畜牧兽医学报  2021, Vol. 52 Issue (8): 2190-2199. DOI: 10.11843/j.issn.0366-6964.2021.08.012    PDF    
高压均质鸡蛋卵黄对猪冷冻精子凋亡的影响
汪俊跃1,2, 戴建军1,2, 张树山1,2, 孙玲伟1,2, 吴彩凤1,2, 张德福1,2     
1. 上海市农业科学院畜牧兽医研究所, 上海农业遗传育种重点实验室, 动物遗传工程研究室, 上海 201106;
2. 上海海洋大学, 水产科学国家级试验教学示范中心, 上海 201306
摘要:为探究高压均质鸡蛋卵黄对猪冷冻精子凋亡的影响,本试验采集5头健康状态良好的杜洛克公猪精液,以普通鸡蛋卵黄+Tris-柠檬酸-葡萄糖(TCG)冷冻基础稀释液为对照组,以添加高压均质处理的鸡蛋卵黄+Tris-柠檬酸-葡萄糖(TCG)冷冻基础稀释液为试验组;精液冷冻-解冻后观察精子活力、DNA完整性、线粒体膜电位变化、细胞凋亡率、多种Caspase活性;同时利用qRT-PCR检测相关凋亡功能基因的mRNA表达水平,并进行数据统计。结果表明,经高压均质处理后,猪精子冻后活力、活率和顶体完整率显著高于对照组(P < 0.05),为87.64%、87.14%和66.61%,较对照组分别提高了12.58%、5.82%和12.48%;线粒体膜电位和DNA完整率显著高于对照组(P < 0.05),为0.74和61.76%;精子凋亡水平显著减少(P < 0.05),为37.74%;试验组的Caspase-3、Caspase-8和Caspase-9活性为17.15、11.19和15.18,较对照组分别减少了6.17、2.18和3.51(P < 0.05);对照组的BaxTNF-αCaspase-9基因表达均明显高于试验组(P < 0.05),Bcl-2基因表达量较试验组降低(P>0.05)。综上,高压均质鸡蛋卵黄能提高猪精子冻后质量,促进线粒体功能完整性、降低精子细胞早期凋亡水平和细胞内Caspase活性,同时降低凋亡相关基因mRNA表达量。
关键词高压均质    鸡蛋卵黄    精子冷冻    细胞凋亡    
Effects of High Pressure Homogeneous Egg Yolk on Apoptosis of Boar Sperm Cryopreservation
WANG Junyue1,2, DAI Jianjun1,2, ZHANG Shushan1,2, SUN Lingwei1,2, WU Caifeng1,2, ZHANG Defu1,2     
1. Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Abstract: The aim of this study was to explore the effect of egg yolk (EY) treated by high pressure homogenization on the freezing effect of boar semen. Semen were collected from 5 healthy, mature Duroc boars. The ordinary egg yolk+Tris-citric acid-glucose (TCG) diluent was the control group, and the high pressure homogenized egg yolk+Tris-citric acid-glucose (TCG) diluent was the treatment group. Frozen semen samples were thawed, and the sperm motility, DNA integrity, changes in mitochondrial membrane potential, number of apoptotic cells, Caspases activity were detected. The expression of apoptosis-related genes mRNA was measured by qRT-PCR, and extracting raw data and performing data were analyzed. The results showed that, after the high pressure homogenization treatment, the vitality, motility and acrosomal integrity of pig sperms after freezing were significantly higher than those of the control group (P < 0.05), which were 87.64%, 87.14% and 66.61%, respectively, higher than those of the control group for 12.58%, 5.82% and 12.48%; mitochondrial membrane potential and DNA integrity were significantly higher than those of the control group (P < 0.05), which were 0.74 and 61.76%; the level of sperm apoptosis was significantly reduced (P < 0.05), which was 37.74%; the Caspase-3, Caspase-8 and Caspase-9 activities of the experimental group were 17.15, 11.19 and 15.18, which were reduced by 6.17, 2.18 and 3.51 compared with the control group (P < 0.05); the expression of Bax, TNF-α, and Caspase-9 genes in the control group were significantly higher than those in the treatment group (P < 0.05), and the Bcl-2 gene expression was lower than that in the treatment group (P>0.05). In summary, high pressure homogenous egg yolk can improve the quality of pig sperms after freezing, promote the integrity of mitochondrial function, reduce the level of early sperm cell apoptosis and intracellular Caspase activity, and reduce the mRNA expression of apoptosis-related genes.
Key words: high pressure homogenization    egg yolk    semen cryopreservation    cell apoptosis    

猪精液冷冻技术的发展给养猪业提供了商业价值和运输保障。冷冻精液能克服时空限制,最大限度的提高养殖场精液利用率[1]。但猪精子富含多不饱和脂肪酸,在冷冻过程中易发生冷冻损伤,从而导致冻后质量下降,这也是限制猪精液冷冻技术发展的主要因素之一[2],因此,如何降低猪精子在冷冻中的损伤已成为目前研究的主要方向。卵黄作为一种常用的冷冻保护剂,已证实在动物精液冷冻过程中,卵黄能附着在精子膜上增强精子抗冷休克能力,从而提高精子冻后质量[3]。但卵黄中蛋白质成分较为复杂,其所含的大量脂质导致稀释液粘度增加,未经处理的卵黄中含有大颗粒物质,可抑制精子呼吸并降低精子运动能力[4]。此外,卵黄作为动物源成分,存在一定的生物安全性风险[5],在卵黄保存精液过程中能对精子造成不可逆的损伤,因此,卵黄处理方式也在不断更新。

高压均质技术是指在高强度的压力和空气剪切力作用下,使稀释液在很短时间内高速旋转通过小孔,极大程度的降低稀释液中大颗粒粒径,并破坏溶液中微生物细胞基本结构和功能,使其失去或钝化生物活性,以减少冷冻过程中对物质的物理损伤[6-7]。利用高压均质处理的鸡蛋卵黄溶液与普通鸡蛋卵黄溶液不同,高压均质后鸡蛋卵黄溶液粒径减小,溶液稳定性提高。作为一种动态高压的非热加工技术,高压均质能短时间产生高压并不改变溶液本身性质[8-9]。有研究发现,经高压均质处理后能提高鸡蛋卵黄溶液的溶解性和稳定性,减少其中的微生物含量[10-11]。但目前为止,仍缺乏高压均质处理后的鸡蛋卵黄对猪冷冻精子凋亡水平影响的研究。

本试验通过高压均质鸡蛋卵黄对猪精液冷冻保存效果的研究,比较冷冻后精子质量、DNA完整性、线粒体膜电位变化(△Ψm)、细胞凋亡率水平、多种Caspase活性以及凋亡功能基因的表达水平,为进一步提高猪精液冷冻效果提供参考。

1 材料与方法 1.1 试剂与样品

1.1.1 试验试剂   高压均质处理的卵黄加工于苏州纳米生物园;注射用青霉素钠和硫酸链霉素购于河北石家庄远征药业有限公司;一步法TUNEL细胞凋亡检测试剂盒(绿色荧光)和JC-1线粒体膜电位检测试剂盒购于上海碧云天生物技术有限公司;吖啶橙(AO)购于美国Sigma公司;Caspase-3、Caspase-8和Caspase-9原位荧光染色试剂购于Bio Vision公司;RNA prep Pure Micro Kit和Fast Quant RT Kit试剂盒购于中国Tiangen公司。

1.1.2 精液采集   精液采自上海祥欣种公猪站,2岁杜洛克种公猪(n=5),利用手握法收集中段浓缩部分的精液,15 min内带回实验室。选择色泽正常、活力大于0.8的精液用于冷冻保存。试验前经过多次预试验,利用5头杜洛克公猪的混精,以排除个体差异。

1.2 试验设计

基础稀释液(TCG)[12]的配制:称取柠檬酸1.48 g、葡萄糖1.1 g和TRIS 2.42 g,溶解后加入200 IU·mL-1双抗、6 mL甘油,调节溶液pH为7.1,定容至100 mL。

试验组为基础稀释液中添加20%经高压均质处理的鸡蛋卵黄,以普通鸡蛋卵黄为对照组,分别配制成冷冻Ⅰ液和冷冻Ⅱ液。冷冻-解冻后检测猪精子各项指标。

1.3 精液的冷冻解冻

1.3.1 预处理   采用两步稀释法。将采集的合格精液用等温等量的预稀释液进行稀释,经1 h室温平衡后17 ℃离心(800 g,10 min),弃上清液;将配制好的冷冻Ⅰ液预冷后缓慢加入到离心后的沉积中,轻轻吹打摇匀后纱布包裹放入4 ℃冰箱平衡1.5~2 h。再等体积缓慢加入同步预冷过的Ⅱ液。选择精子活率高于0.75,密度大于1.0×109个·mL-1的精液进行冷冻。

1.3.2 精液冷冻   将灌装封口的0.5 mL细管放入程序冷冻仪(Planer公司,型号:Kryo 560-16)中并设置冷冻程序进行冷冻,待冷冻结束后迅速投入到液氮中保存。冷冻程序为:调整恒温箱温度为6 ℃,以保证冷冻程序进行的更快捷;设定从6 ℃降到4 ℃,以1 ℃/2 min进行降温;设定从4 ℃降到1 ℃,以1.5 ℃/2 min进行降温;设定从1 ℃降到-140 ℃,以30 ℃/4.8 min进行降温;设定-140 ℃保持1 0 min。

1.3.3 精液解冻   将冷冻保存的精液细管从液氮中迅速取出,放入60 ℃水浴锅中解冻12 s,用稀释液1∶10稀释,37 ℃孵育10 min后进行指标检测。

1.4 精子质量检测

1.4.1 精子活力   取10 μL解冻后精液滴在预热的精子计数板中,置于37 ℃恒温载物台上,使用精液自动分析仪在光学显微镜下随机选取5个视野,记录精子活力和活率。

1.4.2 DNA完整性   利用吖啶橙染色法检测精子DNA完整性[13]。取解冻后0.1 mL样品,加入0.9 mL PBS清洗3次后再用0.9 mL PBS重悬,取30 μL涂片并干燥,经甲醛固定10 min后,均匀滴上30 μL AO染液,黑暗条件下37 ℃孵育30 min后在荧光显微镜下观察,计数头部发荧光精子百分率,每次计数精子不少于200个。

1.4.3 线粒体膜电位检测   利用JC-1线粒体膜电位试剂盒对解冻后精子进行线粒体膜电位检测。37%条件下孵育20 min后利用荧光显微镜进行观察,计算红色(RITC)和绿色(FITC)精子比值(△Ψm)。每次计数精子不少于200个。

1.4.4 精子凋亡检测   利用一步法TUNEL凋亡检测试剂盒对精子进行凋亡检测。样品经多聚甲醛(4%)固定30 min后,利用PBS清洗3次,并加入含有Triton X-100(0.1%)的PBS重悬。室温孵育5 min后,用PBS清洗2次。加入50 μL TUNEL检测液并37 ℃避光孵育60 min。然后利用PBS洗涤2次并用250 μL PBS重悬。利用荧光显微镜观察,计算绿色荧光精子数,每次计数精子不少于200个。

1.4.5 精子Caspase原位荧光染色   取解冻后精子样品分别进行Caspase-3、Caspase-8和Caspase-9原位荧光染色。37 ℃孵育20 min,利用PBS清洗3次并在荧光显微镜下观察。每次计数精子不少于200个。

1.4.6 精子总RNA提取   取解冻后精子样品,加等量Trizol裂解,利用RNA prep Pure Micro Kit试剂盒进行总RNA提取,检测OD值(OD260 nm/OD280 nm)为1.8~2.0之间,样品存放于-80 ℃低温柜。所有操作均需在低温柜或冰上进行。

1.4.7 逆转录和qRT-PCR   精子总RNA样品经Fast Quant RT Kit试剂盒逆转录得到cDNA。以GAPDH为内参基因,从NCBI获取猪精子有关基因的cDNA序列(Bcl-2-F、BaxTNF-α、Caspase-8、Caspase-9、P53)并设计引物。利用所获得的猪相关基因的cDNA序列设计引物,构建20 μL反应体系。反应条件:95 ℃预变性30 s;95 ℃变性5 s,退火34 s,72 ℃延伸30 s,40个循环,完成反应。相对基因表达量利用2-△△CT算法(△△CT=[(CT目的基因-CT内参基因)处理组-(CT目的基因-CT内参基因)对照组]),每个试验重复3次。cDNA序列引物见表 1。所有操作均需在低温柜或冰上进行。

表 1 qRT-PCR所需引物信息 Table 1 Primer information used for qRT-PCR
1.5 统计分析

每组试验至少重复3次,每次每组至少解冻2支细管。本试验用SPSS 22.0软件进行数据分析,结果表示为“平均值±标准误(Mean±SEM)”,P<0.05表示差异显著。

2 结果 2.1 高压均质鸡蛋卵黄对猪精子冻后质量的影响

图 1表 2所示,经高压均质处理后,猪精子冻后活力、活率和顶体完整率显著高于对照组(P < 0.05),为87.64%、87.14%和66.61%,较对照组分别提高了12.58%、5.82%和12.48%。

图 1 冷冻后猪精子顶体完整性(400×) Fig. 1 The sperm acrosome integrity after cryopreservation(400×)
表 2 冻后猪精子质量 Table 2 The quality of frozen porcine sperms
2.2 高压均质鸡蛋卵黄对猪精子冻后凋亡水平的影响

表 3图 2图 3可见,经高压均质鸡蛋卵黄处理后线粒体膜电位和DNA完整率显著高于对照组(P < 0.05),分别为0.74和61.76%。冷冻后精子经JC-1染色后均呈红绿色荧光,图 2中经高压均质鸡蛋卵黄处理后精子绿色荧光(高亮部分)较对照组减少。经高压均质鸡蛋卵黄处理后精子凋亡水平显著降低(P < 0.05),为37.74%,较对照组下降4.33%。

表 3 冻后猪精子凋亡水平 Table 3 Apoptotic rate of frozen porcine sperms
A.对照组JC-1染色;B.高压均质组的JC-1染色 A. The JC-1 staining of frozen sperms in control group; B. The JC-1 staining of frozen sperms in the high pressure homogeneous group 图 2 冷冻后猪精子的JC-1染色(400×) Fig. 2 The JC-1 staining of frozen porcine sperms(400×)
A.对照组TUNEL染色;B.高压均质组的TUNEL染色 A. The TUNEL staining of frozen sperms in control group; B. The TUNEL staining of frozen sperms in the high pressure homogeneous group 图 3 冷冻后猪精子TUNEL染色(400×) Fig. 3 The TUNEL staining of frozen porcine sperms(400×)
2.3 高压均质鸡蛋卵黄对猪精子冻后Caspase水平的影响

表 4图 4可知,对照组荧光强度均高于试验组,解冻后猪精子Caspase水平对照组明显高于试验组(P < 0.05)。试验组的Caspase-3、Caspase-8和Caspase-9活性为17.15、11.19和15.18,较对照组分别减少6.17、2.18和3.51(P < 0.05)。

表 4 冻后猪精子Caspase水平 Table 4 Caspase activity in frozen porcine sperms
荧光表示具有Caspase活性,活性高的荧光强 The fluorescence indicates Caspase activity, high activity show strong fluorescence 图 4 冷冻后猪精子Caspase活性(400×) Fig. 4 Caspase activity of frozen porcine sperms(400×)
2.4 高压均质鸡蛋卵黄对猪精子冻后凋亡功能基因表达的影响

通过qRT-PCR得到相关基因mRNA表达水平如图 5。以GAPDH为内参基因,不同基因表达量不同,对照组的BaxTNF-α、Caspase-8、Caspase-9和P53基因表达量均高于试验组,其中BaxTNF-α和Caspase-9基因表达均显著高于试验组(P < 0.05);Caspase-8、P53基因表达水平较高于试验组(P>0.05)。相较于对照组,试验组的Bcl-2基因表达量升高(P>0.05)。

*. P < 0.05 图 5 凋亡相关基因表达结果 Fig. 5 Apoptosis related gene expression results
3 讨论

本研究从冷冻后精子活力、DNA完整性、线粒体膜电位和凋亡情况着手,同时检测Caspase活性和相关基因mRNA表达水平,表明高压均质鸡蛋卵黄能降低猪精子冷冻细胞凋亡水平。

本试验中,高压均质处理鸡蛋卵黄能有效提高猪精子冻后的活力和DNA完整性(P < 0.05)。猪精子冻后活力是精子质量最直观的表现,DNA完整性是精卵是否能正常结合的保证。精子保存时间长短和冷冻过程中是否遭受物理损伤都会造成精子DNA完整性被破坏,导致精子质量下降[14-15]。这与本试验相似,未经处理的鸡蛋卵黄会残存不溶性大颗粒,精子在冷冻过程中对物理冲击、冷冲击和渗透应力等几个因素造成的损伤没有过强的抵抗力,而经过高压均质处理的鸡蛋卵黄溶液粒径减小且精子质量提高,推测可更好地促进卵黄中蛋白质和脂质的融合,降低卵黄自身存在的微生物对精液冷冻后影响,从而有效提高猪冻精质量。

精子获能是指精子经过一系列生理活动最终达到具有受精能力的状态,线粒体是维持精子生命活动的直接能量来源[16-19]。线粒体膜电位下降是精子细胞状态改变的主要标志之一。吕松洁等[20]发现,经冷冻后山羊精子内线粒体膜电位降低会导致精子解冻后活力下降。本研究发现,经高压均质后鸡蛋卵黄能更好保护猪精子,降低冻后线粒体膜电位的改变程度,保护线粒体功能完整性。

对很多哺乳动物精子冷冻研究发现,凋亡精子的比例升高会导致精子受精能力的降低。凋亡现象主要表现为精子运动能力丧失、线粒体膜电位降低、Caspase活化水平提高和DNA氧化损伤等[21-24]。本试验对猪精子冷冻后进行TUNEL检测,发现高压均质处理的鸡蛋卵黄试验组猪精液荧光比例显著低于对照组,表明精子凋亡率下降,DNA完整率增高。虽然冷冻后精子凋亡的具体机制还尚无定论,但有试验表明,线粒体功能受损是精子细胞产生凋亡的重要因素之一[25-27],线粒体功能受损导致无法有效清除精子细胞内多余的自由基; 同时线粒体膜电位下降,Caspase级联反应展开,从而致使精子凋亡。

精子细胞发生凋亡时,会将原本无活性的Caspase被激活。Caspase原位荧光染色被用来检测细胞凋亡情况。Brugnon等[28]认为,凋亡精子内Caspase-3、Caspase-8和Caspase-9活性显著升高, 与本研究结果类似。本试验中,高压均质的鸡蛋卵黄试验组冷冻后精子内Caspase-3、Caspase-8和Caspase-9活性明显降低,抑制了精子凋亡的发生。

本试验中,高压均质的鸡蛋卵黄组相较于对照组,BaxP53、TNF-α、Caspase-8和Caspase-9水平降低,Bcl-2水平升高。试验结果与Jeremy等[29]的研究结果相似,说明凋亡细胞中凋亡促进基因的增多和凋亡抑制基因的减少,最终会导致细胞发生凋亡。细胞凋亡是细胞自身维持稳定性,由基因控制的细胞主动性死亡的过程[30]BaxP53、TNF-α、Caspase-8和Caspase-9等为细胞凋亡促进基因,Bcl-2为细胞凋亡抑制基因。都在细胞凋亡过程中发挥重要作用[31-33]P53作为细胞中重要调控因子,具有控制细胞生长、凋亡和DNA修复的作用[34]TNF-α能促进坏死细胞发生凋亡,是死亡受体重要因子[35]Bax能拮抗Bcl-2的细胞凋亡抑制作用,寡聚体的Bax还能刺激细胞色素C释放和Caspase蛋白酶家族的级联激活,最终导致细胞凋亡[36-37]。Caspase级联激活作为细胞凋亡的中心环节,上游Caspase-9经细胞色素C激活并放大下游Caspase-3和Caspase-8表达导致细胞凋亡的发生[33, 38-39]。本研究中,试验组线粒体膜电位降低,且细胞Caspase水平下降,细胞凋亡水平较对照组有所降低,预示了精子线粒体凋亡的发生同时也促进了精子细胞的凋亡过程。本试验中,试验组精子细胞内BaxP53、TNF-α、Caspase-8和Caspase-9基因表达量明显降低,Bcl-2基因表达量上升,这可能是精子细胞发生凋亡时,多种凋亡途径均参与介导,多条通路联合扩大了精子细胞凋亡信号的传递。证明经高压均质后鸡蛋卵黄能有效保护精子细胞,减少冷冻后精子细胞发生凋亡的机率,提高冻后精子质量。至于能否通过添加凋亡通路抑制剂来减少冻后精子发生凋亡的水平仍有待进一步研究。

4 结论

综上所述,经高压均质后的鸡蛋卵黄能提高冷冻后精子活力、DNA完整性;降低线粒体膜电位和凋亡水平,同时降低精子细胞内Caspase活性和促凋亡相关基因mRNA表达水平。

参考文献
[1] 王捷, 耿果霞, 杨丽, 等. 芝麻酚对猪精液冷冻保存效果的影响[J]. 家畜生态学报, 2018, 39(6): 57–61.
WANG J, GENG G X, YANG L, et al. Effect of sesamol on cryopreservation of boar spermatozoa[J]. Acta Ecologae Animalis Domastici, 2018, 39(6): 57–61. DOI: 10.3969/j.issn.1673-1182.2018.06.011 (in Chinese)
[2] LEE S H, KIM Y J, HO KANG B, et al. Effect of nicotinic acid on the plasma membrane function and polyunsaturated fatty acids composition during cryopreservation in boar sperm[J]. Reprod Domest Anim, 2019, 54(9): 1251–1257. DOI: 10.1111/rda.13508
[3] JIANG Z L, LI Q W, HU J H, et al. Improvement of the quality of boar cryopreservation semen by supplementing with low density lipoprotein in diluents[J]. Cryobiology, 2007, 54(3): 301–304. DOI: 10.1016/j.cryobiol.2007.03.001
[4] FOULKES J A. The separation of lipoproteins from egg yolk and their effect on the motility and integrity of bovine spermatozoa[J]. J Reprod Fert, 1977, 49(2): 277–284. DOI: 10.1530/jrf.0.0490277
[5] REN F, FENG T Y, NIU T J, et al. Notoginsenoside R1 protects boar sperm during liquid storage at 17 ℃[J]. Reprod Domest Anim, 2020, 55(9): 1072–1079. DOI: 10.1111/rda.13745
[6] HOMAYOUNI A, SOHRABI M, AMINI M, et al. Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 185–196. DOI: 10.1016/j.msec.2018.12.128
[7] CHEN X, ZHOU R Y, XU X L, et al. Structural modification by high-pressure homogenization for improved functional properties of freeze-dried myofibrillar proteins powder[J]. Food Res Int, 2017, 100(1): 193–200.
[8] TOLEDO S Y G, WU J P. Effect of phospholipase A1 and high-pressure homogenization on the stability, toxicity, and permeability of egg Yolk/Fish oil emulsions[J]. J Agric Food Chem, 2020, 68(34): 9081–9089. DOI: 10.1021/acs.jafc.0c02478
[9] SIRVENTE H, BEAUMAL V, GAILLARD C, et al. Structuring and functionalization of dispersions containing egg yolk, plasma and granules induced by mechanical treatments[J]. J Agric Food Chem, 2007, 55(23): 9537–9544. DOI: 10.1021/jf0719398
[10] 苏宇杰, 杨新宇, 周頔, 等. 热处理对鸡蛋蛋黄性质的影响[J]. 食品与发酵工业, 2012, 38(10): 70–75.
SU Y J, YANG X Y, ZHOU D, et al. Effect of heat-treatment on the properties of egg yolk[J]. Food and Fermentation Industries, 2012, 38(10): 70–75. (in Chinese)
[11] YU C P, CHA Y, WU F, et al. Effects of limited hydrolysis and high-pressure homogenization on functional properties of oyster protein isolates[J]. Molecules, 2018, 23(4): 729. DOI: 10.3390/molecules23040729
[12] CAO B Y, FANG L, LIU C L, et al. Effects of high hydrostatic pressure on the functional and rheological properties of the protein fraction extracted from pine nuts[J]. Food Sci Technol Int, 2017, 24(1): 53–66.
[13] PEI Y, YANG L, WU L, et al. Combined effect of apigenin and ferulic acid on frozen-thawed boar sperm quality[J]. Anim Sci J, 2018, 89(7): 956–965. DOI: 10.1111/asj.13009
[14] KANIMOZHI P, PRASAD N R. Antioxidant potential of sesamol and its role on radiation-induced DNA damage in whole-body irradiated Swiss albino mice[J]. Environ Toxicol Pharmacol, 2009, 28(2): 192–197. DOI: 10.1016/j.etap.2009.04.003
[15] 彭洁, 易兵, 戚青林. 优化后精液孵育时间对精子DNA完整性、顶体反应率及IUI临床结局的影响[J]. 江西医药, 2020, 55(4): 439–441.
PENG J, YI B, QI Q L. Effects of optimized sperm incubation time on sperm DNA integrity, acrosome response rate and IUI clinical outcome[J]. Jiangxi Medical Journal, 2020, 55(4): 439–441. DOI: 10.3969/j.issn.1006-2238.2020.04.026 (in Chinese)
[16] 王昕. 白藜芦醇对猪冷冻精子细胞凋亡及凋亡途径的影响[D]. 上海: 上海海洋大学, 2015.
WANG X. Effects of resveratrol on apoptosis and apoptotic pathways of frozen boar spermatozoa[D]. Shanghai: Shanghai Ocean University, 2015. (in Chinese)
[17] DEVINE M J, KITTLER J T. Mitochondria at the neuronal presynapse in health and disease[J]. Nat Rev Neurosci, 2018, 19(2): 63–80.
[18] DE ALMEIDA T G, ALVES M B R, BATISSACO L, et al. Does low-level laser therapy on degenerated ovine testes improve post-thawed sperm characteristics?[J]. Lasers Med Sci, 2019, 34(5): 1001–1009. DOI: 10.1007/s10103-018-2690-7
[19] TABORSKY M, SCHVTZ D, GOFFINET O, et al. Alternative male morphs solve sperm performance/longevity trade-off in opposite directions[J]. Sci Adv, 2018, 4(5): eaap8563. DOI: 10.1126/sciadv.aap8563
[20] 吕松洁, 付丽, 范文华, 等. 线粒体靶向抗氧化剂Mitoquinone对湖羊冻精损伤的保护作用[J]. 畜牧兽医学报, 2019, 50(12): 2554–2559.
LV S J, FU L, FAN W H, et al. Protective effect of mitochondria-targeted antioxidant mitoquinone on the damage of Hu sheep frozen sperm[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2554–2559. DOI: 10.11843/j.issn.0366-6964.2019.12.020 (in Chinese)
[21] HU C H, ZHUANG X J, WEI Y M, et al. Comparison of mitochondrial function in boar and bull spermatozoa throughout cryopreservation based on JC-1 staining[J]. Cryo Letters, 2017, 38(1): 75–79.
[22] 岳应权, 马晓萍. 冷冻保存对人精子Caspase-3表达和透明质酸酶活性的影响[J]. 家庭生活指南, 2020(3): 180.
YUE Y Q, MA X P. Effect of cryopreservation on Caspase-3 expression and hyaluronidase activity in human sperm[J]. Family Life Guide, 2020(3): 180. (in Chinese)
[23] NAGATA S. Apoptosis and clearance of apoptotic cells[J]. Annu Rev Immunol, 2018, 36: 489–517. DOI: 10.1146/annurev-immunol-042617-053010
[24] 李丹丹, 刘蛟, 王英群, 等. PTD-FNK蛋白对猪精子的冷冻保护作用及其机制[J]. 江苏农业科学, 2019, 47(11): 217–221.
LI D D, LIU J, WANG Y Q, et al. Cryoprotective effect of PTD-FNK protein on pig sperm and its mechanism[J]. Jiangsu Agricultural Sciences, 2019, 47(11): 217–221. (in Chinese)
[25] SONG W H, YI Y J, SUTOVSKY M, et al. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization[J]. Proc Natl Acad Sci U S A, 2016, 113(36): E5261–E5270. DOI: 10.1073/pnas.1605844113
[26] 潘赟, 刘世荣, 易晓华, 等. 抗氧化剂对山羊精液冷冻保存效果的研究进展[J]. 家畜生态学报, 2020, 41(11): 6–11.
PAN Y, LIU S R, YI X H, et al. Research progress of antioxidant effecton on cryopreservation of goat semen[J]. Acta Ecologae Animalis Domastici, 2020, 41(11): 6–11. DOI: 10.3969/j.issn.1673-1182.2020.11.002 (in Chinese)
[27] TATONE C, DI EMIDIO G, BARBONETTI A, et al. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility[J]. Hum Reprod Update, 2018, 24(3): 267–289. DOI: 10.1093/humupd/dmy003
[28] BRUGNON F, PONS-REJRAJIH, ARTONNE C, et al. The limits for detection of activated caspases of spermatozoa by western blot in human semen[J]. Andrologia, 2012, 44(4): 265–272. DOI: 10.1111/j.1439-0272.2012.01277.x
[29] JEREMY M, GURUSUBRAMANIAN G, ROY V K. Vitamin D3 treatment regulates apoptosis, antioxidant defense system, and DNA integrity in the epididymal sperm of an aged rat model[J]. Mol Reprod Dev, 2019, 86(12): 1951–1962. DOI: 10.1002/mrd.23280
[30] 李晓斌, 赵国栋, 李海, 等. 补喂L-瓜氨酸对种公马精液品质、精清和血浆抗氧化能力的影响[J]. 新疆农业科学, 2021, 58(4): 778–784.
LI X B, ZHAO G D, LI H, et al. Effects of L-citrulline supplementation on semen quality, semen purity and plasma antioxidant capacity of stallion[J]. Xinjiang Agricultural Sciences, 2021, 58(4): 778–784. (in Chinese)
[31] PROKHOROVA E A, KOPEINA G S, LAVRIK I N, et al. Apoptosis regulation by subcellular relocation of caspases[J]. Sci Rep, 2018, 8(1): 12199. DOI: 10.1038/s41598-018-30652-x
[32] WANG Y N, HU S M, TUERDI M, et al. Initiator and executioner caspases in salivary gland apoptosis of Rhipicephalus haemaphysaloides[J]. Parasit Vectors, 2020, 13(1): 288. DOI: 10.1186/s13071-020-04164-5
[33] XU Y R, YANG W X. Roles of three Es-Caspases during spermatogenesis and Cadmium-induced apoptosis in Eriocheir sinensis[J]. Aging (Albany NY), 2018, 10(5): 1146–1165.
[34] XUE Y Z, SAN LUIS B, LANE D P. Intratumour heterogeneity of p53 expression; causes and consequences[J]. J Pathol, 2019, 249(3): 274–285. DOI: 10.1002/path.5328
[35] FORTINI F, VIECELI D, SEGA F, et al. Estrogen receptor β-dependent Notch1 activation protects vascular endothelium against tumor necrosis factor α (TNFα)-induced apoptosis[J]. J Biol Chem, 2017, 292(44): 18178–18191. DOI: 10.1074/jbc.M117.790121
[36] 王珺, 钱芙蓉, 菅芯蕊, 等. 绿原酸、咖啡酸苯乙酯及聚乙烯吡咯烷酮联合添加对猪冷冻精液品质的影响[J]. 黑龙江畜牧兽医, 2021(4): 43–154.
WANG J, QIAN F R, GUAN X R, et al. Effects of combined addition of chlorogenic acid, phenyl ethyl caffeinate and polyvinylpyrrolidone on quality of frozen semen in pigs[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(4): 43–154. (in Chinese)
[37] HAN T T, HUANG J H, GU J, et al. Hepatitis B virus surface protein induces sperm dysfunction through the activation of a Bcl2/Bax signaling cascade triggering AIF/Endo G-mediated apoptosis[J]. Andrology, 2020: 1–12.
[38] HAUSEMAN Z J, HARVEY E P, NEWMAN C E, et al. Homogeneous oligomers of pro-apoptotic BAX reveal structural determinants of mitochondrial membrane permeabilization[J]. Mol Cell, 2020, 79(1): 68–83. DOI: 10.1016/j.molcel.2020.05.029
[39] DEL OIMO E, GARCÍA-ÁLVAREZA O, MAROTO-MORALES A, et al. Estrous sheep serum enables invitro capacitation of ram spermatozoa while preventing caspase activation[J]. Theriogenology, 2016, 85(2): 351–360. DOI: 10.1016/j.theriogenology.2015.09.005
(编辑  郭云雁)