畜牧兽医学报  2021, Vol. 52 Issue (8): 2326-2333. DOI: 10.11843/j.issn.0366-6964.2021.08.026    PDF    
Fas对镉激活PC12细胞线粒体凋亡通路的影响
闻双全1,2, 陈洁1,3, 王莉1,2, 邹辉1,2, 顾建红1,2, 刘学忠1,2, 卞建春1,2, 刘宗平1,2, 袁燕1,2     
1. 扬州大学兽医学院, 扬州 225009;
2. 江苏高校动物重要疫病与人兽共患病防控协同创新中心, 扬州 225009;
3. 江苏省南通市动物疫病预防控制中心, 南通 226011
摘要:旨在探究死亡受体Fas在镉致大鼠肾上腺嗜铬细胞瘤细胞(PC12)凋亡中的作用及其对线粒体通路的调控机制,用10 μmol·L-1镉处理Fas基因沉默的PC12细胞株12 h,通过Western blot检测BH3相互作用域死亡激动剂(BID)、半胱氨酸蛋白酶-9(caspase-9)、半胱氨酸蛋白酶-3(caspase-3)、多聚二磷酸腺苷核糖聚合酶(PARP)的活化情况,Bcl-2相关X蛋白(Bax)、B细胞淋巴瘤/白血病-2基因(Bcl-2)、凋亡诱导因子(AIF)、核酸内切酶G(Endo G)的表达情况,以及细胞色素C(Cyt C)在细胞内的分布情况,免疫荧光染色检测AIF核转位。结果显示,镉极显著上调tBID/BID比值和Bax/Bcl-2比值,诱导Cyt C从线粒体释放到细胞质,激活caspase-9、caspase-3和PARP,增加AIF和Endo G蛋白表达水平(P < 0.01),并诱导AIF核转位;沉默Fas极显著抑制镉引起的tBID/BID比值和Bax/Bcl-2比值升高,Cyt C从线粒体释放到胞浆,caspase-3、PARP蛋白活化和AIF、Endo G蛋白表达水平极显著升高(P < 0.01),显著抑制镉激活的caspase-9(P < 0.05),并抑制AIF核转位。综上表明,Fas通过调控线粒体通路参与镉致PC12细胞凋亡。
关键词    Fas    PC12细胞    凋亡    线粒体通路    
Effects of Fas on Mitochondrial Apoptotic Pathway Activated by Cadmium in PC12 Cells
WEN Shuangquan1,2, CHEN Jie1,3, WANG Li1,2, ZOU Hui1,2, GU Jianhong1,2, LIU Xuezhong1,2, BIAN Jianchun1,2, LIU Zongping1,2, YUAN Yan1,2     
1. College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China;
3. Nantong Animal Disease Prevention and Control Center, Nantong 226011, China
Abstract: In order to explore the role of Fas death receptor in rat pheochromocytoma cell line (PC12) apoptosis induced by cadmium (Cd) and its regulation mechanism on the mitochondrial pathway, Fas gene silencing PC12 cells were treated with 10 μmol·L-1 Cd for 12 hours. The activation of BH3 interacting domain death agonist (BID), cysteine aspartate-specific protease-9 (caspase-9), cysteine aspartate-specific protease-3 (caspase-3), poly ADP ribose polymerase (PARP), the expression of Bcl-2 associated X protein (Bax), B-cell lymphoma/leukemia-2 (Bcl-2), apoptosis inducing factor (AIF), endonuclease G (Endo G), and the distribution of cytochrome C (Cyt C) in cells were detected by Western blot. Nuclear translocation of AIF was detected by immunofluorescence staining. The results showed that Cd significantly increased the tBID/BID and Bax/Bcl-2 ratios, the release of Cyt C from mitochondria into the cytosol, the activation of caspase-9, caspase-3, PARP, and the expression of AIF, Endo G (P < 0.01). Meanwhile, Cd induced the nuclear translocation of AIF. Fas silencing significantly inhibited Cd-induced increase of the tBID/BID and Bax/Bcl-2 ratios, the release of Cyt C from mitochondria into the cytosol, the activation of caspase-3, PARP, the expression of AIF, Endo G (P < 0.01). Cd-activated caspase-9 was significantly inhibited by Fas silencing (P < 0.05). Cd-induced nuclear translocation of AIF was abated by Fas silencing. The above results indicate that PC12 cells apoptosis induced by Cd via the mitochondrial pathway is mediated by Fas.
Key words: cadmium    Fas    PC12 cells    apoptosis    mitochondrial pathway    

镉是环境中常见的重金属污染物,可经皮肤、消化道和呼吸道进入人、畜体内。进入机体内的镉排泄率极低,其生物半衰期长达10~30年。脑是镉毒性作用的重要靶器官之一,镉可增加血脑屏障通透性并进入大脑[1]。本实验室前期研究发现,镉可在大鼠大脑皮质内蓄积[2]。大量研究表明,镉可造成人和动物神经系统功能障碍[3-5]。镉致神经系统毒性机制主要包括诱导氧化应激、凋亡和自噬[6-7]。其中,细胞凋亡是镉致神经毒性的重要机制之一。

细胞凋亡是由基因调控的一种细胞程序性死亡,在调节细胞稳态和多细胞生物发育过程中起着重要作用。Fas是肿瘤坏死因子受体超家族的一员,通过与其配体FasL结合在多种细胞凋亡中发挥关键作用[8-10]。当细胞受到凋亡刺激时,FasL与Fas结合,并通过进一步与Fas相关死亡结构域蛋白(FADD)结合,激活半胱氨酸蛋白酶-8(caspase-8),引起细胞凋亡[11];另外,活化的caspase-8可剪切BH3相互作用域死亡激动剂(BID),诱导线粒体释放细胞色素C(Cyt C),介导线粒体凋亡通路[12]

本实验室前期研究发现镉可通过激活Fas/FasL通路和线粒体通路诱导神经细胞凋亡[13-14]。但是,这两条通路之间的关系以及Fas在镉致神经细胞凋亡线粒体通路中的作用和调控机制尚未完全阐明。本试验以Fas基因沉默的大鼠肾上腺嗜铬细胞瘤细胞(PC12)为模型,用镉进行处理,通过Western blot、免疫荧光染色等方法探究Fas在镉致PC12细胞凋亡中的作用及其对线粒体通路的调控机制,为揭示镉的神经毒性机制提供理论依据。

1 材料与方法 1.1 细胞

PC12细胞购自中国科学院上海生命科学研究院细胞库。Fas基因沉默PC12细胞株(Fas shRNA组,靶序列:5′-GATCCGGTGCGTGTCAAGCT TTAATCTTCAAGAGAGATTAAAGCTTGACA CGCACCTTTTTTA-3′)和插入非特异性序列的对照细胞株(NC组)由实验室构建筛选获得。

1.2 主要试剂与仪器

RPMI 1640、马血清和胎牛血清购自Life Technologies公司;L-谷氨酰胺和青链霉素购自BBI公司;醋酸镉和L-多聚赖氨酸购自Sigma公司;细胞线粒体分离试剂盒、Cy 3标记山羊抗兔荧光二抗和DAPI染色液购自碧云天生物技术研究所;凋亡诱导因子(AIF)和核酸内切酶G(Endo G)兔多克隆抗体购自Abcam公司;Bcl-2相关X蛋白(Bax)、B细胞淋巴瘤/白血病-2基因(Bcl-2)、Cyt C、细胞色素C氧化酶亚基Ⅳ(COX-Ⅳ)、活化半胱氨酸蛋白酶-9(cleaved caspase-9)、活化半胱氨酸蛋白酶-3(cleaved caspase-3)、活化多聚二磷酸腺苷核糖聚合酶(cleaved PARP)、β-actin兔单克隆抗体和辣根过氧化物酶标记山羊抗兔二抗购自CST公司;BID兔多克隆抗体购自Novus公司;其余试剂均为国产分析纯。

二氧化碳培养箱购自美国Thermo公司;5810R型低温高速冷冻离心机购自德国Eppendorf公司;电泳仪、转膜仪购自美国BIORAD公司;激光共聚焦显微镜购自德国Leica公司。

1.3 细胞的培养与处理

Fas基因沉默的PC12细胞株和对照细胞株接种于RPMI 1640培养基(含10%马血清、5%胎牛血清、1%L-谷氨酰胺、1%青链霉素),置于37 ℃和5% CO2环境的培养箱中培养,当细胞生长状态良好且处于对数生长期时,用10 μmol·L-1 Cd处理细胞12 h,分别命名为对照组(NC组)、镉组(Cd组)、Fas shRNA干扰组(Fas shRNA组)、Fas shRNA与镉共处理组(Fas shRNA+Cd组)。

1.4 细胞总蛋白、胞浆蛋白和线粒体蛋白的提取

收集各组细胞,加入适量含有蛋白酶抑制剂的细胞裂解液,冰上裂解30 min,超声裂解20 s;4 ℃,12 000 g·min-1离心10 min,收集上清即为总蛋白。

收集各组细胞,加入适量含有蛋白酶抑制剂的线粒体分离试剂重悬细胞团块,将细胞悬液转移至预冷的玻璃匀浆器中,冰上研磨,随后将匀浆转移至预冷的离心管,4 ℃,600 g·min-1离心10 min,吸取上清至新的离心管,4 ℃,11 000 g·min-1离心10 min,收集上清即为细胞浆蛋白,沉淀为线粒体;向沉淀中加入适量含有蛋白酶抑制剂的线粒体裂解液,冰上裂解30 min,12 000 g·min-1离心10 min,收集上清即为线粒体蛋白。

使用BCA法测定蛋白浓度并将蛋白浓度调整一致,按照1∶4加入5 × SDS-PAGE Loading Buffer,沸水煮10 min,蛋白保存于-80 ℃备用。

1.5 Western blot检测相关蛋白的表达

取等量样品进行SDS-PAGE电泳,转印至PVDF膜上,5%脱脂乳室温封闭1 h,4 ℃孵育相应一抗(BID、Bax、Bcl-2、Cyt C、cleaved caspase-9、cleaved caspase-3、cleaved PARP、AIF、Endo G、β-actin、COX-Ⅳ抗体按1∶1 000稀释)过夜,室温孵育二抗(按1∶10 000稀释)1 h,ECL显影检测蛋白表达情况。使用Image J软件分析条带灰度值,目的蛋白与β-actin或COX-Ⅳ灰度值的比值即为目的蛋白的相对表达水平。

1.6 免疫荧光染色检测AIF核转位

用0.01% L-多聚赖氨酸包被爬片并将其置于24孔培养板中,将Fas shRNA组和NC组细胞接种于爬片,待其长至对数生长期时,用10 μmol·L-1 Cd处理细胞12 h后,弃去培养基,磷酸盐缓冲液(PBS)洗涤2次;4%多聚甲醛固定细胞30 min,弃去固定液,PBS洗涤3次;加入0.5% 曲拉通X-100,室温透膜20 min,PBS洗涤3次;加入5% 牛血清白蛋白,室温封闭1.5 h,弃去封闭液;4 ℃孵育AIF抗体(1∶100)过夜,PBS洗涤3次;室温避光孵育Cy 3标记山羊抗兔荧光二抗(1∶200)1 h,PBS洗涤3次;滴加DAPI染色液,室温避光孵育5 min,PBS洗涤2次;封片,激光共聚焦显微镜观察并拍照。

1.7 数据分析

数据采用SPSS 22.0统计软件进行单因素方差分析(one-way ANOVA),再经LSD及Dunnett法进行多重比较,统计结果以“x±s”表示。P < 0.05表示差异显著,P < 0.01表示差异极显著。

2 结果 2.1 Fas基因沉默对镉致PC12细胞BID活化的影响

10 μmol·L-1 Cd分别处理NC组和Fas shRNA组细胞12 h,Western blot检测BID和tBID蛋白表达水平。结果如图 1所示,与NC组相比,Cd组tBID/BID比值极显著升高(P < 0.01);与Cd组相比,Fas shRNA+Cd组tBID/BID比值极显著降低(P < 0.01)。

与NC组相比,**表示P < 0.01;与Cd组相比,#表示P < 0.05,##表示P < 0.01。下同 Compared with NC group, ** indicates P < 0.01; Compared with Cd group, # indicates P < 0.05, ## indicates P < 0.01.The same as follows 图 1 Fas基因沉默对镉致PC12细胞BID活化的影响 Fig. 1 Effects of Fas silencing on the activation of BID in PC12 cells caused by cadmium
2.2 Fas基因沉默对镉致PC12细胞Bax/Bcl-2比值变化的影响

10 μmol·L-1 Cd分别处理NC组和Fas shRNA组细胞12 h,Western blot检测Bax和Bcl-2蛋白表达水平。结果如图 2所示,与NC组相比,Cd组Bax/Bcl-2比值极显著升高(P < 0.01);与Cd组相比,Fas shRNA+Cd组Bax/Bcl-2比值极显著降低(P < 0.01)。

图 2 Fas基因沉默对镉致PC12细胞Bax/Bcl-2比值变化的影响 Fig. 2 Effects of Fas silencing on the change of Bax/Bcl-2 ratio in PC12 cells caused by cadmium
2.3 Fas基因沉默对镉致PC12细胞Cyt C释放的影响

10 μmol·L-1 Cd分别处理NC组和Fas shRNA组细胞12 h,Western blot检测Cyt C在细胞内分布情况。结果如图 3所示,与NC组相比,Cd组线粒体中Cyt C表达量极显著降低(P < 0.01),细胞质中Cyt C表达量极显著升高(P < 0.01);与Cd组相比,Fas shRNA+Cd组线粒体中Cyt C表达量极显著升高(P < 0.01),细胞质中Cyt C表达量极显著降低(P < 0.01)。

图 3 Fas基因沉默对镉致PC12细胞Cyt C释放的影响 Fig. 3 Effects of Fas silencing on the release of Cyt C in PC12 cells caused by cadmium
2.4 Fas基因沉默对镉致PC12细胞caspase-9、caspase-3和PARP蛋白活化的影响

10 μmol·L-1 Cd分别处理NC组和Fas shRNA组细胞12 h,Western blot检测caspase-9、caspase-3和PARP蛋白活化情况。结果如图 4所示,与NC组相比,Cd组Cleaved caspase-9、Cleaved caspase-3和Cleaved PARP蛋白水平均极显著升高(P < 0.01);与Cd组相比,Fas shRNA+Cd组Cleaved caspase-9蛋白水平显著降低(P < 0.05),Cleaved caspase-3和Cleaved PARP蛋白水平极显著降低(P < 0.01)。

图 4 Fas基因沉默对镉致PC12细胞caspase-9、caspase-3和PARP蛋白活化的影响 Fig. 4 Effects of Fas silencing on the activation of caspase-9, caspase-3 and PARP in PC12 cells caused by cadmium
2.5 Fas基因沉默对镉致PC12细胞AIF和Endo G蛋白表达的影响

10 μmol·L-1 Cd分别处理NC组和Fas shRNA组细胞12 h,Western blot检测AIF和Endo G蛋白表达水平。结果如图 5所示,与NC组相比,Cd组AIF和Endo G蛋白水平极显著升高(P < 0.01);与Cd组相比,Fas shRNA+Cd组AIF和Endo G蛋白水平极显著降低(P < 0.01)。

图 5 Fas基因沉默对镉致PC12细胞AIF和Endo G蛋白表达的影响 Fig. 5 Effects of Fas silencing on the expression of AIF and Endo G in PC12 cells caused by cadmium
2.6 Fas基因沉默对镉致PC12细胞AIF核转位的影响

10 μmol·L-1 Cd分别处理NC组和Fas shRNA组细胞12 h,免疫荧光染色法检测AIF核转位情况。结果如图 6所示,与NC组相比,Cd组荧光标记蛋白AIF主要集中于细胞核;与Cd组相比,Fas shRNA+Cd组荧光标记蛋白AIF主要分散于细胞质。

红色荧光代表AIF,蓝色荧光代表细胞核 The red puncta represent AIF and the blue puncta represent nuclei 图 6 Fas基因沉默对镉致PC12细胞AIF核转位的影响(标尺=20 μm) Fig. 6 Effects of Fas silencing on the nuclear transposition of AIF in PC12 cells caused by cadmium (scale bar=20 μm)
3 讨论

细胞凋亡是由基因调控的程序性死亡,重金属镉可诱导包括神经细胞在内的多种细胞发生凋亡[6, 15-16]。死亡受体通路是经典凋亡通路之一,其中,Fas/FasL信号通路备受关注。Fas/FasL信号通路主要通过Fas/FasL/FADD/caspase-8途径介导细胞发生凋亡。体内外研究表明,镉可激活Fas/FasL信号通路诱发神经细胞凋亡[13, 17]。抑制Fas/FasL信号通路中的关键蛋白,能够对细胞凋亡起到一定抑制作用。Ullah等[18]研究发现,抑制Fas能够降低脑缺血导致的细胞凋亡。Zhang等[19]研究发现,干扰Fas显著抑制氧糖剥夺再灌注诱导的人神经母细胞瘤细胞凋亡。本实验室前期研究发现,利用Anti-FasL抑制FasL可减轻镉导致的PC12细胞凋亡[20]

线粒体在哺乳动物细胞凋亡过程中发挥重要作用。线粒体功能障碍会导致活性氧积累,引起氧化应激和凋亡[21]。线粒体凋亡通路主要由Bcl-2家族蛋白介导。当各种凋亡刺激作用于线粒体时,会激活Bcl-2家族促凋亡成员,导致促凋亡和抗凋亡蛋白的失衡,从而影响线粒体膜通透性[22-23],导致线粒体释放Cyt C等各种促凋亡因子[24-25]。释放的Cyt C与凋亡蛋白酶活化因子-1(Apaf-1)结合形成复合物,激活caspase-9,进而激活caspase-3[26]。激活的caspase-3剪切PARP,抑制受损DNA的修复,促进凋亡细胞死亡[27-28]。体内外研究表明,镉可激活线粒体通路诱发神经细胞凋亡[17, 29]。另外,线粒体通路和Fas/FasL通路之间存在紧密联系,Fas/FasL通路激活的caspase-8将BID剪切为tBID,tBID转位到线粒体,诱导Cyt C释放,从而激活线粒体通路[12]。Yu等[30]研究发现,在小鼠脊髓损伤模型中,Fas缺陷抑制BID、caspase-9和caspase-3的激活,增加抗凋亡蛋白Bcl-2和Bcl-xL的表达。Zhang等[19]研究发现,干扰Fas能够抑制氧糖剥夺再灌注导致的人神经母细胞瘤细胞Bax和Caspase-3上调及Bcl-2下调。本研究结果显示,Fas基因沉默能够显著或极显著抑制镉引起的PC12细胞tBID/BID比值和Bax/Bcl-2比值升高,Cyt C释放,caspase-9、caspase-3和PARP蛋白活化。说明Fas通过调控caspase依赖的线粒体通路参与镉致PC12细胞凋亡。

AIF和Endo G是位于线粒体膜间隙的核酸酶,凋亡发生时被释放到细胞质中并转位到细胞核,通过caspase非依赖途径介导细胞凋亡[31-33]。大量研究表明,在细胞凋亡过程中,Fas可诱导AIF和Endo G从线粒体释放到细胞质或细胞核中[32, 34-35]。Yu等[30]研究发现,在小鼠脊髓损伤模型中,Fas缺陷抑制AIF从线粒体转位到细胞核。本研究结果显示,Fas基因沉默能够极显著抑制镉引起的AIF和Endo G蛋白表达升高,并抑制AIF核转位。说明Fas通过调控caspase非依赖的线粒体通路参与镉致PC12细胞凋亡。

4 结论

镉通过激活线粒体通路诱导PC12细胞凋亡,干扰Fas能够抑制镉激活的线粒体凋亡通路,说明Fas通过调控线粒体通路参与镉致PC12细胞凋亡;这为揭示镉的神经毒性机制提供了新的理论基础。

参考文献
[1] WANG B, DU Y L. Cadmium and its neurotoxic effects[J]. Oxid Med Cell Longev, 2013, 2013: 898034.
[2] YUAN Y, YANG J L, CHEN J, et al. Alpha-lipoic acid protects against cadmium-induced neuronal injury by inhibiting the endoplasmic reticulum stress eIF2α-ATF4 pathway in rat cortical neurons in vitro and in vivo[J]. Toxicology, 2019, 414: 1–13. DOI: 10.1016/j.tox.2018.12.005
[3] ANDERSSON H, PETERSSON-GRAWÉ K, LINDQVIST E, et al. Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring[J]. Neurotoxicol Teratol, 1997, 19(2): 105–115. DOI: 10.1016/S0892-0362(96)00218-8
[4] MIN J Y, MIN K B. Blood cadmium levels and Alzheimer's disease mortality risk in older US adults[J]. Environ Health, 2016, 15(1): 69. DOI: 10.1186/s12940-016-0155-7
[5] HALDER S, KAR R, CHAKRABORTY S, et al. Cadmium level in brain correlates with memory impairment in F1 and F2 generation mice: improvement with quercetin[J]. Environ Sci Pollut Res Int, 2019, 26(10): 9632–9639. DOI: 10.1007/s11356-019-04283-2
[6] YUAN Y, BIAN J C, LIU X Z, et al. Oxidative stress and apoptotic changes of rat cerebral cortical neurons exposed to cadmium in vitro[J]. Biomed Environ Sci, 2012, 25(2): 172–181.
[7] TANG K K, LIU X Y, WANG Z Y, et al. Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis[J]. Metallomics, 2019, 11(12): 2043–2051. DOI: 10.1039/C9MT00227H
[8] LIU W, XU C, ZHAO H Y, et al. Osteoprotegerin induces apoptosis of osteoclasts and osteoclast precursor cells via the Fas/Fas ligand pathway[J]. PLoS One, 2015, 10(11): e0142519. DOI: 10.1371/journal.pone.0142519
[9] HE X Y, WU J, YUAN L Y, et al. Lead induces apoptosis in mouse TM3 Leydig cells through the Fas/FasL death receptor pathway[J]. Environ Toxicol Pharmacol, 2017, 56: 99–105. DOI: 10.1016/j.etap.2017.08.034
[10] LIU G, YUAN Y, LONG M F, et al. Beclin-1-mediated autophagy protects against cadmium-activated apoptosis via the Fas/Fasl pathway in primary rat proximal tubular cell culture[J]. Sci Rep, 2017, 7(1): 977. DOI: 10.1038/s41598-017-00997-w
[11] NAGATA S. Fas ligand-induced apoptosis[J]. Annu Rev Genet, 1999, 33: 29–55. DOI: 10.1146/annurev.genet.33.1.29
[12] LUO X, BUDIHARDJO I, ZOU H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors[J]. Cell, 1998, 94(4): 481–490. DOI: 10.1016/S0092-8674(00)81589-5
[13] 张雅静. Fas/FasL信号转导通路在镉致神经细胞凋亡中的作用及NAC的保护效应[D]. 扬州: 扬州大学, 2016.
ZHANG Y J. Role of Fas/FasL signaling pathway in cadmium induced neural apoptosis and protrct effect of NAC[D]. Yangzhou: Yangzhou University, 2016. (in Chinses)
[14] 徐卉. 镉致大鼠大脑皮质神经元凋亡的线粒体途径[D]. 扬州: 扬州大学, 2013.
XU H. Mitochondrial pathway of cadmium-induced apoptosis in primary rat cerebral cortical neurons culture[D]. Yangzhou: Yangzhou University, 2013. (in Chinses)
[15] LIU W, XU C, RAN D, et al. CaMKⅡ mediates cadmium induced apoptosis in rat primary osteoblasts through MAPK activation and endoplasmic reticulum stress[J]. Toxicology, 2018, 406-407: 70–80. DOI: 10.1016/j.tox.2018.06.002
[16] WANG S S, REN X M, HU X D, et al. Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells[J]. Toxicol Appl Pharmacol, 2019, 368: 37–48. DOI: 10.1016/j.taap.2019.02.012
[17] 赵世文. α-硫辛酸对铅镉联合致大鼠大脑皮质毒性损伤的保护效应[D]. 扬州: 扬州大学, 2018.
ZHAO S W. The protective effects of α-lipoid-acid on toxic damage of cadmium and lead exposure in cerebral cortex of rats[D]. Yangzhou: Yangzhou University, 2018. (in Chinses)
[18] ULLAH I, CHUNG K, OH J, et al. Intranasal delivery of a Fas-blocking peptide attenuates Fas-mediated apoptosis in brain ischemia[J]. Sci Rep, 2018, 8(1): 15041. DOI: 10.1038/s41598-018-33296-z
[19] ZHANG J F, SHI L L, ZHANG L, et al. MicroRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through Fas/FasL pathway[J]. J Mol Neurosci, 2016, 58(4): 507–516. DOI: 10.1007/s12031-016-0712-0
[20] YUAN Y, ZHANG Y J, ZHAO S W, et al. Cadmium-induced apoptosis in neuronal cells is mediated by Fas/FasL-mediated mitochondrial apoptotic signaling pathway[J]. Sci Rep, 2018, 8(1): 8837. DOI: 10.1038/s41598-018-27106-9
[21] SU L J, ZHANG J H, GOMEZ H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxid Med Cell Longev, 2019, 2019: 5080843.
[22] KUWANA T, MACKEY M R, PERKINS G, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane[J]. Cell, 2002, 111(3): 331–342. DOI: 10.1016/S0092-8674(02)01036-X
[23] MARZO I, BRENNER C, ZAMZAMI N, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis[J]. Science, 1998, 281(5385): 2027–2031. DOI: 10.1126/science.281.5385.2027
[24] YUAN Y, JIANG C Y, HU F F, et al. The role of mitogen-activated protein kinase in cadmium-induced primary rat cerebral cortical neurons apoptosis via a mitochondrial apoptotic pathway[J]. J Trace Elem Med Biol, 2015, 29: 275–283. DOI: 10.1016/j.jtemb.2014.06.006
[25] SAELENS X, FESTJENS N, WALLE L V, et al. Toxic proteins released from mitochondria in cell death[J]. Oncogene, 2004, 23(16): 2861–2874. DOI: 10.1038/sj.onc.1207523
[26] NAKABAYASHI J, SASAKI A. A mathematical model for apoptosome assembly: the optimal cytochrome c/Apaf-1 ratio[J]. J Theor Biol, 2006, 242(2): 280–287. DOI: 10.1016/j.jtbi.2006.02.022
[27] CHAITANYA G V, ALEXANDER J S, BABU P P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration[J]. Cell Commun Signal, 2010, 8(1): 31. DOI: 10.1186/1478-811X-8-31
[28] SAIRANEN T, SZEPESI R, KARJALAINEN-LINDSBERG M L, et al. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke[J]. Acta Neuropathol, 2009, 118(4): 541–552. DOI: 10.1007/s00401-009-0559-3
[29] 江辰阳. 镉致大鼠神经细胞凋亡的线粒体途径及NAC的保护作用[D]. 扬州: 扬州大学, 2014.
JIANG C Y. Cadmium induces apoptosis through the mitochondrial pathway and the protection of NAC in rat's neuronal cells[D]. Yangzhou: Yangzhou University, 2014. (in Chinses)
[30] YU W R, LIU T Y, FEHLINGS T K, et al. Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury[J]. Eur J Neurosci, 2009, 29(1): 114–131. DOI: 10.1111/j.1460-9568.2008.06555.x
[31] SUSIN S A, LORENZO H K, ZAMZAMI N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor[J]. Nature, 1999, 397(6718): 441–446. DOI: 10.1038/17135
[32] VAN LOO G, SCHOTTE P, VAN GURP M, et al. Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation[J]. Cell Death Differ, 2001, 8(12): 1136–1142. DOI: 10.1038/sj.cdd.4400944
[33] BAJT M L, COVER C, LEMASTERS J J, et al. Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury[J]. Toxicol Sci, 2006, 94(1): 217–225. DOI: 10.1093/toxsci/kfl077
[34] LEE S Y, OH J Y, LEE M J, et al. Anti-apoptotic mechanism and reduced expression of phospholipase D in spontaneous and Fas-stimulated apoptosis of human neutrophils[J]. Eur J Immunol, 2004, 34(10): 2760–2770. DOI: 10.1002/eji.200425117
[35] SUSIN S A, ZAMZAMI N, CASTEDO M, et al. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis[J]. J Exp Med, 1997, 186(1): 25–37. DOI: 10.1084/jem.186.1.25
(编辑  白永平)