisms, 2020, 8(12): 1854. DOI:10.3390/microorganisms8121854
[55]
PARK T, MA L, MA Y, et al. Dietary energy sources and levels shift the multi-kingdom microbiota and functions in the rumen of lactating dairy cows[J]. J Anim Sci Biotechnol, 2020, 11: 66. DOI:10.1186/s40104-020-00461-2

(编辑   范子娟)