畜牧兽医学报  2021, Vol. 52 Issue (8): 2223-2232. DOI: 10.11843/j.issn.0366-6964.2021.08.015    PDF    
放牧与舍饲饲养方式对小尾寒羊肉品质的影响
于小杰, 王净, 白园园, 张雷, 赵晓锟, 杨江峰, 王聪慧, 杨超超     
河北北方学院动物科技学院 河北省肉羊产业技术创新战略联盟, 张家口 075000
摘要:本研究旨在探讨放牧和舍饲两种饲养方式对小尾寒羊肉品质的影响。将100只2月龄雄性断奶羔羊随机分为放牧组与舍饲组,至8月龄进行屠宰,比较两组羔羊肉的营养成分、氨基酸含量、肉色、pH、嫩度及产肉性能。结果表明,放牧组羊肉粗蛋白和水分含量显著高于舍饲组羊肉(P < 0.05)。舍饲组羊肉干物质显著高于放牧羊肉(P < 0.05),粗脂肪极显著高于放牧组羊肉(P < 0.01)。舍饲组羊肉蛋氨酸、天冬氨酸和丝氨酸含量显著高于放牧组羊肉(P < 0.05),苏氨酸、缬氨酸、异亮氨酸、亮氨酸、赖氨酸、谷氨酸和组氨酸含量均极显著高于放牧组羊肉(P < 0.01),必需氨基酸总量、非必需氨基酸总量和氨基酸总量也极显著高于放牧组羊肉(P < 0.01)。放牧组羔羊背最长肌黄度值(b*)和亮度值(L*)极显著高于舍饲组(P < 0.01),肌纤维直径极显著低于舍饲组(P < 0.01),肌纤维密度极显著高于舍饲组(P < 0.01)。舍饲组羊肉熟肉率极显著高于放牧组(P < 0.01),眼肌面积极显著大于放牧组(P < 0.01)。综上所述,放牧饲养的羔羊其肉蛋白质含量较高,脂肪含量较低,肌纤维特性较好,舍饲饲养的羔羊其肉脂肪含量和氨基酸含量较高,肉色和产肉性能较好,生产中可结合两种饲养方式平衡养殖。
关键词放牧    舍饲    小尾寒羊    肌纤维特性    产肉性能    
Effects of Grazing and Confinement Feeding Systems on the Meat Quality of Small-tailed Han Sheep
YU Xiaojie, WANG Jing, BAI Yuanyuan, ZHANG Lei, ZHAO Xiaokun, YANG Jiangfeng, WANG Conghui, YANG Chaochao     
Hebei Mutton Sheep Innovation Strategic Alliance, College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
Abstract: The objective of this study was to assess the effect of grazing and confinement feeding systems on meat quality of Small-tailed Han sheep. One hundred male weaning lambs of 2-month-old were randomly divided into grazing and confinement groups. The nutritional composition, amino acid content, meat colour, pH, tenderness and meat production performance were detected after slaughtered at 8-month-old. The results showed that the crude protein and water content of meat in the grazing group were significantly higher than those of the confinement group (P < 0.05). The dry matter of meat in the confinement group was significantly higher (P < 0.05) and the crude fat was extremely significantly higher (P < 0.01) than those of the grazing group. The meat contents of methionine, aspartic acid and serine were significantly higher (P < 0.05) and the contents of threonine, valine, isoleucine, leucine, lysine, glutamic acid and histidine in confinement lambs were extremely significantly higher (P < 0.01) than those in grazing lambs. The total amount of essential amino acids, non-essential amino acids and total amino acids in confinement lambs were also extremely significantly higher than those in grazing lambs (P < 0.01). Compared with the confinement group, the yellowness (b*) and brightness (L*) values of longissimus dorsi were extremely significantly higher (P < 0.01), the diameter of muscle fibre was extremely significantly smaller (P < 0.01), the density of muscle fibre was extremely significantly larger (P < 0.01) in the grazing group. The cooked meat rate was extremely significantly higher (P < 0.01) and the loin-eye area was extremely significantly larger (P < 0.01) in the confinement group than those of the grazing group. In conclusion, grazing lambs have a higher content of protein, lower content of fat, better characteristics of muscle fiber, and confinement lambs have a higher content of fat and amino acids, better meat color and meat production performance. Two feeding systems should be combined in production to balance feeding.
Key words: grazing    confinement    Small-tailed Han sheep    characteristics of muscle fibers    meat production performance    

小尾寒羊是肉裘兼用型绵羊,具有多羔性、生长快、适应性强、肉质优良等特点。羊肉是人类膳食的重要组成部分,肉品质是人们关注的焦点,也是研究者关注的重点。已有研究表明,粗蛋白质含量[1]、肌内脂肪含量[2]、水分[3]、干物质[4]、灰分[5]、pH[6]、氨基酸含量[7]、脂肪酸含量[8-9]、熟肉率、蒸煮损失[10]、肉色[11]、剪切力值[12]、眼肌面积[13]、肌纤维直径和肌纤维密度[14]能很好地体现羊肉品质。氨基酸是构成生命物质的基础,是蛋白质的重要组成单位,氨基酸的种类和含量直接影响肉的品质。羊肉含有多种氨基酸[15],能满足人类的营养需求,羊肉是人体所需氨基酸的重要来源[16]。羊肉的肉色、嫩度、风味、口感是肉质评价的重要指标[17],研究表明,多种因素包括饲料供应[18-20]和饲养模式[21-22]的差异对羊肉的肉色、风味、嫩度、口感、氨基酸组成等肉质特性有直接影响。pH是肉类新鲜度的主要参数[23],动物屠宰后由于肌糖原分解转化成乳酸,肉的pH会降低。有研究表明,绵羊和山羊肉的pH通常有一个正常范围,正常范围内表明肉品质合格,质量达标[24],所以肉品检验时,pH是一项重要的检查指标。羊肉由大量肌纤维组成,肌纤维占肌肉体积的75%~90%。肌纤维的形态由肌纤维总数(TNF)、肌纤维横截面积(CSAF)、肌纤维长度来表征[25]。肉的纤维特性同样体现了肉品质的优劣,也是影响消费者购买欲望的因素之一[26]。近些年,为了保护天然草地和生态环境,我国在一些地区实行了退牧还草政策,使绵羊养殖从天然放牧逐渐向舍饲饲养方式转变。与放牧相比,舍饲绵羊活动面积小、精料比例相对高,已有研究表明,放牧和舍饲两种不同饲养方式使绵羊肉质特性差异显著[13, 27-29]

本研究通过对放牧与舍饲两种不同饲养方式下小尾寒羊肉质特性比较,旨在得出理想的养殖模式,为小尾寒羊饲养管理方式的改进、羊肉品质和风味的改善提供理论依据,同时对小尾寒羊品种保护也具有一定的现实意义。

1 材料与方法 1.1 试验动物及设计

以河北省坝上地区小尾寒羊为研究对象。选取健康无病、体重相近((18.95±2.60) kg)的新生雄性羔羊100只,2月龄断奶时随机分为放牧组与舍饲组(n=50)。放牧组羔羊在天然草场放牧,以采食坝上牧草为主,主要包括野韭菜、车前草、蒲公英、山野豌豆、狗尾草、老芒麦等植物,每天放牧至少10 h。舍饲组羔羊居于5个圈舍,每个圈舍10只羊,饲喂全混合日粮(产品编号:Q/SXZD006-2018,山西正大有限公司,中国),舍饲组羔羊饲料成分配比见表 1。待羔羊8月龄时,每组选取体尺、体重均相近的10只羊进行屠宰。剖杀羔羊所有程序均符合《实验动物管理条例》(中华人民共和国国家科学技术委员会),并得到河北北方学院实验动物中心福利伦理委员会的审查与批准。

表 1 不同体重舍饲羔羊饲料成分及营养水平(干物质基础) Table 1 Feed ingredient and nutrient levels of confinement lambs with different body weight (dry matter basis)  
1.2 羔羊屠宰及肉质评价

将选取的待屠宰的羔羊驱赶到屠宰室,屠宰前禁食24 h,禁水12 h。颈静脉放血致死,剥皮剔骨以后屠体立即放于2~4 ℃冷藏室,于45 min内测定背最长肌的pH。pH测定使用pH计(HI9125便携式防水型pH测定仪,Hanna Instruments, Smithfield, RI, USA),测定前先用刀片将肌肉切开一个小口,把pH计电极头插入其中,待数值稳定后读数,重复3次,取平均值。选取第12与第13肋骨之间脊椎上背最长肌测定眼肌面积,眼肌面积测定方法按照Sen等[3]所述操作。粗蛋白测定采用凯氏定氮法[30](VELP凯氏定氮仪,上海人和科学仪器有限公司,中国)、粗脂肪测定使用索氏提取法[31](SXT-06型索氏抽提器,上海精密仪器仪表有限公司)、粗灰分的测定采用灼烧的方法[32](纳博热马弗炉LT15,上海人和科学仪器有限公司)、氨基酸测定采用氨基酸全自动分析仪[33](日立L-8900全自动氨基酸分析仪,天美(中国)科学仪器有限公司),肉色红度(a*)、黄度(b*)和亮度(L*)按照Macit等[34]的方法采用色差计测定(CR-400,柯尼卡美能达(中国)控股公司),剪切力测定采用Roldán等[35]的方法。熟肉率计算方法为:屠宰后4 h取背最长肌100 g,去除肌膜,称重记为m1,放蒸锅蒸30 min后置于0~4 ℃冷却2 h,称重计为m2,m2与m1的比值即为熟肉率。采用常规方法做石蜡切片并经HE染色,在显微镜下10×10倍放大测定肌纤维直径及肌纤维密度。

1.3 统计与分析

所有数据均采用SPSS统计软件21.0版本进行统计分析,结果以“平均值±标准差”表示,对放牧组与舍饲组试验数据比较采用独立样本t检验,P < 0.05认为组间差异显著,P < 0.01认为组间差异极显著。

2 结果 2.1 放牧组与舍饲组羊肉基本成分

放牧组与舍饲羔羊肉基本组成成分见表 2。放牧组羊肉粗蛋白和水分含量显著高于舍饲组羊肉(P < 0.05)。舍饲组羊肉干物质显著高于放牧组羊肉(P < 0.05),粗脂肪极显著高于放牧组羊肉(P < 0.01)。粗灰分含量组间无显著差异(P>0.05)。

表 2 放牧组与舍饲组羔羊肉基本成分(n=10) Table 2 Basic components of lamb meat in grazing and confinement groups (n=10)  
2.2 放牧组与舍饲组羊肉氨基酸含量

各组羊肉氨基酸含量见表 3。7种人体必需氨基酸中苯丙氨酸含量组间无显著差异(P>0.05),舍饲组羊肉蛋氨酸含量显著高于放牧组羊肉(P < 0.05),苏氨酸、缬氨酸、异亮氨酸、亮氨酸和赖氨酸含量均极显著高于放牧组羊肉(P < 0.01)。9种人体非必需氨基酸中半胱氨酸、甘氨酸、络氨酸、精氨酸和脯氨酸含量组间均无显著差异(P>0.05),舍饲组羊肉天冬氨酸和丝氨酸含量显著高于放牧组羊肉(P < 0.05),谷氨酸和组氨酸含量极显著高于放牧组羊肉(P < 0.01)。舍饲组羊肉的必需氨基酸总量、非必需氨基酸总量和氨基酸总量均极显著高于放牧组羊肉(P < 0.01)。

表 3 放牧组与舍饲组羔羊肉氨基酸含量(n=10) Table 3 Amino acid content of lamb meat in grazing and confinement groups (n=10)  
2.3 放牧组与舍饲组羊肉肉色、pH

表 4可知,放牧组与舍饲组羔羊背最长肌红度值(a*)和pH差异不显著(P>0.05)。放牧羔羊背最长肌的黄度值(b*)和亮度值(L*)极显著高于舍饲组羔羊(P < 0.01),黄度值(b*)比舍饲组羔羊高出1.95倍,亮度值(L*)比舍饲组羔羊高出44.76%。

表 4 放牧组与舍饲组羔羊肉肉色和pH比较(n=10) Table 4 Comparison of meat colour and pH of lambs between grazing and confinement groups (n=10)
2.4 放牧组与舍饲组羊肉嫩度和产肉性能

各组羊背最长肌石蜡切片HE染色,在10×10放大倍数下观察,可见放牧组与舍饲组羊肉肌纤维排列整齐,着色均匀,肌纤维呈红色,细胞核呈蓝色(图 1)。

“G”指放牧,“C”指舍饲 'G' represents grazing group and 'C' represents confinement group 图 1 放牧组和舍饲组羔羊肌纤维横切图(100×) Fig. 1 Transverse histological sections of lamb muscle fibres of grazing and confinement groups(100×)

表 5可知,放牧组小尾寒羊肉肌纤维直径小于舍饲组羊肉(P < 0.01),比舍饲组小18.92%,肌纤维密度高于舍饲组羔羊(P < 0.01),高出56.15%。放牧组与舍饲组羊肉剪切力差异不显著(P>0.05),舍饲组羊肉熟肉率和眼肌面积均极显著高于放牧组羊肉(P < 0.01)。

表 5 放牧组与舍饲组羔羊肉嫩度与产肉性能比较(n=10) Table 5 Comparison of tenderness and production performance of lamb meat between grazing and confinement groups (n=10)
3 讨论 3.1 放牧与舍饲对羊肉基本成分的影响

粗蛋白、粗脂肪、水分、干物质和灰分是羊肉的基本组成成分[36-38],本研究中,放牧小尾寒羊与舍饲小尾寒羊采食不同,运动量大小不同,造成了羊肉中粗蛋白、粗脂肪、水分和干物质的差异。放牧组小尾寒羊肉中粗蛋白含量较高,说明放牧组羔羊将氨基酸合成蛋白质的能力较强,同时放牧组羔羊运动量较大,可能促进食物摄入,有助于蛋白质进一步的合成。而部分蛋白质具有亲水性,从而有利于肌肉组织保水,本研究中放牧组羊肉水分含量较高,肉品水分含量高则干物质含量低,这与孟梅娟等[39]的研究结果一致。研究表明,适当的脂肪含量有助于改善羊肉的口感[40],而脂肪含量低的羊肉更符合部分消费者的需求,因为脂肪含量较高会使消费者摄入更多的能量[3],可能会引发肥胖。本研究中舍饲羊肉脂肪含量较高,可能与舍饲羔羊运动场地有限,不需要长距离觅食,有助于脂肪的储存积累有关。所以,如果消费者以蛋白质为主要营养需求则可以选择放牧羊肉,而以脂肪为主要营养需求则可以选择舍饲羊肉。

3.2 放牧与舍饲对羊肉氨基酸含量的影响

羊肉是较好的蛋白源,含有多种氨基酸[41],氨基酸的种类及含量直接影响着肉的营养价值和风味[42],是评价肉品质的主要指标。苏氨酸有助于维持机体蛋白质平衡,促进生长,调节内分泌系统的功能[43],有助于维持细胞膜的完整性,调节免疫系统[44]。缬氨酸参与调节氨基酸和脂肪酸代谢,与内分泌系统和神经系统有关,饲料中添加缬氨酸可以促进仔猪生长[45]。另有研究表明,缬氨酸缺乏会造成大鼠厌食症[46],引起发情周期紊乱,甚至终止发情[47]。蛋氨酸对于反刍动物而言属于限制性氨基酸,由于自身合成数量少而无法满足自身的需求[48]。天冬氨酸、丝氨酸、谷氨酸、甘氨酸和脯氨酸含量会影响肉的鲜美程度,且谷氨酸被认为是决定羊肉风味的关键氨基酸[49]。天冬氨酸存在于大多数动物的神经内分泌组织中,在神经系统发育中发挥重要作用[50]。精氨酸是细胞质和核酸蛋白的主要成分,是婴儿生长所必需的氨基酸[51]。研究表明,精氨酸可以改变能量摄入与消耗的平衡,有利于消耗脂肪或减少白色脂肪组织的形成,从而抑制肥胖的发生[52]。本研究中,羊肉中除苯丙氨酸外的所有必需氨基酸,以及非必需氨基酸中的天冬氨酸、丝氨酸、谷氨酸和组氨酸的含量均是舍饲组高于放牧组。舍饲组羊肉中的必需氨基酸总量、非必需氨基酸总量以及总氨基酸含量也显著高于放牧组羊肉。说明不同饲养方式造成羊肉氨基酸含量差异显著,且舍饲组羊肉的营养价值较高。这一研究结果与黄金玉等[53]的研究结果不同,且和韩利伟[54]的研究结果相反。

3.3 放牧与舍饲对羊肉肉色的影响

肉色是肌肉生理学、生物学和生物化学变化的直观表达,直接影响消费者的直观感受和购买欲望[6]a*可反映肌肉中血红蛋白的数量,与肉色呈正相关[7]b*反映肉的鲜度,与肉的新鲜程度呈负相关,肉的新鲜度随着b*的增加而降低;L*反映肉色的白度,L*越低,肉色越好[28]。本试验结果显示,放牧组羊肉b*L*均显著高于舍饲组羊肉,说明舍饲组小尾寒羊肉肉色优于放牧组小尾寒羊肉,可能与舍饲组羔羊精料比例高有关。

3.4 放牧与舍饲对羊肉嫩度和产肉性能的影响

Sifre等[55]指出,肌纤维是描述肌肉嫩度的一个指标,因此常用来评定肉品质。肌纤维越细越密,肉越嫩、肌纤维特性越好。本试验结果表明,放牧组羊肉肌纤维较细、密度较大,肌纤维特性较好。有研究表明,肌纤维密度与肌纤维直径呈负相关[56],本研究与前人的研究结果一致。影响肌纤维粗细的因素主要有年龄、品种、营养状况和运动情况等。通常情况下,年龄越大,肌纤维越粗;年龄越小,肌纤维越细,肉质越嫩。本研究中,放牧与舍饲羔羊月龄相同,所以年龄并不是影响本试验肌纤维特性差异的主要因素。Aguayo-Ulloa等[57]对Rasa Aragonesa羊的研究表明,环境丰富度高,动物能表现自己的天性,其行为类型更多样。放牧条件下,羔羊在自然界采食不得不进行运动,同时放牧场活动面积大于舍饲圈舍面积,一定程度上也增加了羔羊的运动量,羔羊消耗一部分能量用于运动,从而肌纤维增粗较慢。而舍饲羔羊运动量相对较少,能量集中用于机体生长,所以舍饲羔羊肉肌纤维直径较粗。低营养水平影响肌纤维的生长,使肌纤维生长缓慢直径较小,这可能是放牧羊肉肌纤维直径较小的原因之一。本研究中放牧小尾寒羊肉肌纤维直径较细是营养水平和运动状况等因素的综合结果。

剪切力和肉的嫩度呈负相关,剪切力越小,肉越嫩,口感越好[58]。羊肉剪切力受年龄、性别、品种等多种因素的影响。剪切力值高说明肉有较强的韧性,剪切力值小说明肉的嫩度大。本研究中,放牧与舍饲组的羊肉剪切力无显著差异,剪切力在31~32 N之间,表明放牧与舍饲羊肉均较嫩。

熟肉率指肉熟后与生肉的重量比率。它是度量熟化损失的一项指标,与系水力紧密相关,对生肉加工后的产量有很大影响[59]。通常肉的含水量越高,熟肉率越低,这与本研究结果一致,放牧羊肉含水量高,熟肉率低。本试验结果说明,以舍饲的饲养方式饲养小尾寒羊,羊肉经过加工后其产量较高。

眼肌面积是衡量肌肉生长的指标,体现动物的产肉性能[60]。本试验结果表明,舍饲饲养方式更有利于肌肉生长,改善生长性能,增加羊肉的产量,这与Karim等[13]的研究结果一致。这可能是因为舍饲与放牧相比,圈舍面积较小,羔羊运动量小有利于其增重。

4 结论

放牧小尾寒羊肉蛋白质含量高、脂肪含量低、肌纤维特性好,舍饲羊肉脂肪含量和氨基酸含量高,肉色和产肉性能优于放牧羔羊,可以根据消费者的喜好,来选择合适的饲养方式。从养殖者追求经济效益的角度考虑,倾向于产肉性能较好的舍饲方式。如果将这两种饲养方式相结合,达到消费者和饲养者需求的新平衡,小尾寒羊的养殖将迈上一个新的台阶。

参考文献
[1] GÖKDAL O, ATAY O, EREN V, et al. Fattening performance, carcass and meat quality characteristics of Kivircik male lambs[J]. Trop Anim Health Prod, 2012, 44(7): 1491–1496. DOI: 10.1007/s11250-012-0093-5
[2] YOUSEFI A R, KOHRAM H, SHAHNEH A Z, et al. Comparison of the meat quality and fatty acid composition of traditional fat-tailed (Chall) and tailed (Zel) Iranian sheep breeds[J]. Meat Sci, 2012, 92(4): 417–422. DOI: 10.1016/j.meatsci.2012.05.004
[3] SEN A R, SANTRA A, KARIM S A. Carcass yield, composition and meat quality attributes of sheep and goat under semiarid conditions[J]. Meat Sci, 2004, 66(4): 757–763. DOI: 10.1016/S0309-1740(03)00035-4
[4] VALIEVA Z, SARSEMBAEVA N, VALDOVSKA A, et al. Impact of echinococcosis on quality of sheep meat in the South Eastern Kazakhstan[J]. Asian Austral J Anim Sci, 2014, 27(3): 391–397. DOI: 10.5713/ajas.2013.13386
[5] YAKAN A, ÜNAL N. Meat production traits of a new sheep breed called Bafra in Turkey 2. Meat quality characteristics of lambs[J]. Trop Anim Health Prod, 2010, 42(4): 743–750. DOI: 10.1007/s11250-009-9482-9
[6] 李斐, 杨万宗, 田黛君, 等. 荞麦秸秆饲粮中添加甘露寡糖对滩羊生长性能、消化代谢、屠宰性能和肉品质的影响[J]. 动物营养学报, 2021, 33(4): 2126–2135.
LI F, YANG W Z, TIAN D J, et al. Effects of buckwheat straw diet supplemented with mannan oligosaccharides on growth performance, digestion and metabolism, slaughter performance and meat quality of Tan sheep[J]. Chinese Journal of Animal Nutrition, 2021, 33(4): 2126–2135. DOI: 10.3969/j.issn.1006-267x.2021.04.032 (in Chinese)
[7] ZHONG R Z, LI H Y, FANG Y, et al. Effects of dietary supplementation with green tea polyphenols on digestion and meat quality in lambs infected with Haemonchus contortus[J]. Meat Sci, 2015, 105: 1–7. DOI: 10.1016/j.meatsci.2015.02.003
[8] JERÓNIMO E, ALFAIA C M M, ALVES S P, et al. Effect of dietary grape seed extract and Cistus ladanifer L.in combination with vegetable oil supplementation on lamb meat quality[J]. Meat Sci, 2012, 92(4): 841–847. DOI: 10.1016/j.meatsci.2012.07.011
[9] MUÍÑO I, APELEO E, DE LA FUENTE J, et al. Effect of dietary supplementation with red wine extract or vitamin E, in combination with linseed and fish oil, on lamb meat quality[J]. Meat Sci, 2014, 98(2): 116–123. DOI: 10.1016/j.meatsci.2014.05.009
[10] LANZA M, BELLA M, PRIOLO A, et al. Peas (Pisum sativum L.) as an alternative protein source in lamb diets: growth performances, and carcass and meat quality[J]. Small Rumin Res, 2003, 47(1): 63–68. DOI: 10.1016/S0921-4488(02)00244-4
[11] CHULAYO A Y, MUCHENJE V. The effects of pre-slaughter stress and season on the activity of plasma creatine kinase and mutton quality from different sheep breeds slaughtered at a smallholder abattoir[J]. Asian Austral J Anim Sci, 2013, 26(12): 1762–1772. DOI: 10.5713/ajas.2013.13141
[12] ZHONG R Z, LIU H W, ZHOU D W, et al. The effects of road transportation on physiological responses and meat quality in sheep differing in age[J]. J Anim Sci, 2011, 89(11): 3742–3751. DOI: 10.2527/jas.2010-3693
[13] KARIM S A, PORWAL K, KUMAR S, et al. Carcass traits of Kheri lambs maintained on different system of feeding management[J]. Meat Sci, 2007, 76(3): 395–401. DOI: 10.1016/j.meatsci.2006.06.008
[14] ȘIRIN E, AKSOY Y, U Ǧ URLU M, et al. The relationship between muscle fiber characteristics and some meat quality parameters in Turkish native sheep breeds[J]. Small Rumin Res, 2017, 150: 46–51. DOI: 10.1016/j.smallrumres.2017.03.012
[15] BLUM A E, LICHTENSTEIN H, MURPHY E W. Composition of raw and roasted lamb and mutton Ⅱ.amino acids[J]. J Food Sci, 1966, 31(6): 1001–1004. DOI: 10.1111/j.1365-2621.1966.tb03283.x
[16] JORFI R, MUSTAFA S, MAN Y B C, et al. Differentiation of pork from beef, chicken, mutton and chevon according to their primary amino acids content for halal authentication[J]. Afr J Biotechnol, 2012, 11(32): 8160–8166.
[17] WATKINS P J, KEARNEY G, ROSE G, et al. Effect of branched-chain fatty acids, 3-methylindole and 4-methylphenol on consumer sensory scores of grilled lamb meat[J]. Meat Sci, 2014, 96(2): 1088–1094. DOI: 10.1016/j.meatsci.2012.08.011
[18] SIMITZIS P E, ILIAS-DIMOPOULOS V, CHARISMIADOU M A, et al. The effects of dietary hesperidin supplementation on lamb performance and meat characteristics[J]. Anim Sci J, 2013, 84(2): 136–143. DOI: 10.1111/j.1740-0929.2012.01049.x
[19] NEGRETE L O, PINOS-RODRÍGUEZ J M, GRAJALES-LAGUNES A, et al. Effects of increasing amount of dietary Prosopis laevigata pods on performance, meat quality and fatty acid profile in growing lambs[J]. J Anim Physiol Anim Nutr (Berl), 2017, 101(5): e303–e311. DOI: 10.1111/jpn.12606
[20] CHAI J M, DIAO Q Y, ZHAO J C, et al. Effects of rearing system on meat quality, fatty acid and amino acid profiles of Hu lambs[J]. Anim Sci J, 2018, 89(8): 1178–1186. DOI: 10.1111/asj.13013
[21] PRIOLO A, MICOL D, AGABRIEL J, et al. Effect of grass or concentrate feeding systems on lamb carcass and meat quality[J]. Meat Sci, 2002, 62(2): 179–185. DOI: 10.1016/S0309-1740(01)00244-3
[22] ZERVAS G, TSIPLAKOU E. The effect of feeding systems on the characteristics of products from small ruminants[J]. Small Rumin Res, 2011, 101(1-3): 140–149. DOI: 10.1016/j.smallrumres.2011.09.034
[23] KIM Y H B, WARNER R D, ROSENVOLD K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review[J]. Anim Prod Sci, 2014, 54(4): 375–395. DOI: 10.1071/AN13329
[24] SHIJA D S, MTENGA L A, KIMAMBO A E, et al. Chemical composition and meat quality attributes of indigenous sheep and goats from traditional production system in Tanzania[J]. Asian Australas J Anim Sci, 2013, 26(2): 295–302. DOI: 10.5713/ajas.2012.12432
[25] LEE S H, JOO S T, RYU Y C. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality[J]. Meat Sci, 2010, 86(1): 166–170. DOI: 10.1016/j.meatsci.2010.04.040
[26] JOO S T, KIM G D, HWANG Y H, et al. Control of fresh meat quality through manipulation of muscle fiber characteristics[J]. Meat Sci, 2013, 95(4): 828–836. DOI: 10.1016/j.meatsci.2013.04.044
[27] CARRASCO S, RIPOLL G, SANZ A, et al. Effect of feeding system on growth and carcass characteristics of Churra Tensina light lambs[J]. Livest Sci, 2009, 121(1): 56–63. DOI: 10.1016/j.livsci.2008.05.017
[28] EKIZ B, YILMAZ A, OZCAN M, et al. Effect of production system on carcass measurements and meat quality of Kivircik lambs[J]. Meat Sci, 2012, 90(2): 465–471. DOI: 10.1016/j.meatsci.2011.09.008
[29] EKIZ B, DEMIREL G, YILMAZ A, et al. Slaughter characteristics, carcass quality and fatty acid composition of lambs under four different production systems[J]. Small Rumin Res, 2013, 114(1): 26–34. DOI: 10.1016/j.smallrumres.2013.05.011
[30] SÁEZ-PLAZA P, NAVAS M J, WYBRANIEC S, et al. An overview of the Kjeldahl method of nitrogen determination.Part Ⅱ.Sample preparation, working scale, instrumental finish, and quality control[J]. Crit Rev Anal Chem, 2013, 43(4): 224–272. DOI: 10.1080/10408347.2012.751787
[31] OKEUDO N J, MOSS B W. Interrelationships amongst carcass and meat quality characteristics of sheep[J]. Meat Sci, 2005, 69(1): 1–8. DOI: 10.1016/j.meatsci.2004.04.011
[32] SUMMERS R L, KEMP J D, ELY D G, et al. Effects of weaning, feeding systems and sex of lamb on lamb carcass characteristics and palatability[J]. J Anim Sci, 1978, 47(3): 622–629. DOI: 10.2527/jas1978.473622x
[33] SHERIDAN R, HOFFMAN L C, FERREIRA A V. Meat quality of Boer goat kids and Mutton Merino lambs 1.Commercial yields and chemical composition[J]. Anim Sci, 2003, 76(1): 63–71. DOI: 10.1017/S1357729800053327
[34] MACIT M, AKSAKAL V, EMSEN E, et al. Effects of vitamin E supplementation on fattening performance, non-carcass components and retail cut percentages, and meat quality traits of Awassi lambs[J]. Meat Sci, 2003, 64(1): 1–6. DOI: 10.1016/S0309-1740(02)00115-8
[35] ROLDÁN M, ANTEQUERA T, MARTÍN A, et al. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins[J]. Meat Sci, 2013, 93(3): 572–578. DOI: 10.1016/j.meatsci.2012.11.014
[36] HUDA A B, PARVEEN S, RATHER S A, et al. Effect of incorporation of apple pomace on the physico-chemical, sensory and textural properties of mutton nuggets[J]. Int J Adv Res, 2014, 2(4): 974–983.
[37] ULLAH H, RAHMAN A, KHAN R U, et al. Breed, sex and body condition score affect the meat quality of Waziri and Mazai sheep[J]. Pak J Zool, 2019, 51(5): 1705–1710.
[38] MOHAMMED H H H, JIN G F, MA M H, et al. Comparative characterization of proximate nutritional compositions, microbial quality and safety of camel meat in relation to mutton, beef, and chicken[J]. LWT, 2020, 118: 108714. DOI: 10.1016/j.lwt.2019.108714
[39] 孟梅娟, 高峰, 高立鹏, 等. 不同粗饲料来源的饲粮对山羊屠宰性能及肉品质的影响[J]. 动物营养学报, 2015, 27(8): 2572–2579.
MENG M J, GAO F, GAO L P, et al. Effects of different dietary sources of roughage on slaughter performance and meat quality of goats[J]. Chinese Journal of Animal Nutrition, 2015, 27(8): 2572–2579. DOI: 10.3969/j.issn.1006-267x.2015.08.031 (in Chinese)
[40] 金亚东, 贾柔, 周玉香, 等. 饲粮精料水平和蛋氨酸铬添加剂量对舍饲滩羊生长性能、屠宰性能、肉品质和脂肪沉积的影响[J]. 动物营养学报, 2021, 33(2): 888–899.
JIN Y D, JIA R, ZHOU Y X, et al. Effects of dietary concentrate level and chromium methionine adding dosage on growth performance, carcass characteristics, meat quality and fat deposition of stabling tan lambs[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 888–899. DOI: 10.3969/j.issn.1006-267x.2021.02.030 (in Chinese)
[41] 康生萍, 胡林勇, 王循刚, 等. 不同性别放牧青海黑藏羊的肉品质特征分析[J]. 西北农业学报, 2021, 30(2): 183–191.
KANG S P, HU L Y, WANG X G, et al. Analysis of meat quality of black Tibetan sheep of different genders in Qinghai under natural grazing condition[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(2): 183–191. (in Chinese)
[42] PRIPIS-NICOLAU L, DE REVEL G, BERTRAND A, et al. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions[J]. J Agric Food Chem, 2000, 48(9): 3761–3766. DOI: 10.1021/jf991024w
[43] ZHANG Z F, KIM I H. The response in growth performance, relative organ weight, blood profiles, and meat quality to dietary threonine: lysine ratio in broilers[J]. J Appl Anim Res, 2014, 42(2): 194–199. DOI: 10.1080/09712119.2013.824890
[44] CHEN X W, CHERN M, CANLAS P E, et al. A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity[J]. J Biol Chem, 2010, 285(14): 10454–10463. DOI: 10.1074/jbc.M109.093427
[45] ZHANG X Y, LIU X T, JIA H M, et al. Valine supplementation in a reduced protein diet regulates growth performance partially through modulation of plasma amino acids profile, metabolic responses, endocrine, and neural factors in piglets[J]. J Agric Food Chem, 2018, 66(12): 3161–3168. DOI: 10.1021/acs.jafc.8b01113
[46] GOTO S, NAGAO K, BANNAI M, et al. Anorexia in rats caused by a valine-deficient diet is not ameliorated by systemic ghrelin treatment[J]. Neuroscience, 2010, 166(1): 333–340. DOI: 10.1016/j.neuroscience.2009.12.013
[47] NARITA K, NAGAO K, BANNAI M, et al. Dietary deficiency of essential amino acids rapidly induces cessation of the rat estrous cycle[J]. PLoS One, 2011, 6(11): e28136. DOI: 10.1371/journal.pone.0028136
[48] 周玉香, 王萌, 李作明. 过瘤胃蛋氨酸对舍饲滩羊生长性能、屠宰性能和肉品质的影响[J]. 动物营养学报, 2018, 30(12): 4964–4970.
ZHOU Y X, WANG M, LI Z M. Effects of rumen-bypass methionine on growth performance, slaughter performance and meat quality of stabling Tan sheep[J]. Chinese Journal of Animal Nutrition, 2018, 30(12): 4964–4970. DOI: 10.3969/j.issn.1006-267x.2018.12.024 (in Chinese)
[49] WANG D, ZHAO L, SU R, et al. Effects of different starter culture combinations on microbial counts and physico-chemical properties in dry fermented mutton sausages[J]. Food Sci Nutr, 2019, 7(6): 1957–1968. DOI: 10.1002/fsn3.989
[50] D'ANIELLO S, SOMORJAI I, GARCIA-FERNÀNDEZ J, et al. D-Aspartic acid is a novel endogenous neurotransmitter[J]. FASEB J, 2011, 25(3): 1014–1027. DOI: 10.1096/fj.10-168492
[51] WU G Y, BAZER F W, SATTERFIELD M C, et al. Impacts of arginine nutrition on embryonic and fetal development in mammals[J]. Amino Acids, 2013, 45(2): 241–256. DOI: 10.1007/s00726-013-1515-z
[52] MCKNIGHT J R, SATTERFIELD M C, JOBGEN W S, et al. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health[J]. Amino Acids, 2010, 39(2): 349–357. DOI: 10.1007/s00726-010-0598-z
[53] 黄金玉, 焦金真, 冉涛, 等. 放牧与舍饲条件下山羊肌肉发育和抗氧化能力变化研究[J]. 中国农业科学, 2015, 48(14): 2827–2838.
HUANG J Y, JIAO J Z, RAN T, et al. Study on the developmental changes of meat and antioxidant capacity of grazing and house-feeding goats[J]. Scientia Agricultura Sinica, 2015, 48(14): 2827–2838. DOI: 10.3864/j.issn.0578-1752.2015.14.014 (in Chinese)
[54] 韩利伟. 放牧与舍饲对乌拉特山羊肉品质影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2019.
HAN L W. Effect on meat quality of grazing and confinedness of Wulate goat[D]. Hohhot: Inner Mongolia Agricultural University, 2019. (in Chinese)
[55] SIFRE L, BERGE P, ENGEL E, et al. Influence of the spatial organization of the perimysium on beef tenderness[J]. J Agric Food Chem, 2005, 53(21): 8390–8399. DOI: 10.1021/jf0508910
[56] ZHAO G P, CUI H X, LIU R R, et al. Comparison of breast muscle meat quality in 2 broiler breeds[J]. Poult Sci, 2011, 90(10): 2355–2359. DOI: 10.3382/ps.2011-01432
[57] AGUAYO-ULLOA L A, PASCUAL-ALONSO M, OLLETA J L, et al. Effect of a screen with flaps and straw on behaviour, stress response, productive performance and meat quality in indoor feedlot lambs[J]. Meat Sci, 2015, 105: 16–24. DOI: 10.1016/j.meatsci.2015.02.008
[58] 高昌鹏, 周玉香. 荞麦秸秆饲粮中添加过瘤胃赖氨酸对滩羊血清生化指标、屠宰性能和肉品质的影响[J]. 动物营养学报, 2021, 33(2): 932–943.
GAO C P, ZHOU Y X. Effects of buckwheat straw diet supplemented with rumen-protected lysine on serum biochemical indexes, slaughter performance and meat quality of Tan sheep[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 932–943. DOI: 10.3969/j.issn.1006-267x.2021.02.034 (in Chinese)
[59] ORR H L. Effect of strain, sex and diet on dressing percentage and on cooked meat yield of 10 week old broilers[J]. Poult Sci, 1955, 34(5): 1093–1097. DOI: 10.3382/ps.0341093
[60] DAS A K, RAJKUMAR V. Comparative study on carcass characteristics and meat quality of three Indian goat breeds[J]. Indian J Anim Sci, 2010, 80(10): 1014–1018.
(编辑  范子娟)