畜牧兽医学报  2021, Vol. 52 Issue (8): 2093-2106. DOI: 10.11843/j.issn.0366-6964.2021.08.003    PDF    
HA蛋白位点变异影响H7N9亚型流感病毒特性的研究进展
严雅瑶1, 顾敏1,2,3, 刘秀梵1,2,3     
1. 扬州大学农业部畜禽传染病学重点开放实验室, 扬州 225009;
2. 江苏高校动物重要疫病与人兽共患病防控协同创新中心, 扬州 225009;
3. 江苏省人兽共患病学重点实验室, 扬州 225009
摘要:2013年春,我国首次出现人感染H7N9亚型禽流感疫情,对家禽养殖和公众健康均产生了严重危害,并且在第5波流行期又演变出血凝素(hemagglutinin,HA)蛋白裂解位点处存在插入突变的高致病性禽流感病毒株。HA作为A型流感病毒表面表达丰度最高的糖蛋白,在介导病毒与宿主细胞表面受体的结合、促进病毒囊膜与细胞膜的融合、刺激机体产生中和抗体等方面具有至关重要的作用。本文围绕H7N9病毒,简要综述了HA蛋白的结构与功能,及其关键功能氨基酸位点变异影响病毒生物学特性的研究进展,以期为深入解析HA蛋白在H7N9病毒感染致病中的作用提供重要参考。
关键词流感病毒    H7N9    HA蛋白    功能氨基酸位点    感染与致病    
Advance in the Influence of Amino Acid Variation in HA Protein on the Biological Properties of H7N9 Subtype Influenza Virus
YAN Yayao1, GU Min1,2,3, LIU Xiufan1,2,3     
1. Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China;
2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China;
3. Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou 225009, China
Abstract: In the spring of 2013, human infections with H7N9 subtype avian influenza emerged in China, posing serious threats to both poultry farming and public health. Additionally, highly pathogenic H7N9 variants with insertional mutation at the cleavage site of hemagglutinin (HA) protein yet evolved during the fifth epidemic wave. As the most abundantly expressed glycoprotein on the surface of influenza A virus, HA protein plays crucial roles in the viral lifecycle such as mediating the linkage between virus and host cell surface receptors, promoting the fusion between viral envelope and cell membrane, and stimulating the production of neutralizing antibodies. In this review, we briefly summarized the structure and function of HA protein, and the research progress of functional amino acid variations effecting on H7N9 biological properties, in order to provide important reference for in-depth analysis of the role of HA protein in H7N9 infection and pathogenesis.
Key words: influenza virus    H7N9    HA protein    functional amino acid sites    infection and pathogenesis    

2013年3月,一种源自禽类的新型H7N9亚型流感病毒在人群中暴发开来,迄今为止,已出现至少五波流行高峰。其中,2016—2017年的第五波疫情出现最早、报告的人感染病例数最多、区域分布也最广,并且在此期间还分离到了对鸡呈高致病性的H7N9禽流感病毒[1-3]。截至2021年7月7日,全球共报告1 568人感染H7N9病毒,死亡616例,患者数量超过了H5N1、H9N2等其他能够感染人的禽流感病毒亚型的总和[4]。同时,H7N9病毒仍在不断地变异,例如与家禽群体中的H9N2、H5N6亚型病毒进一步发生基因重配而产生新型H7N2、H7N6病毒,对家禽养殖及公共卫生安全构成持续威胁[5-6]。自2017年下半年以来,伴随着特异性禽流感疫苗的有效使用,H7N9亚型禽流感病毒的分离率急剧下降;相对应地,大多通过活禽或活禽市场暴露而感染的人的散发病例也骤减[7-8]。然而,尽管当前对家禽低致病性的H7N9病毒已基本分离不到,但高致病性H7N9禽流感病毒仍在我国部分地区存在,且部分毒株表现出明显的抗原性变异,使防控工作面临严峻挑战[9-10]。此外,虽然目前H7N9病毒尚不具备在人际间有效传播的能力,但病毒有可能通过关键基因位点的突变或基因片段的重配进而提高其在人类宿主中的适应性,所以密切监测与病毒生物学特性相关的氨基酸变异尤为重要。

1 H7N9亚型流感病毒概述

流感病毒属于正黏病毒科,是具有囊膜、分节段的负链RNA病毒,大小为80~120 nm,根据其核蛋白(NP)和基质蛋白(M)的抗原性不同,可分为A、B、C、D 4个型[11]。其中,威胁畜禽和人类健康最为严重的是A型流感病毒(influenza A virus, IAV),其基因组包含8条独立的基因片段,总长度约13 kb,可编码多达17种蛋白,包括人们所熟知的10种核心蛋白(PB2、PB1、PA、HA、NP、NA、M1、M2、NS1、NS2),还有近年来陆续发现的附属蛋白(accessory proteins),如:PB1-F2、PB1-N40、PA-X、M42、NS3、PA-N155和PA-N182[12]等。上述蛋白中,HA与NA是IAV囊膜表面最重要的两种抗原性糖蛋白,在IAV的生命周期中发挥重要作用:HA主要介导病毒与宿主细胞的结合及包装复制,NA主要负责切割受体结合、释放病毒粒子,两者维持着功能上的动态平衡,同时HA和NA也是进一步划分H1~H18、N1~N11亚型的依据[13]

在众多IAV亚型中,H7N9因其同时对畜禽养殖与公众健康造成了严重危害而备受关注。该始于2013年的新型H7N9病毒,推测其可能是H7、N9和H9N2亚型禽流感病毒的三源重配产物:H7和N9基因为欧亚进化谱系的野鸟来源,而内部片段则完全由中国家禽中广泛流行的H9N2提供,三者重组诞生了原始型H7N9,而后进一步在家禽中暴发开来,并伴随有人类感染病例的出现[14-15]。在地区分布上,H7N9病毒首次出现在长江三角洲及珠江三角洲等东南沿海地区,随着病毒的传播蔓延,近几年西部内陆及东北地区也陆续出现感染病例[10, 16]。在时间上,H7N9病毒自出现以来,每年冬季至次年春季均会在人群中形成一次流行高峰,截至目前已引起至少五波流行,其中以第五波(2016—2017年)的感染人数最多、感染区域最广。同时,第五波流行期间还出现了对家禽呈高致病性(highly pathogenic,HP)的H7N9病毒,其HA裂解位点处早期主要表现为“KRTA”的特异性氨基酸插入,虽保留与此前低致病性(low pathogenicity,LP)H7N9病毒相类似的双受体结合特性,但可能在哺乳动物中表现出更强的致病性、传播性以及更广泛的组织嗜性[1, 7]。并且,不断有证据表明,HP H7N9仍在持续地演化与变异。例如,H7N9感染的禽类宿主范围在不断扩大,除鸡以外,鸭、鹌鹑体内也分离到少量H7N9毒株[8, 17-18]。HP H7N9病毒还可以与其他NA亚型的禽流感病毒发生基因重配而产生H7N2、H7N3、H7N6等新型重组H7Ny病毒[19]。另外,HA蛋白上关键氨基酸位点的变异及其导致的N-糖基化(N-linked glycosylation, NLG)状态改变能够通过对蛋白的空间构象与生物活性的调节来影响H7N9病毒的生物学特性[20-21]

2 HA蛋白的结构特点 2.1 HA的一级结构

HA蛋白位于IAV囊膜表面,由3个HA1-HA2复合物单体结合而成同源三聚体。各亚型HA蛋白在结构上大体相似,但一级结构的片段长度略有不同。H7N9病毒的HA单体由561或565个氨基酸组成,从N端开始的18个疏水性氨基酸组成信号肽,紧接着321或325个氨基酸残基组成HA1,随后由222个氨基酸构成HA2[22](图 1A)。对于HA2,其N端融合肽(fusion peptide, FP)区域为疏水性氨基酸,可与病毒囊膜的脂质双层紧密相连;紧接着仍由一系列疏水性氨基酸构成跨膜区;而C末端的氨基酸多数为亲水性,可透过脂质双分子层进入病毒粒子内部而构成胞内尾区。序列分析发现,LP和HP H7N9病毒HA基因长度的差异由裂解位点处(cleavage site,CS)氨基酸基序的差异所导致,前者为PKG----R ↓ G,而后者至少存在7种模式:PKRKRTAR ↓ G、PKGKRTKR ↓ G、PKGKRTAR ↓ G、PKGKRIAR ↓ G、PKRRRTAR ↓ G、PKRKRAAR ↓ G、PKRKRIAR ↓ G,其中占比较高的为PKG/RKRTAR↓G[2, 23-24]。此外,相较于LP H7N9,HP H7N9病毒的HA上还有诸如HA1中L235Q(H3编号为L226Q)、G338R等明显氨基酸替换[25]。其中,235位是重要的抗原表位并能够影响LP与HP H7N9病毒的交叉反应性,且在其他多个HA亚型中均被证实与流感病毒的跨种传播能力密切相关[21, 26-27]。而G338R突变增加了裂解位点处连续碱性氨基酸的数目,可以潜在地提高弗林蛋白酶的切割效率,从而对病毒的感染性及致病力造成影响[23, 28]

A. H7N9病毒HA蛋白的一级结构:图中氨基酸计数使用H7编号(包含信号肽),裂解位点处HP H7N9相较于LP H7N9存在“KRTA”的4个氨基酸插入;B. H7N9病毒HA蛋白的三维结构:图中仅显示HA单体结构,并标记出影响病毒生物学特性的部分关键氨基酸位点;该结构以A/Shanghai/02/2013(H7N9) 病毒的HA蛋白结构(PDB ID: 6IDD)为模板进行同源建模,使用PyMOL软件进行展示 A. The primary structure of HA protein of H7N9 virus. The amino acid sites were according to H7 numbering, including the signal peptide. As compared with LP H7N9, HP H7N9 possessed the 4-amino-acid insertion of KRTA at the cleavage site; B. The three-dimensional structure of HA protein of H7N9 virus. The structure of HA monomer was shown, and some key amino acid sites affecting the viral biological properties were labelled. The structure was homology modelled with the HA protein template of A/Shanghai/02/2013(H7N9) virus (PDB ID: 6IDD), and presented with the software of PyMOL 图 1 H7N9亚型流感病毒HA蛋白的结构 Fig. 1 HA protein structure of H7N9 subtype influenza virus
2.2 HA的空间结构

HA是一种典型的I型蛋白,其三聚体组装成一个中心螺旋线圈,形成杆状茎部以及含有唾液酸(sialic acid, SA)结合位点的球状头部,三聚体高约135 Å,直径35~70 Å[29]。头部由HA1的大部分组成,变异率较高,包含受体结合区(receptor binding domain, RBD)、痕酯酶区(vestigial esterase domain, VE)。茎部较为保守,由HA1的N端、C端部分和HA2的整体共同组成,且一直延伸至膜内(图 1B)。

2.2.1 头部(head)   HA蛋白的头部是由HA1第53—275位氨基酸(H3编号)折叠成8条反平行链而组成的空间构象,其远端是RBD区,130-loop(135~138)、190-helix(190~198)和220-loop(221~228)这3个二级结构元件构成口袋边缘;保守性的氨基酸残基Y98、W153、H183和Y195组成了基底部;邻近的150-loop作为RBD结构的一部分,有助于保持结构完整性及与SA形成相互作用[30-31]。各HA亚型的RBD构象较为相似,但也存在一定差异,比如H7亚型的RBD相较于H1、H3、H5等亚型,在150-loop中存在两个连续氨基酸(Asn、Thr)的插入,使150-loop突出到结合位点的一侧,而这种构象有可能影响病毒受体结合特异性[22, 32]。此外,一些H7亚型病毒(如H7N1)在150-loop的第158位新增一个NLG修饰,形成空间干扰从而阻碍受体的结合,最终降低病毒对受体的亲和力[33]。而其他亚型(如H5N6)HA第158位出现NLG缺失后,却能够获得结合人源受体的能力,并且增加对小鼠的致病性[34]。因此,RBD的氨基酸差异及NLG修饰对流感病毒受体结合特性具有较大影响。

位于HA1的RBD和HA2的膜近端茎部之间的则是VE区,因其与C型流感病毒脂酶融合蛋白上的9-O-乙酰脂酶同源性较高而得名[35],具体定位于第53—115及265—275位氨基酸(H3编号)(图 1B)。尽管有关VE区的功能研究尚较少,但其高度保守的特性可作为除HA头部、茎部之外的第3个用于治疗性单抗结合的靶点区域,目前已在H5N1病毒的相关研究中取得一定成效[36]

同时,HA头部具有较多抗原表位(antigenic sites,ASs)。通常所述的5大抗原区(H3编号)主要包括:位于膜远端的A区(133—137,140—146)和B区(156—160,187—198),位于膜近端的C区(53、54、275、278),位于HA三聚体交界处的D区(174、207)及位于VE结构域的E区(63、78、81、83);其中A、B抗原区因与RBD的部分区域(A区与130-loop、B区与190-helix)存在重叠而导致其抗原性相对于C、D、E区有所增强,此外,A、B、E区的抗原位点多为线性表位,而C、D区的抗原位点多呈构象表位[37]。但HA抗原位点处氨基酸的组成及数量并非一成不变,处于上述5个抗原区之外的氨基酸变异,比如G132R、G137E(H3编号分别为G124R、G129E),同样可能引起抗原性的改变而使其成为新的潜在抗原位点[38]

2.2.2 茎部(stem)   HA茎部由部分HA1和全部HA2组成,其膜外螺旋样结构支撑膜远端的HA头部,并延伸至膜内从而将HA蛋白锚定于病毒囊膜表面。膜外的HA茎部也包含较多抗原位点且在各HA亚型中高度保守,因此可作为中和抗体结合的靶点,但各亚型茎部之间也具有一定相似性,如group 1的H5、H9,group 2的H3、H7,故部分抗体(如CR6216)可以中和group 1中的某些病毒、部分抗体(如CR8020)可以中和group 2中的某些病毒或对group 1和group 2病毒的攻击均具有保护作用(如C05)[39-41]。这些靶向HA茎部的抗体通过抑制病毒囊膜与细胞膜的融合来阻断病毒遗传物质进入宿主细胞内,从而抑制病毒的复制。此外,位于膜近端长螺旋上的D112G(HA2编号)会降低HA蛋白的稳定性,而位于膜远端短螺旋上的K58I(HA2编号)则会增加HA蛋白的稳定性,这些突变可为开发稳定性更好的疫苗提供理论参考[42]。HA茎部的跨膜区和胞内区更为保守,其中的半胱氨酸可作为重要的酰化位点与棕榈酸结合,而经修饰后的棕榈酰化HA蛋白对于膜融合及病毒出芽均至关重要[43-44]。同时,茎部还存在NLG位点,具有高度保守性及一定的亚型特异性;它们对于HA蛋白的折叠和构象至关重要,当去除茎部关键的NLG位点会导致HA蛋白的三聚化、折叠及转运受损,同时还会改变HA对pH变化的敏感性[45-47]

3 HA蛋白的主要功能 3.1 HA蛋白RBD介导的受体结合特性

HA蛋白的受体结合特性是影响流感病毒组织嗜性及宿主范围的主要因素,而SA是存在于宿主细胞表面与病毒感染相关的重要结构。SA作为一类9-碳单糖神经氨酸衍生物,常存在于N-聚糖、寡聚糖和神经节苷脂的末端。在自然界中,SA通常通过其C5位的氨基与乙酰基或羟乙酰基的酰化反应来稳定其修饰,从而分为N-乙酰神经氨酸(N-acetylneuraminic acid, Neu5Ac)与N-羟乙酰神经氨酸(N-glycolylneuraminic acid, Neu5Gc)[48]。此外,末端SA(SA-1)的C2与其邻近的倒数第二个半乳糖(Gal-2)的C3或C6连接,分别生成SA-α2, 3-Gal和SA-α2, 6-Gal两种SA受体,这种SA空间构象的差异直接影响到流感病毒受体结合的偏嗜性[49]

不同流感病毒对特异性SA受体的偏嗜性明显不同,人流感病毒更偏向于识别SA-α2, 6-Gal,禽流感病毒和马流感病毒亲嗜SA-α2, 3-Gal,而猪流感病毒对α2, 3和α2, 6两种SA受体亲和力均较高[50]。同时,不同种属动物受体的结合构象也有所差异,禽类受体的结合在SA-1和Gal-2之间呈现反式构象,而人源受体的结合均采用顺式构象;这种受体结合的特异性,部分由HA蛋白受体结合口袋的结构特征决定,是影响宿主嗜性的重要影响因素,包括种间适应及传播[51]。研究指出,HA蛋白受体结合口袋结构的细微变化即可导致受体结合偏好性的改变,比如,H7N9亚型HA蛋白上186、193、226、228位(H3编号)是病毒获得结合SA-α2, 6-Gal的关键[52-54]。而其他亚型HA上的81、98、145、190、193、222、224、225、226、228和238位(H3编号)氨基酸也被报道可能通过影响RBD口袋区域的结构而影响其与SA受体的结合力及偏嗜性[53, 55-63]

3.2 HA蛋白茎部介导的双膜融合

HA蛋白的另一重要功能是在低pH环境下诱导流感病毒囊膜与宿主细胞膜的融合,这也是病毒感染细胞过程中进行脱壳所必须的。首先,HA蛋白以未经修饰的HA0(HA前体蛋白)形式存在,虽能识别宿主细胞表面的受体,但不能与宿主细胞膜发生融合,导致病毒也不具备感染性[64-65]。而IAV发生感染的先决条件则是HA的可裂解特性,即HA0裂解为HA1和HA2,因此HA CS处的氨基酸组成和宿主体内的蛋白酶分布将对病毒的致病性和组织嗜性产生重要影响[65]。HP病毒在HA CS处具有连续的多碱性氨基酸,该序列特征在高尔基体反面网络(trans-Golgi network,TGN)上被宿主体内泛嗜性的蛋白酶(如弗林蛋白酶、PC6)所识别并发生裂解[66-67]。相比之下,LP病毒在HA CS处通常仅含单个碱性氨基酸,主要由局限于机体特定部位(如呼吸道和胃肠道的黏膜表面)的胰蛋白酶样蛋白酶所切割[67-69]。当HA RBD与SA受体结合后,经切割产生的具有膜融合能力的HA1-HA2复合物便通过内吞作用进入细胞。在内小体低pH环境下,HA蛋白经历一系列构象变化,具体包括HA1-HA2构象改变、融合肽的暴露、茎部螺旋的重塑;其中,融合肽暴露后与跨膜区形成钩状结构插入宿主细胞膜中,拉近其与病毒囊膜的距离,从而介导双膜融合和融合孔的形成,最终病毒的遗传物质得以释放到宿主细胞中实现病毒的转录和复制[70-72]。由于诱导双膜融合主要由HA茎部介导,其高度保守的氨基酸序列维持着HA蛋白的稳定性及病毒的包装复制。有研究表明,H3N2亚型F63P及F70P双突变(HA2编号)可通过影响HA茎部构象进而抑制双膜融合[73]。此外,H7N1亚型12 N、28 N(H7编号,去信号肽)被证明是HA蛋白融合活性的关键位点,其变异会影响HA蛋白的胞内转运乃至病毒的感染特性[47, 73-74]

3.3 HA蛋白的酸、热稳定性

HA蛋白的酸、热稳定性具体表现为病毒在不同pH、温度等环境下抵抗失活的能力,是影响IAV宿主范围、传播性及致病潜力的重要因素[75]。其中,温度作为一种非生理性诱发因素可允许HA蛋白在中性环境下发生双膜融合;而一定pH阈值所触发的HA构象改变(HA的活化)则通常定义为HA的酸稳定性,且有研究表明HA蛋白酸稳定性具有一定的宿主差异性及亚型特异性[76]。例如,人的H1N1、H2N2、H3N2大流感病毒pH阈值(5.1~ 5.5)普遍低于野鸟源IAV(5.5~6.1),而致人感染的禽流感病毒(如H5N1、H5N6、H7N9)pH阈值则普遍较高(5.6~5.8),提示较高的HA活化pH阈值(即HA低稳定性)有利于病毒在鸟类宿主中有效复制及传播,而HA稳定性较高的IAV则更加适应于哺乳动物体内[77-80]。值得注意的是,HA蛋白的某些氨基酸突变可通过改变HA蛋白活化的pH阈值来影响病毒的稳定性,进而影响病毒的复制及致病力。例如,有研究发现,H7亚型HA2中E64K突变可通过提高HA活化的pH阈值来降低病毒的稳定性及其在小鼠体内的复制性能[25]。另外,H5亚型HA蛋白上的K387I突变(H3编号),在降低pH阈值的同时也增加了病毒在小鼠中的复制能力及毒力[81]

3.4 HA蛋白的抗原性变异

HA蛋白是IAV引起中和抗体反应的主要抗原,由于病毒RNA聚合酶缺乏校对功能,在选择压力的作用下,极可能出现基因重组及突变,从而重配出新型病毒(如H7N9、H7N2)或已有病毒的不同致病型(如LP H7N9、HP H7N9),并可能造成持续性的流感疫情[2, 5, 14]。而历史上引起大流行的流感病毒(如1918年的H1N1、1957年的H2N2),它们在实现人与人之间有效传播的同时,还能通过更新其抗原性来不断适应人群,给人类健康造成了极大威胁。

H7N9病毒在从LP到HP的演变过程中其抗原性呈现明显变异,但关键位点尚未明确,故Chang等[20-21]基于1株早期LP病毒A/Anhui/1/2013(H7N9),通过在含有对应抗血清的鸡胚中进行连续传代的方式来模拟病毒在自然界中抗体压力下的抗原演变,最终鉴定出HA蛋白上A143T、A169T和L235Q这3个决定性的氨基酸突变,并被证实除了可以改变抗原性也对病毒稳定性和受体结合特性产生了一定影响。值得注意的是,A143T和A169T的突变还同时导致141与167位分别增加为NLG位点,且该变异均以较高比例出现于近两年来的HP H7N9自然分离株中[82]

另外,不同时期的H7N9病毒间也存在抗原性差异。自2013年出现以来,H7N9病毒相继经历了从LP→LP与HP共存→HP的演变过程,尽管伴随着H7-Re1、H7-Re2等禽流感疫苗的有效使用以及相关干预措施的有效执行,禽群和人群中H7N9的分离率均急剧下降,但HP H7N9病毒仍能在部分地区被检测到。中国动物卫生与流行病学中心、华南农业大学的相关调查分析均指出,禽群中2019年HP H7N9病毒的HA基因与早期HP分离株不仅在遗传进化上有明显分歧,疫苗免疫保护效力试验也表明H7-Re2、rGD76等疫苗株已不能对流行株提供完全保护[9, 16]。甘肃疾控中心还发现,2019年,人源HP H7N9病毒与疫苗株SF003相比,其HA1结构域上具有多达15个位点的氨基酸突变,其中,R65K、G132R、V143T、S152P等多个潜在抗原位点已出现明显变异[10, 38]。因此,持续关注HA的抗原性变异是评估疫苗有效性的重要前提。目前,中国农业农村部官方公布的H7N9疫苗株已更新为H7-Re3、rLN79。此外,由于HA蛋白抗原区和受体结合区在空间结构上存在部分重叠,基于血凝抑制(hemagglutinin inhibition, HI)试验进行的抗原差异性评估也可能会受到受体亲和力的干扰。分别有研究指出,H7N9病毒HA的L235Q突变、H1N1病毒HA的E158K突变、H3N2病毒的N145K突变均是因其结合受体的能力发生改变而间接影响了与抗血清的HI滴度,但却均曾被误认为是位点突变直接导致了病毒的抗原性变异[62, 83-84]。因此,在进行病毒抗原性分析时,也应同时考虑对受体亲和力的影响。

鉴于HA蛋白的上述重要功能,众多学者对其开展了相关研究并鉴定出了一系列关键氨基酸位点,被证明不仅会影响HA蛋白的结构与功能,进而也会改变病毒的部分生物学特性。基于此,本文在重点关注H7N9亚型的同时也兼顾其他部分亚型,总结了近年来HA蛋白上涉及IAV稳定性、抗原性、复制性能、受体结合特性、传播性、致病性等关键氨基酸位点(表 1),以期为更深入地解析HA基因变异所导致IAV特性改变的相关机制提供参考和借鉴。

表 1 HA蛋白关键氨基酸突变对流感病毒生物学特性的影响 Table 1 Effects of key amino acid mutations in HA proteins on virus biological properties
4 展望

目前,国内LP H7N9流感病毒已基本消失,但HP H7N9病毒仍在国内部分地区持续存在,并且有研究表明HP H7N9毒株在实验动物体内感染过程中出现毒力和传播能力增强的现象,对家禽及人类健康的威胁依然严峻[1-2, 8, 18]。HA蛋白是H7N9流感病毒表面最主要的糖蛋白和抗原组分,其基因变异所致蛋白结构、功能的变化可能会进而对病毒特性产生重要影响,包括可能产生具有抗原逃逸的变异型子代病毒以维持其在自然界的感染与扩散,或可能获得更强的结合人源受体的能力以促进其在哺乳动物体内的适应与传播等。迄今为止,H7N9病毒的持续变异已使疫苗历经H7-Re1→H7-Re2→H7-Re3、rGD76→rLN79的不断更新,而疫苗研发相对滞后于病毒变异的现状迫切要求进一步开发成熟的通用型疫苗。其中,HA茎部由于其结构的相对保守性以及具有激发广泛保护性免疫的潜能,成为了通用疫苗设计的理想靶标之一。因此,持续监测HA基因的变异、深入解析HA蛋白的功能,必将为进一步揭示H7N9病毒的遗传演化规律、探究其感染与致病的相关分子机制及疫情的防控奠定重要基础。

参考文献
[1] IMAI M, WATANABE T, KISO M, et al. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets[J]. Cell Host Microbe, 2017, 22(5): 615–626. DOI: 10.1016/j.chom.2017.09.008
[2] SHI J Z, DENG G H, KONG H H, et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans[J]. Cell Res, 2017, 27(12): 1409–1421. DOI: 10.1038/cr.2017.129
[3] SU S, GU M, LIU D, et al. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China[J]. Trends Microbiol, 2017, 25(9): 713–728. DOI: 10.1016/j.tim.2017.06.008
[4] Food and Agriculture Organization. H7N9 situation update[EB/OL]. [2021-07-07]. http://www.fao.org/ag/againfo/programmes/en/empres/H7N9/situation_update.html.
[5] QIU Y, SUN R Z, HOU G Y, et al. Novel reassortant H7N2 originating from the H7N9 highly pathogenic avian influenza viruses in China, 2019[J]. J Infect, 2019, 79(5): 462–470.
[6] WU H B, LU R F, PENG X M, et al. Molecular characterization of a novel reassortant H7N6 subtype avian influenza virus from poultry in Eastern China, in 2016[J]. Arch Virol, 2017, 162(5): 1341–1347. DOI: 10.1007/s00705-017-3219-2
[7] LI C J, CHEN H L. H7N9 influenza virus in China[J]. Cold Spring Harb Perspect Med, 2020: a038349.
[8] SHI J Z, DENG G H, MA S J, et al. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017[J]. Cell Host Microbe, 2018, 24(4): 558–568. DOI: 10.1016/j.chom.2018.08.006
[9] JIANG W M, HOU G Y, LI J P, et al. Antigenic variant of highly pathogenic avian influenza A(H7N9) virus, China, 2019[J]. Emerging Infect Dis, 2020, 26(2): 379–380. DOI: 10.3201/eid2602.191105
[10] YU D S, XIANG G F, ZHU W F, et al. The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019[J]. Euro Surveill, 2019, 24(21): 1900273.
[11] WEBSTER R G, BEAN W J, GORMAN O T, et al. Evolution and ecology of influenza A viruses[J]. Microbiol Rev, 1992, 56(1): 152–179. DOI: 10.1128/mr.56.1.152-179.1992
[12] VASIN A V, TEMKINA O A, EGOROV V V, et al. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins[J]. Virus Res, 2014, 185: 53–63. DOI: 10.1016/j.virusres.2014.03.015
[13] WU Y, WU Y, TEFSEN B, et al. Bat-derived influenza-like viruses H17N10 and H18N11[J]. Trends Microbiol, 2014, 22(4): 183–191. DOI: 10.1016/j.tim.2014.01.010
[14] WU A P, SU C H, WANG D Y, et al. Sequential reassortments underlie diverse influenza H7N9 genotypes in China[J]. Cell Host Microbe, 2013, 14(4): 446–452. DOI: 10.1016/j.chom.2013.09.001
[15] LIU D, SHI W F, SHI Y, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses[J]. Lancet, 2013, 381(9881): 1926–1932. DOI: 10.1016/S0140-6736(13)60938-1
[16] ZHANG J H, YE H J, LI H N, et al. Evolution and antigenic drift of influenza A (H7N9) viruses, China, 2017-2019[J]. Emerg Infect Dis, 2020, 26(8): 1906–1911. DOI: 10.3201/eid2608.200244
[17] 崔欢. 一株鹌鹑源甲型H7N9亚型流感病毒的致病性及传播能力研究[D]. 保定: 河北农业大学, 2020.
CUI H. Pathogenicity and transmissibility of influenza A (H7N9) Virus isolated from Quail[D]. Baoding: Hebei Agricultural University, 2020. (in Chinese)
[18] MA M J, YANG Y, FANG L Q. Highly pathogenic avian H7N9 influenza viruses: recent challenges[J]. Trends Microbiol, 2019, 27(2): 93–95. DOI: 10.1016/j.tim.2018.11.008
[19] BI Y H, LI J, LI S Q, et al. Dominant subtype switch in avian influenza viruses during 2016-2019 in China[J]. Nat Commun, 2020, 11(1): 5909. DOI: 10.1038/s41467-020-19671-3
[20] CHANG P X, SEALY J E, SADEYEN J R, et al. Amino acid residue 217 in the hemagglutinin glycoprotein is a key mediator of avian influenza H7N9 virus antigenicity[J]. J Virol, 2018, 93(1): e01627–18.
[21] CHANG P X, SEALY J E, SADEYEN J R, et al. Immune escape adaptive mutations in the H7N9 avian influenza hemagglutinin protein increase virus replication fitness and decrease pandemic potential[J]. J Virol, 2020, 94(1): e00216–20.
[22] RUSSELL C J. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology[J]. Curr Top Microbiol Immunol, 2014, 385: 93–116.
[23] LIU D, ZHANG Z J, HE L H, et al. Characteristics of the emerging chicken-origin highly pathogenic H7N9 viruses: a new threat to public health and poultry industry[J]. J Infect, 2018, 76(2): 217–220. DOI: 10.1016/j.jinf.2017.09.005
[24] BAI R, SIKKEMA R S, MUNNINK B B O, et al. Exploring utility of genomic epidemiology to trace origins of highly pathogenic influenza A/H7N9 in Guangdong[J]. Virus Evol, 2020, 6(2): veaa097. DOI: 10.1093/ve/veaa097
[25] SUN X J, BELSER J A, YANG H, et al. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses[J]. Virology, 2019, 535: 232–240. DOI: 10.1016/j.virol.2019.07.012
[26] CHUTINIMITKUL S, VAN RIEL D, MUNSTER V J, et al. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity[J]. J Virol, 2010, 84(13): 6825–6833. DOI: 10.1128/JVI.02737-09
[27] WAN H Q, SORRELL E M, SONG H C, et al. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential[J]. PLoS One, 2008, 3(8): e2923. DOI: 10.1371/journal.pone.0002923
[28] SHIRYAEV S A, CHERNOV A V, GOLUBKOV V S, et al. High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome[J]. PLoS One, 2013, 8(1): e54290. DOI: 10.1371/journal.pone.0054290
[29] ISIN B, DORUKER P, BAHAR I. Functional motions of influenza virus hemagglutinin: a structure-based analytical approach[J]. Biophys J, 2002, 82: 569–581. DOI: 10.1016/S0006-3495(02)75422-2
[30] SHI Y, WU Y, ZHANG W, et al. Enabling the 'host jump': structural determinants of receptor-binding specificity in influenza A viruses[J]. Nat Rev Microbiol, 2014, 12(12): 822–831. DOI: 10.1038/nrmicro3362
[31] SHI Y, ZHANG W, WANG F, et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses[J]. Science, 2013, 342(6155): 243–247. DOI: 10.1126/science.1242917
[32] RUSSELL R J, STEVENS D J, HAIRE L F, et al. Avian and human receptor binding by hemagglutinins of influenza A viruses[J]. Glycoconj J, 2006, 23(1-2): 85–92. DOI: 10.1007/s10719-006-5440-1
[33] BANKS J, SPEIDEL E S, MOORE E, et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy[J]. Arch Virol, 2001, 146(5): 963–973. DOI: 10.1007/s007050170128
[34] GU M, LI Q H, GAO R Y, et al. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2. 3.4 avian influenza virus in guinea pigs[J]. Vet Res, 2017, 48(1): 7. DOI: 10.1186/s13567-017-0410-0
[35] ROSENTHAL P B, ZHANG X D, FORMANOWSKI F, et al. Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus[J]. Nature, 1998, 396(6706): 92–96. DOI: 10.1038/23974
[36] PAUL S S, MOK C K, MAK T M, et al. A cross-clade H5N1 influenza A virus neutralizing monoclonal antibody binds to a novel epitope within the vestigial esterase domain of hemagglutinin[J]. Antiviral Res, 2017, 144: 299–310. DOI: 10.1016/j.antiviral.2017.06.012
[37] 平继辉. H9N2亚型禽流感病毒抗原变异及感染哺乳动物分子机制的研究[D]. 南京: 南京农业大学, 2008.
PING J H. The molecular basis of antigenic variation and crossing host barrier to infect mammalian model of H9N2 avian influenza viruses[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese)
[38] DUNAND C J H, LEON P E, HUANG M, et al. Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies Confer Protection[J]. Cell Host Microbe, 2016, 19(6): 800–813. DOI: 10.1016/j.chom.2016.05.014
[39] EKIERT D C, BHABHA G, ELSLIGER M A, et al. Antibody recognition of a highly conserved influenza virus epitope[J]. Science, 2009, 324(5924): 246–251. DOI: 10.1126/science.1171491
[40] EKIERT D C, FRIESEN R H E, BHABHA G, et al. A highly conserved neutralizing epitope on group 2 influenza A viruses[J]. Science, 2011, 333(6044): 843–850. DOI: 10.1126/science.1204839
[41] EKIERT D C, KASHYAP A K, STEEL J, et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop[J]. Nature, 2012, 489(7417): 526–532. DOI: 10.1038/nature11414
[42] BYRD-LEOTIS L, GALLOWAY S E, AGBOGU E, et al. Influenza hemagglutinin (HA) stem region mutations that stabilize or destabilize the structure of multiple HA subtypes[J]. J Virol, 2015, 89(8): 4504–4516. DOI: 10.1128/JVI.00057-15
[43] WAGNER R, HERWIG A, AZZOUZ N, et al. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity[J]. J Virol, 2005, 79(10): 6449–6458. DOI: 10.1128/JVI.79.10.6449-6458.2005
[44] TAKEDA M, LESER G P, RUSSELL C J, et al. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion[J]. Proc Natl Acad Sci U S A, 2003, 100(25): 14610–14617. DOI: 10.1073/pnas.2235620100
[45] OHUCHI M, OHUCHI R, MATSUMOTO A. Control of biological activities of influenza virus hemagglutinin by its carbohydrate moiety[J]. Microbiol Immunol, 1999, 43(12): 1071–1076. DOI: 10.1111/j.1348-0421.1999.tb03363.x
[46] YIN Y C, ZHANG X J, QIAO Y Y, et al. Glycosylation at 11Asn on hemagglutinin of H5N1 influenza virus contributes to its biological characteristics[J]. Vet Res, 2017, 48(1): 81. DOI: 10.1186/s13567-017-0484-8
[47] ROBERTS P C, GARTEN W, KLENK H D. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin[J]. J Virol, 1993, 67(6): 3048–3060. DOI: 10.1128/jvi.67.6.3048-3060.1993
[48] VARKI A, SCHAUER R. Sialic acids[M]//VARKI A, CUMMINGS R D, ESKO J D, et al. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, N. Y. : Cold Spring Harbor Laboratory Press, 2009.
[49] TRAVING C, SCHAUER R. Structure, function and metabolism of sialic acids[J]. Cell Mol Life Sci, 1998, 54(12): 1330–1349. DOI: 10.1007/s000180050258
[50] ROGERS G N, PRITCHETT T J, LANE J L, et al. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants[J]. Virology, 1983, 131(2): 394–408. DOI: 10.1016/0042-6822(83)90507-X
[51] MAIR C M, LUDWIG K, HERRMANN A, et al. Receptor binding and pH stability-how influenza A virus hemagglutinin affects host-specific virus infection[J]. Biochim Biophys Acta, 2014, 1838(4): 1153–1168. DOI: 10.1016/j.bbamem.2013.10.004
[52] XU Y, PENG RC, ZHANG W, et al. Avian-to-Human receptor-binding adaptation of avian H7N9 influenza virus hemagglutinin[J]. Cell Rep, 2019, 29(8): 2217–2228. DOI: 10.1016/j.celrep.2019.10.047
[53] DE VRIES R P, PENG W J, GRANT O C, et al. Three mutations switch H7N9 influenza to human-type receptor specificity[J]. PLoS Pathog, 2017, 13(6): e1006390. DOI: 10.1371/journal.ppat.1006390
[54] THARAKARAMAN K, JAYARAMAN A, RAMAN R, et al. Glycan receptor binding of the influenza A virus H7N9 hemagglutinin[J]. Cell, 2013, 153(7): 1486–1493. DOI: 10.1016/j.cell.2013.05.034
[55] BRADLEY K C, GALLOWAY S E, LASANAJAK Y, et al. Analysis of influenza virus hemagglutinin receptor binding mutants with limited receptor recognition properties and conditional replication characteristics[J]. J Virol, 2011, 85(23): 12387–12398. DOI: 10.1128/JVI.05570-11
[56] MATROSOVICH M, TUZIKOV A, BOVIN N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals[J]. J Virol, 2000, 74(18): 8502–8512. DOI: 10.1128/JVI.74.18.8502-8512.2000
[57] PENG W J, BOUWMAN K M, MCBRIDE R, et al. Enhanced human-type receptor binding by ferret-transmissible H5N1 with a K193T mutation[J]. J Virol, 2018, 92(10): e02016–17.
[58] GAMBARYAN A S, MATROSOVICH T Y, PHILIPP J, et al. Receptor-binding profiles of H7 subtype influenza viruses in different host species[J]. J Virol, 2012, 86(8): 4370–4379. DOI: 10.1128/JVI.06959-11
[59] ZHENG B J, CHAN K H, ZHANG A J X, et al. D225G mutation in hemagglutinin of pandemic influenza H1N1 (2009) virus enhances virulence in mice[J]. Exp Biol Med, 2010, 235(8): 981–988. DOI: 10.1258/ebm.2010.010071
[60] GLASER L, STEVENS J, ZAMARIN D, et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity[J]. J Virol, 2005, 79(17): 11533–11536. DOI: 10.1128/JVI.79.17.11533-11536.2005
[61] SANTOS J J S, ABENTE E J, OBADAN A O, et al. Plasticity of amino acid residue 145 near the receptor binding site of H3 swine influenza A viruses and its impact on receptor binding and antibody recognition[J]. J Virol, 2019, 93(2): e01413–18.
[62] LI Y, BOSTICK D L, SULLIVAN C B, et al. Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering[J]. J Virol, 2013, 87(17): 9904–9910. DOI: 10.1128/JVI.01023-13
[63] XIONG X L, COOMBS P J, MARTIN S R, et al. Receptor binding by a ferret-transmissible H5 avian influenza virus[J]. Nature, 2013, 497(7449): 392–396. DOI: 10.1038/nature12144
[64] LAZAROWITZ S G, COMPANS R W, CHOPPIN P W. Proteolytic cleavage of the hemagglutinin polypeptide of influenza virus. Function of the uncleaved polypeptide HA[J]. Virology, 1973, 52(1): 199–212. DOI: 10.1016/0042-6822(73)90409-1
[65] STEINHAUER D A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus[J]. Virology, 1999, 258(1): 1–20. DOI: 10.1006/viro.1999.9716
[66] WALKER J A, MOLLOY S S, THOMAS G, et al. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus[J]. J Virol, 1994, 68(2): 1213–1218. DOI: 10.1128/jvi.68.2.1213-1218.1994
[67] HORIMOTO T, NAKAYAMA K, SMEEKENS S P, et al. Proprotein-Processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses[J]. J Virol, 1994, 68(9): 6074–6078. DOI: 10.1128/jvi.68.9.6074-6078.1994
[68] ZHIRNOV O P, IKIZLER M R, WRIGHT P F. Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases[J]. J Virol, 2002, 76(17): 8682–8689. DOI: 10.1128/JVI.76.17.8682-8689.2002
[69] WEBSTER R G, ROTT R. Influenza virus a pathogenicity: the pivotal role of hemagglutinin[J]. Cell, 1987, 50(5): 665–666. DOI: 10.1016/0092-8674(87)90321-7
[70] CROSS K J, LANGLEY W A, RUSSELL R J, et al. Composition and functions of the influenza fusion peptide[J]. Protein Pept Lett, 2009, 16(7): 766–778. DOI: 10.2174/092986609788681715
[71] HOLDBROOK D A, BURMANN B M, HUBER R G, et al. A spring-loaded mechanism governs the clamp-like dynamics of the skp chaperone[J]. Structure, 2017, 25(7): 1079–1088. DOI: 10.1016/j.str.2017.05.018
[72] WEBER T, PAESOLD G, GALLI C, et al. Evidence for H+-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane[J]. J Biol Chem, 1994, 269(28): 18353–18358. DOI: 10.1016/S0021-9258(17)32314-1
[73] GRUENKE J A, ARMSTRONG R T, NEWCOMB W W, et al. New insights into the spring-loaded conformational change of influenza virus hemagglutinin[J]. J Virol, 2002, 76(9): 4456–4466. DOI: 10.1128/JVI.76.9.4456-4466.2002
[74] WAGNER R, HEUERA D, WOLFF T, et al. N-glycans attached to hemagglutinin in the head region and the stem domain control growth of influenza viruses by different mechanisms[J]. Int Congr Ser, 2001, 1219: 375–382. DOI: 10.1016/S0531-5131(01)00347-8
[75] SCHOLTISSEK C. Stability of infectious influenza A viruses to treatment at low pH and heating[J]. Arch Virol, 1985, 85(1-2): 1–11. DOI: 10.1007/BF01317001
[76] GALLOWAY S E, REED M L, RUSSELL C J, et al. Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation[J]. PLoS Pathog, 2013, 9(2): e1003151.
[77] HERFST S, MOK C K P, VAN DEN BRAND J M A, et al. Human clade 2. 3.4.4 A/H5N6 influenza virus lacks mammalian adaptation markers and does not transmit via the airborne route between ferrets[J]. mSphere, 2018, 3(1): e00405–17.
[78] GABBARD J D, DLUGOLENSKI D, VAN RIEL D, et al. Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the guinea pig model[J]. J Virol, 2014, 88(3): 1502–1512. DOI: 10.1128/JVI.02959-13
[79] RUSSIER M, YANG G H, REHG J E, et al. Molecular requirements for a pandemic influenza virus: an acid-stable hemagglutinin protein[J]. Prod Natl Acad Sci U S A, 2016, 113(6): 1636–1641.
[80] RUSSELL C J, HU M, OKDA F A. Influenza hemagglutinin protein stability, activation, and pandemic risk[J]. Trends Microbiol, 2018, 26(10): 841–853. DOI: 10.1016/j.tim.2018.03.005
[81] ZARAKET H, BRIDGES O A, RUSSELL C J. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in mice[J]. J Virol, 2013, 87(9): 4826–4834. DOI: 10.1128/JVI.03110-12
[82] YIN X, DENG G H, ZENG X Y, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China[J]. PLoS Pathog, 2021, 17(4): e1009561.
[83] WANG Y, LV Y H, NIU X F, et al. L226Q mutation on influenza H7N9 virus hemagglutinin increases receptor-binding avidity and leads to biased antigenicity evaluation[J]. J Virol, 2020, 94(20): e00667–20.
[84] HENSLEY S E, DAS S R, BAILEY A L, et al. Hemagglutinin receptor binding avidity drives influenza a virus antigenic drift[J]. Science, 2009, 326(5953): 734–736.
[85] DANIELS F S, DOWNIE J C, HAY A J, et al. Fusion mutants of the influenza virus hemagglutinin glycoprotein[J]. Cell, 1985, 40(2): 431–439.
[86] HE F, PRABAKARAN M, TAN Y R, et al. Development of dual-function ELISA for effective antigen and antibody detection against H7 avian influenza virus[J]. BMC Microbiol, 2013, 13: 219.
[87] IGNATIEVA A V, TIMOFEEVA T A, RUDNEVA I A, et al. Effect of amino acid substitutions in the small subunit of the avian H5N2 influenza virus hemagglutinin on selection of the mutants, resistant to neutralizing monoclonal antibodies[J]. Mol Biol, 2015, 49(2): 303–311. DOI: 10.1134/S002689331502003X
[88] PING J H, LI C J, DENG G H, et al. Single-amino-acid mutation in the HA alters the recognition of H9N2 influenza virus by a monoclonal antibody[J]. Biochem Biophys Res Commun, 2008, 371(1): 168–171.
[89] CHEN Z Y, BAZ M, LU J, et al. Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets[J]. J Virol, 2014, 88(12): 7016–7023.
[90] DANIELS P S, JEFFRIES S, YATES P, et al. The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies[J]. ENBO J, 1987, 6(5): 1459–1465.
[91] LI X, GAO Y M, YE Z P. A single amino acid substitution at residue 218 of hemagglutinin improves the growth of influenza A(H7N9) candidate vaccine viruses[J]. J Virol, 2019, 93(19): e00570–19.
[92] LIU L Q, LU J, LI Z, et al. 220 mutation in the hemagglutinin of avian influenza A (H7N9) virus alters antigenicity during vaccine strain development[J]. Hum Vaccin Immunother, 2018, 14(3): 532–539.
[93] XU R, DE VRIES R P, ZHU X Y, et al. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses[J]. Science, 2013, 342(6163): 1230–1235.
[94] RAMOS I, KRAMMER F, HAI R, et al. H7N9 influenza viruses interact preferentially with α2, 3-linked sialic acids and bind weakly to α2, 6-linked sialic acids[J]. J Gen Virol, 2013, 94(11): 2417–2423.
[95] LIN Y P, WHARTON S A, MARTÍN J, et al. Adaptation of egg-grown and transfectant influenza viruses for growth in mammalian cells: selection of hemagglutinin mutants with elevated pH of membrane fusion[J]. Virology, 1997, 233(2): 402–410.
[96] SCHRAUWEN E J, RICHARD M, BURKE D F, et al. Amino acid substitutions that affect receptor binding and stability of the hemagglutinin of influenza A/H7N9 Virus[J]. J Virol, 2016, 90(7): 3794–3799.
(编辑  白永平)