过多的能量摄入会导致动物躯体不同部位的脂肪沉积。研究报道称,肥胖会引起内分泌及代谢异常,如代谢率降低[1]、高胰岛素血症[2]和孕酮产生过剩[3],伴随着发情周期紊乱[4-5]、多囊卵巢综合征(PCOS)[6-7]和不孕症[8-9]。在动物生产中,脂肪沉积会影响母猪繁殖性能,如降低发情率、受胎率和仔猪出生成活率等[10-11]。因此,预防肥胖可以提高母猪繁殖性能,降低女性生殖疾病的发病率,改善动物繁殖性能和人类健康。
根据功能的差异,脂肪组织通常分为3种类型,即白色脂肪组织(white adipose tissue, WAT)、褐色脂肪组织(brown adipose tissue, BAT)和米色脂肪组织。白色脂肪组织主要负责能量储存[12];褐色脂肪组织通过解偶联蛋白1 (uncoupled protein 1, UCP1)解偶联氧化磷酸化来消耗能量[13];米色脂肪组织分布在白色脂肪组织中,具有褐色样表型,此过程称为褐色化[14]。BAT激活/产热和WAT褐色化在治疗肥胖中具有潜在作用[15-17],并且BAT激活能够改善生殖障碍[18-20]。一些营养物质如白藜芦醇(resveratrol)[21]、芦丁(rutin)[22]、叶绿醇(phytol)[23]和视黄酸(retinoic acid)[24]已被证明可以激活BAT产热和WAT褐色化。因此,通过营养干预促进BAT产热和WAT褐色化是预防肥胖相关生殖功能障碍的有利策略。
鱼油中富含大量的n-3多不饱和脂肪酸(polyunsaturated fatty acid, PUFA),即二十碳五烯酸(eicosapentaenoic acid, EPA)和二十二碳六烯酸(docosahexaenoic acid, DHA)。n-3 PUFA有多种益处,包括抗炎[25]和预防心血管疾病[26],而添加鱼油能有效预防肥胖的发生[27-28]。此外,n-3 PUFA已被证明可以改善PCOS大鼠的卵巢发育,并对PCOS的生化特性如FSH和脂联素发挥有益作用[29]。然而,鱼油是否能够缓解高脂饮食导致的发情周期紊乱尚不清楚。
因此,本研究旨在探究日粮鱼油对高脂饮食导致的发情周期紊乱和机体代谢的影响,研究结果有望揭示鱼油在改善肥胖相关繁殖异常方面的调控作用,为其在动物生产和人类健康中的应用提供试验依据。
1 材料与方法 1.1 试验动物与试验设计选取36只4周龄的C57BL/6 J雌性小鼠(购自广东省医学实验动物中心),在温度(23±3)℃、湿度(70±10)%的条件下,进行12 h的光-暗循环试验。适应1周后,将小鼠随机分为3组(n=12):对照组、高脂组和高脂+鱼油组。对照组饲喂标准啮齿动物饲料(AIN-93G),高脂组和高脂+鱼油组分别饲喂的高脂日粮(脂肪提供60%能量)和添加5%鱼油(等能替代猪油)的高脂日粮。本试验日粮鱼油添加量是根据Halade等[30]试验中使用的日粮鱼油添加量(5%)所确定。小鼠日粮成分组成和脂肪酸组成见表 1、表 2。试验期21周。在不同饲养阶段,对小鼠体组成、整体代谢、褐色脂肪温度、直肠(体核)温度和发情周期等进行检查。试验结束后,用二氧化碳麻醉小鼠,眼球取血分离血清,用ELISA试剂盒检测FSH和E2水平。此外,采集皮下脂肪、腹部脂肪和肩胛间褐色脂肪,称重后保存于-80 ℃冰箱,以便进一步分析。
|
|
表 1 试验日粮组成 Table 1 The composition of experimental diets |
|
|
表 2 不同饲粮的脂肪酸组成 Table 2 Fatty acid composition of different diets |
鱼油由广州市优百特饲料科技有限公司提供。促卵泡激素和雌二醇检测试剂盒购自南京建成生物工程研究所,β-actin抗体购自北京博奥森生物技术有限公司,UCP1和Cyto C抗体购自CST公司。
1.3 测定指标及方法1.3.1 体组成 在12周龄时,用动物体成分和核磁共振成像系统分析仪(MesoQMR23-060H型, Niumag Corporation公司)测定小鼠的体脂含量和脂肪分布。
1.3.2 红外热成像和体核(直肠)温度测定 18周龄的小鼠在25 ℃或4 ℃环境中暴露4 h,自由饮食和饮水。采用红外数字热像仪获取小鼠的红外图像,并用红外数字热像仪(E60型,FLIR公司)快速报告软件对iBAT温度进行分析。用直肠探头连接数字温度计测量小鼠的直肠温度。
1.3.3 发情周期鉴定 对20周龄雌性小鼠进行连续8 d阴道涂片的细胞学检查,每天观察一次阴道涂片细胞类型,确定发情周期所处阶段。固定小鼠,用移液枪吸取20 μL生理盐水至小鼠阴道,反复抽吸5次后,将液体均匀涂至整个载玻片,涂片自然干燥后,用甲醇固定3 min,瑞氏染液染色5~8 min,流水缓慢冲洗,吉姆萨染液染色8 min,最后用自来水漂洗,自然干燥,封片,待检。各阶段的分辨方法如下:发情期(estrous, E)的卵泡会成熟排卵,均为无核角化细胞或有少量上皮细胞;发情前期(proestrus, P)的卵泡快速生长,可见大量有核上皮细胞,少量角化细胞;发情后期(metestrus, M)的黄体生成,具有一半的上皮细胞和一半的白细胞,前者的细胞核较大,且半透明、有皱褶;发情间期(diestrus, D)的黄体退化,可见大量白细胞及少量黏膜和上皮细胞。
1.3.4 整体代谢 在16周龄时,采用综合实验动物监测系统(CLAMS)(Promethion Metabolic Screening Systems,美国Sable Systems International公司)测定小鼠的产热和耗氧量等代谢参数。小鼠称重后,提前将小鼠放于代谢笼适应2 d后,测定代谢参数1 d,期间自由采食和采水。试验结束后,小鼠称重。根据前后体重的平均,统计第3天白天(12 h)和黑夜(12 h)的代谢参数。
1.3.5 苏木精-伊红(HE)和免疫组化(IHC)染色 剪取一块脂肪于多聚甲醇固定24~36 h,脱水后用石蜡包埋,切片(5 μm),贴片,烘干,用苏木精和伊红染色,或用UCP1抗体进行免疫组化染色,拍照。
1.3.6 组织RNA提取和实时荧光定量PCR检测 按照广州美基生物科技公司RNA快速提取试剂盒内的说明书提取腹股沟白色脂肪和肩胛间褐色脂肪RNA。主要步骤为:组织加入裂解液后,匀浆,静置,氯仿抽提,离心,吸上清,加无水乙醇,过柱,清洗,加入无核酸水溶解RNA。按照以下反转录步骤(购自日本TaKaRa公司)反转成cDNA,主要为:体系一(RNA+oligod(T)18)预变性70 ℃,5 min,结束后立即放至冰盒;体系二(预变性得到的RNA+dNTP+RNase+2×Buffer+M-MLV RTase+DEPC水)温育(37 ℃,90 min)后灭活反转录酶(70 ℃,7 min)。反应结束后,将样品取出后,置于-20 ℃冰箱中保存。
通过实时荧光定量PCR检测组织中的UCP1、PRDM16、PGC1α、Cidea和Elovl3基因的mRNA表达,引物序列如表 3所示。试验步骤主要为:cDNA样品稀释5倍(20 μL cDNA+80 μL DEPC水),配置引物工作液(引物母液上下游各10 μL+80 μL DEPC水),点样(20 μL体系:3 μL已稀释的cDNA+6.5 μL无核酸水+0.5 μL引物工作液+10 μL SYBR green),贴膜后离心、上机,反应程序如表 4。最后分析数据,根据公式计算各目的基因的mRNA相对表达量(以β-actin为内参基因):目的基因mRNA相对表达量=2(Ct目的基因-Ct内参基因)。
|
|
表 3 qPCR检测的引物 Table 3 Primers used for the qPCR assay |
|
|
表 4 qPCR反应程序 Table 4 Reaction process for the qPCR assay |
1.3.7 蛋白质印迹法 使用RIPA裂解液裂解脂肪组织,匀浆,离心后取上清,使用BCA法测定蛋白浓度,根据浓度,用5X SDS对样品进行进行等质量蛋白分装,并99 ℃变性10 min。利用SDS-聚丙烯酰胺凝胶电泳分离蛋白,试验步骤主要为:配置分离胶和浓缩胶(根据美国Bio-Rad公司的Western blot快速制胶试剂盒制胶),将分离胶和浓缩胶注入板中,插梳子,静置凝固30 min后,将胶用电泳夹子夹紧放入电泳槽,将电泳液倒入电泳槽,拔梳子,点样,跑电泳(120 V,60 min),准备PVDF膜(转膜前15 min PVDF膜用预冷的甲醇活化)和转膜液,转膜(横流90 mA,65 min(70 ku以下的蛋白分子)或90 min(70 ku以上的蛋白分子)),转膜结束后将条带取出,用TBST在摇床上清洗5次,用6%脱脂奶粉封闭2.5 h,TBST洗5次条带,4 ℃过夜孵育一抗(UCP1(1∶2 000)、Cyto C(1∶2 000)和β-actin(1∶2 000)),TBST洗5次条带,用二抗室温孵育1.5 h后洗涤,曝光。并用Image J软件分析条带灰度。
1.4 统计分析所有数据均以"平均值±标准误(SEM)"表示。使用Sigmaplot 14软件进行统计分析。采用单因素方差分析(one-way ANOVA)对各组均值进行差异分析,采用Duncan’s法进行多组数据之间的比较,P<0.05为有统计学意义。
2 结果 2.1 日粮鱼油降低小鼠体脂含量和白色脂肪重量与对照组相比,饲喂高脂日粮小鼠的脂肪含量增加了21个百分点,但鱼油的摄入逆转了HFD引起的脂肪含量增加,比高脂组降低了10个百分点(P<0.05,图 1A、B)。与此结果一致,日粮鱼油能显著减少HFD导致的皮下和腹部脂肪的增加(P<0.05),分别减少了1.1和2.8个百分点(图 1C),且BAT的重量明显高于对照组和高脂组小鼠(P<0.05,图 1C)。综上所述,日粮鱼油显著降低雌性小鼠的体脂含量和白色脂肪重量。
|
A.体组成;B.脂肪分布;C.不同部位脂肪组织指数。柱子上方,不同小写字母表示差异显著(P<0.05)。下同 A. Body composition; B. Fat distribution; C. Adipose tissue index of different parts. Above the column, different lowercase letters indicate significant differences (P < 0.05). The same as below 图 1 日粮鱼油对小鼠体脂含量和白色脂肪重量的影响 Fig. 1 Effects of dietary fish oil on fat content and WAT mass of mice |
与对照组相比,HFD能延长小鼠的发情周期(8~10 d),并降低发情期的时间比例,增加发情间期的时间比例(P<0.05)。而日粮鱼油将发情周期缩短到正常天数(4~5 d),并且恢复HFD导致的发情期缩短和发情间期延长(P<0.05,图 2A、B)。通过计算各组正常发情小鼠与异常发情小鼠的比率发现,高脂组的正常发情小鼠的比率只有18%,而日粮鱼油显著增加正常发情的小鼠比率(75%)(P<0.05,图 2C)。同时日粮鱼油能够增加HFD导致的血清FSH和E2水平的降低(P<0.05,图 2D、E)。综上表明,日粮鱼油可以缓解HFD导致的雌性小鼠发情周期紊乱。
|
A.发情周期对比图,横坐标1~8表示天数;B.发情周期统计图;C.发情比率统计图;D.促卵泡激素水平;E.雌二醇水平 A. Comparison of estrous cycles, 1-8 in the abscissa indicates the number of days; B. Statistical graph of estrous cycles; C. Statistical graph of estrus rate; D. The level of FSH; E. The level of E2 图 2 日粮鱼油缓解高脂日粮诱导雌性小鼠的发情周期紊乱 Fig. 2 Dietary fish oil alleviated HFD-induced estrous cycle irregularity in female mice |
为探究鱼油缓解HFD导致的发情周期紊乱是否与机体能量代谢有关,本研究测定了各组小鼠的代谢状态。结果显示,HFD降低小鼠的耗氧量和产热量,而日粮鱼油恢复了HFD导致的耗氧量和产热量的降低(P<0.05,图 3B~E)。同时,添加鱼油使小鼠的直肠温度显著升高(P<0.05,图 3A),与能量代谢增加的表型一致。综上所述,日粮添加鱼油能增强高脂饲喂小鼠的能量消耗和直肠温度,表明鱼油能够改善HFD导致的小鼠能量代谢异常。
|
A.直肠温度统计图;B、C.耗氧量统计图;D、E.热量统计图 A. Statistical graph of rectum temperature; B, C. Statistical chart of oxygen consumption; D, E. Statistical chart of heat 图 3 日粮鱼油可改善高脂饲喂雌性小鼠能量代谢的异常 Fig. 3 Dietary fish oil improved the abnormal of energy metabolism in HFD-fed female mice |
由于能量消耗的增加与BAT激活/产热有关,本研究进一步探索日粮添加鱼油能否促进高脂日粮饲喂小鼠的BAT产热。根据图 4A和4B所示,在25 ℃下,高脂小鼠的iBAT温度与对照组无显著差异(P>0.05),但在4 ℃冷刺激下,高脂小鼠的iBAT温度显著降低(P<0.05)。而无论是25 ℃或4 ℃,鱼油均能促进高脂日粮饲喂小鼠的iBAT产热,且增加产热标志基因(UCP1,PRDM16,PGC1α,Cidea,Elovl3)和蛋白(UCP1和Cyto C)的表达(P<0.05,图 4C~E)。以上结果表明,鱼油通过增加BAT产热基因和蛋白的表达,进而促进高脂饲喂小鼠的机体代谢产热。
|
A.肩胛间褐色脂肪温度红外图像;B.肩胛间褐色脂肪温度统计图;C.肩胛间褐色脂肪产热标志基因的mRNA表达;D、E.肩胛间褐色脂肪产热标志基因的蛋白表达 A.Infrared images of iBAT temperature; B. Statistical chart of iBAT temperature; C. The mRNA expression of genes related to thermogenic program in the iBAT; D, E. The relative protein expression of genes related to thermogenic program in the iBAT 图 4 日粮鱼油促进高脂饮食诱导雌性小鼠的iBAT产热 Fig. 4 Dietary fish oil increased iBAT thermogenesis in HFD-fed female mice |
WAT褐色化也能促进机体产热。因此,本研究探讨了鱼油对iWAT褐色化的影响。HE染色结果显示,与对照组相比,高脂饲喂小鼠中iWAT的脂肪细胞内脂滴变大,数量减少。然而,添加鱼油显著降低了脂肪细胞内脂滴大小,数量增加(图 5A)。由UCP1免疫组化染色观察可知,高脂饲喂小鼠中iWAT的UCP1阳性染色变浅,而添加鱼油UCP1阳性染色加深(图 5A)。与IHC结果一致,添加鱼油可显著增加iWAT中UCP1、Cyto C等产热标志基因的蛋白表达(P<0.05,图 5B、C)。以上结果表明,日粮鱼油可促进高脂饲喂小鼠中iWAT的褐色化。
|
A.腹股沟白色脂肪UCP1的HE染色(上)和免疫组化图(下);B、C.腹股沟白色脂肪脂肪产热标志基因的蛋白表达 A.Representative HE staining (upper) and immunohistochemistry for UCP1 (lower) of images of iWAT; B, C. The relative protein expression of genes related to thermogenic program in the iWAT 图 5 日粮鱼油促进高脂饮食诱导雌性小鼠的iWAT褐色化 Fig. 5 Dietary fish oil promoted iWAT browning in HFD-fed female mice |
有文献报道,鱼油可以降低动物体重和脂肪沉积,预防肥胖[28, 31-32]。与这些研究一致,本试验结果表明,鱼油可逆转高脂日粮导致的脂肪含量和白色脂肪重量的增加。也有研究发现,鱼油能增加仓鼠[33]和大鼠[34]的iBAT重量,与本试验结果一致。
3.2 日粮鱼油对高脂饲喂小鼠繁殖性能的影响大量的研究报道,肥胖或高脂饮食会对雌性繁殖性能产生不利影响,如大鼠[35]和小鼠[20]的发情周期紊乱。与这些研究结果一致,本试验结果表明,高脂饮食导致雌性小鼠发情周期紊乱,降低正常发情率。一直以来,肥胖被认为与女性月经紊乱有关[36]。基于鱼油的抗肥胖作用,本研究推测,鱼油可以缓解高脂日粮导致的发情周期紊乱。与假设一致,本试验结果表明,日粮鱼油可以缓解高脂日粮导致的发情周期紊乱。同样,有报道称,富含EPA或DHA的饮食能促进大鼠排卵[37],且增加山羊排出卵泡的数量和大小[38]。
发情周期是动物繁殖过程的重要部分,受生殖激素的调控,然而,不规律的发情周期往往伴随着FSH和E2等生殖激素的变化。本研究中,饲喂高脂日粮的小鼠血清FSH和E2水平显著降低。有报道指出,超重女性血清的FSH水平低于正常体重的女性[39]。有趣的是,本研究中添加鱼油提高了高脂饲喂小鼠血清中FSH和E2的水平,与此结果一致,有报道称DHA增加了牛卵巢颗粒细胞中的E2浓度[40]。但Bauer等[41]发现,鱼油降低了正常体重而非肥胖女性在整个月经周期间的血清FSH水平。本研究与Bauer等[41]研究的结果差异可能是由于研究对象的不同。上述结果说明,摄入富含鱼油的高脂日粮可以预防高脂饮食导致的雌性小鼠发情周期紊乱和生殖激素的改变。
3.3 日粮添加鱼油对高脂饲喂小鼠BAT产热和WAT褐色化的影响本研究还进一步探索了鱼油缓解高脂日粮引起的发情周期紊乱的机制。肥胖往往伴随着能量平衡的变化。因此,本研究通过检测小鼠的机体代谢产热发现,日粮添加鱼油增加了耗氧量和产热量,并提高了高脂日粮导致的直肠温度降低。与此结果一致,有研究表明,鱼油增加了小鼠的耗氧量[27, 42]和直肠温度[42]。由于动物可以通过BAT的UCP1解偶联氧化磷酸化来增加产热,因此,本研究检测了小鼠BAT的温度。结果发现,鱼油提高了iBAT的温度,并伴随着褐色脂肪细胞标志基因和蛋白的表达的增加,说明鱼油可促进BAT的激活/产热。在人类皮下脂肪细胞培养中发现,与体重较轻的人相比,肥胖个体的UCP1基因表达降低[43]。此外,有研究表明,鱼油可改善iBAT中UCP1的表达[28]。基于已有的研究,BAT的移植[44]或BAT激活[45]有利于改善PCOS。同时,本试验结果显示,日粮添加鱼油显著增加BAT的含量。因此,本研究揭示了鱼油促进的BAT激活或产热可能有助于缓解发情周期的紊乱。
除了BAT产热,WAT产热/WAT褐色化也有助于增加机体产热[46]。报道显示,添加鱼油可诱导iWAT中UCP1的上调[42, 47],EPA可增加皮下脂肪细胞中UCP1基因的表达[48]。与该报道一致,本试验结果显示,日粮鱼油促进了iWAT中UCP1基因和蛋白的表达。但Pahlavani等[49]发现,高脂日粮添加EPA(45%的能量来自脂肪)并没有促进iWAT中UCP1蛋白的表达。两者研究结果的差异可能是由于鱼油的添加量和来源不同,或膳食脂肪含量不同。上述结果表明,鱼油促进WAT褐变可能也与增强产热和改善发情周期紊乱有关。
本研究发现,鱼油能够显著增加血清中E2的水平。而有研究表明,E2的增加会通过雌激素受体ER-α抑制神经肽Y(neuropeptide Y, NPY)的分泌[50]。NPY是能量消耗的主要调节因子,通过抑制BAT活性而降低能量消耗[51]。并且,在Hu等[45]的研究中发现,BAT的激活能够改善PCOS,其机制可能是BAT分泌的细胞因子脂联素改善了胰岛素抵抗,进而改善了PCOS。因此,鱼油可能通过增加E2的水平,抑制了NPY的表达,从而削弱了NPY对BAT活性的抑制作用,最终BAT的激活介导脂联素缓解发情周期紊乱。
4 结论综上所述,日粮鱼油可缓解高脂日粮导致的发情周期紊乱和代谢产热降低,其可能与BAT激活/产热和WAT褐色化过程有关。本研究揭示了鱼油在改善肥胖相关生殖异常方面的潜在应用,为改善动物繁殖性能和人类健康提供理论和试验基础。
| [1] | BIVENS C L M, OLSTER D H. Abnormal estrous cyclicity and behavioral hyporesponsiveness to ovarian hormones in genetically obese Zucker female rats[J]. Endocrinology, 1997, 138(1): 143–148. DOI: 10.1210/endo.138.1.4849 |
| [2] | SCHILLO K K. Effects of dietary energy on control of luteinizing hormone secretion in cattle and sheep[J]. J Anim Sci, 1992, 70(4): 1271–1282. DOI: 10.2527/1992.7041271x |
| [3] | FULLSTON T, PALMER N O, OWENS J A, et al. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice[J]. Hum Reprod, 2012, 27(5): 1391–1400. DOI: 10.1093/humrep/des030 |
| [4] | GIL-CAMPOS M, CAÑETE R, GIL A. Hormones regulating lipid metabolism and plasma lipids in childhood obesity[J]. Int J Obes Relat Metab Disord, 2004, 28(Suppl 3): S75–S80. |
| [5] | NGADJUI E, NKENG-EFOUET P A, NGUELEFACK T B, et al. High fat diet-induced estrus cycle disruption: effects of Ficus asperifolia[J]. J Complement Integr Med, 2015, 12(3): 205–215. |
| [6] | CROSIGNANI P G, COLOMBO M, VEGETTI W, et al. Overweight and obese anovulatory patients with polycystic ovaries: parallel improvements in anthropometric indices, ovarian physiology and fertility rate induced by diet[J]. Hum Reprod, 2003, 18(9): 1928–1932. DOI: 10.1093/humrep/deg367 |
| [7] |
古兰·托合提木拉提, 叶尔努尔·吐苏甫汗, 马玉兰, 等. 高脂高糖饮食暴露诱导大鼠多囊卵巢综合征研究[J]. 生殖医学杂志, 2019, 28(2): 169–173.
GULAN T, ELNUR T, MA Y L, et al. Exposure of high fat and high sugar diet induces polycystic ovarian syndrome in rats[J]. Journal of Reproductive Medicine, 2019, 28(2): 169–173. DOI: 10.3969/j.issn.1004-3845.2019.02.013 (in Chinese) |
| [8] | BERMEJO-ALVAREZ P, ROSENFELD C S, ROBERTS R M. Effect of maternal obesity on estrous cyclicity, embryo development and blastocyst gene expression in a mouse model[J]. Hum Reprod, 2012, 27(12): 3513–3522. DOI: 10.1093/humrep/des327 |
| [9] | HARTZ A J, BARBORIAK P N, WONG A, et al. The association of obesity with infertility and related menstural abnormalities in women[J]. Int J Obes, 1979, 3(1): 57–73. |
| [10] |
金金, 张家瑞, 矫健. 营养因素对猪繁殖性能的影响[J]. 养殖技术顾问, 2010(8): 49.
JIN J, ZHANG J R, JIAO J. Effects of nutritional factors on reproductive performance of pigs[J]. Technical Advisor for Animal Husbandry, 2010(8): 49. DOI: 10.3969/j.issn.1673-1921.2010.08.049 (in Chinese) |
| [11] |
田亮, 姚姣姣, 胡健, 等. 妊娠期脂肪沉积对母猪繁殖性能及胎盘脂代谢基因表达的影响[C]//中国畜牧兽医学会家畜环境卫生学分会2014年学术年会论文集. 武汉: 中国畜牧兽医学会家畜环境卫生学分会, 2014.
TIAN L, YAO J J, HU J, et al. Effects of fat deposition during pregnancy on reproductive performance and gene expression of placental lipid metabolism in sows[C]//Proceedings of the 2014 Annual Meeting of Livestock Environmental Hygiene Branch, Chinese Society of Animal Science and Veterinary Medicine. 2014. (in Chinese) |
| [12] | ROSEN E D, SPIEGELMAN B M. What we talk about when we talk about fat[J]. Cell, 2014, 156(1-2): 20–44. DOI: 10.1016/j.cell.2013.12.012 |
| [13] | CANNON B, NEDERGAARD J. Brown adipose tissue: function and physiological significance[J]. Physiol Rev, 2004, 84(1): 277–359. DOI: 10.1152/physrev.00015.2003 |
| [14] | INAGAKI T, SAKAI J, KAJIMURA S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function[J]. Nat Rev Mol Cell Biol, 2016, 17(8): 480–495. DOI: 10.1038/nrm.2016.62 |
| [15] | HOFFMANN J M, GRVNBERG J R, CHURCH C, et al. BMP4 gene therapy in mature mice reduces BAT activation but protects from obesity by browning subcutaneous adipose tissue[J]. Cell Rep, 2017, 20(5): 1038–1049. DOI: 10.1016/j.celrep.2017.07.020 |
| [16] | MIN B K, KANG H J, CHOI B J, et al. Phenylbutyrate ameliorates high-fat diet-induced obesity via brown adipose tissue activation[J]. Biol Pharm Bull, 2019, 42(9): 1554–1561. DOI: 10.1248/bpb.b19-00346 |
| [17] | SRIVASTAVA S, VEECH R L. Brown and brite: the fat soldiers in the anti-obesity fight[J]. Front Physiol, 2019, 10: 38. DOI: 10.3389/fphys.2019.00038 |
| [18] | SYMONDS M E, ALDISS P, DELLSCHAFT N, et al. Brown adipose tissue development and function and its impact on reproduction[J]. J Endocrinol, 2018, 238(1): R53–R62. DOI: 10.1530/JOE-18-0084 |
| [19] | YUAN X X, HU T, ZHAO H, et al. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome[J]. Proc Natl Acad Sci U S A, 2016, 113(10): 2708–2713. DOI: 10.1073/pnas.1523236113 |
| [20] | ZHANG F L, SU H, SONG M, et al. Calcium supplementation alleviates high-fat diet-induced estrous cycle irregularity and subfertility associated with concomitantly enhanced thermogenesis of brown adipose tissue and browning of white adipose tissue[J]. J Agric Food Chem, 2019, 67(25): 7073–7081. DOI: 10.1021/acs.jafc.9b02663 |
| [21] | WANG S, LIANG X, YANG Q, et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1[J]. Int J Obes, 2015, 39(6): 967–976. DOI: 10.1038/ijo.2015.23 |
| [22] | YUAN X X, WEI G, YOU Y L, et al. Rutin ameliorates obesity through brown fat activation[J]. FASEB J, 2017, 31(1): 333–345. DOI: 10.1096/fj.201600459rr |
| [23] | ZHANG F L, AI W, HU X Q, et al. Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) α in mice fed high-fat diet[J]. Food Funct, 2018, 9(4): 2043–2050. DOI: 10.1039/C7FO01817G |
| [24] | WANG B, FU X, LIANG X W, et al. Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRα+ adipose progenitors[J]. Cell Discov, 2017, 3: 17036. |
| [25] | CALDER P C. Omega-3 fatty acids and inflammatory processes: from molecules to man[J]. Biochem Soc Trans, 2017, 45(5): 1105–1115. DOI: 10.1042/BST20160474 |
| [26] | SCHUNCK W H, KONKEL A, FISCHER R, et al. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases[J]. Pharmacol Ther, 2017, 183: 177–204. |
| [27] | MARTINS A R, CRISMA A R, MASI L N, et al. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet[J]. J Nutr Biochem, 2018, 55: 76–88. DOI: 10.1016/j.jnutbio.2017.11.012 |
| [28] | BARGUT T C L, SOUZA-MELLO V, MANDARIM-DE-LACERDA C A, et al. Fish oil diet modulates epididymal and inguinal adipocyte metabolism in mice[J]. Food Funct, 2016, 7(3): 1468–1476. DOI: 10.1039/C5FO00909J |
| [29] | MA X S, WENG X C, HU X S, et al. Roles of different n-3/n-6 PUFA ratios in ovarian cell development and steroidogenesis in PCOS rats[J]. Food Funct, 2019, 10(11): 7397–7406. DOI: 10.1039/C9FO01730E |
| [30] | HALADE G V, RAHMAN M M, WILLIAMS P J, et al. Combination of conjugated linoleic acid with fish oil prevents age-associated bone marrow adiposity in C57Bl/6 J mice[J]. J Nutr Biochem, 2011, 22(5): 459–469. DOI: 10.1016/j.jnutbio.2010.03.015 |
| [31] | ARAI T, KIM H J, CHIBA H, et al. Anti-obesity effect of fish oil and fish oil-fenofibrate combination in female KK mice[J]. J Atheroscler Thromb, 2009, 16(5): 674–683. DOI: 10.5551/jat.1313 |
| [32] |
韩海银. 受精母鸡日粮中添加鱼油可有效降低仔鸡脂肪沉积水平[J]. 北方牧业, 2018(5): 29.
HAN H Y. Fish oil supplementation in the diet of fertilized hens can effectively reduce the fat deposition level of broilers[J]. Northern Animal Husbandry, 2018(5): 29. (in Chinese) |
| [33] | LOPES P A, MARTINS R, DA SILVA I V, et al. Modulation of aquaporin gene expression by n-3 long-chain PUFA lipid structures in white and brown adipose tissue from hamsters[J]. Br J Nutr, 2018, 120(10): 1098–1106. DOI: 10.1017/S0007114518002519 |
| [34] | OUDART H, GROSCOLAS R, CALGARI C, et al. Brown fat thermogenesis in rats fed high-fat diets enriched with n-3 polyunsaturated fatty acids[J]. Int J Obes Relat Metab Disord, 1997, 21(11): 955–962. DOI: 10.1038/sj.ijo.0800500 |
| [35] | AKAMINE E H, MARCAL A C, CAMPOREZ J P, et al. Obesity induced by high-fat diet promotes insulin resistance in the ovary[J]. J Endocrinol, 2010, 206(1): 65–74. DOI: 10.1677/JOE-09-0461 |
| [36] | WEI S Y, SCHMIDT M D, DWYER T, et al. Obesity and menstrual irregularity: associations with SHBG, testosterone, and insulin[J]. Obesity, 2009, 17(5): 1070–1076. DOI: 10.1038/oby.2008.641 |
| [37] | BROUGHTON K S, BAYES J, CULVER B. High α-linolenic acid and fish oil ingestion promotes ovulation to the same extent in rats[J]. Nut Res, 2010, 30(10): 731–738. DOI: 10.1016/j.nutres.2010.09.005 |
| [38] | MAHLA A S, CHAUDHARI R K, VERMA A K, et al. Effect of dietary supplementation of omega-3 polyunsaturated fatty acid (PUFA) rich fish oil on reproductive performance of the goat (Capra hircus)[J]. Theriogenology, 2017, 99: 79–89. |
| [39] | PERGOLA G D, MALDERA S, TARTAGNI M, et al. Inhibitory effect of obesity on gonadotropin, estradiol, and inhibin B levels in fertile women[J]. Obesity(Silver Spring), 2006, 14(11): 1954–1960. |
| [40] | MAILLARD V, DESMARCHAIS A, DURCIN M, et al. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells[J]. Reprod Biol Endocrinol, 2018, 16: 40. DOI: 10.1186/s12958-018-0357-7 |
| [41] | BAUER J L, KUHN K, BRADFORD A P, et al. Reduction in FSH throughout the menstrual cycle after omega-3 fatty acid supplementation in young normal weight but not obese women[J]. Reprod Sci, 2019, 26(8): 1025–1033. DOI: 10.1177/1933719119828099 |
| [42] | KIM M, GOTO T, YU R, et al. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system[J]. Sci Rep, 2015, 5: 18013. |
| [43] | CAREY A L, VORLANDER C, REDDY-LUTHMOODOO M, et al. Reduced UCP-1 content in In vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity[J]. PLoS One, 2014, 9(3): e91997. |
| [44] | LI H Y, XI Q Y, XIONG Y Y, et al. Identification and comparison of microRNAs from skeletal muscle and adipose tissues from two porcine breeds[J]. Anim Genet, 2012, 43(6): 704–713. DOI: 10.1111/j.1365-2052.2012.02332.x |
| [45] | HU T, YUAN X X, YE R C, et al. Brown adipose tissue activation by rutin ameliorates polycystic ovary syndrome in rat[J]. J Nutr Biochem, 2017, 47: 21–28. |
| [46] | WANG W S, SEALE P. Control of brown and beige fat development[J]. Nat Rev Mol Cell Biol, 2016, 17(11): 691–702. |
| [47] |
严琴慧, 周炜, 朱晓蕾, 等. ω3-长链多不饱和脂肪酸改善早期过度营养导致的大鼠成年期代谢异常[J]. 中华内分泌代谢杂志, 2020, 36(1): 63–71.
YAN Q H, ZHOU W, ZHU X L, et al. Omega3-polyunsaturated fatty acid ameliorates metabolic disorders in adulthood rats caused by postnatal early overfeeding[J]. Chinese Journal of Endocrinology and Metabolism, 2020, 36(1): 63–71. (in Chinese) |
| [48] | ZHAO M, CHEN X L. Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes[J]. Biochem Biophys Res Commun, 2014, 450(4): 1446–1451. |
| [49] | PAHLAVANI M, RAZAFIMANJATO F, RAMALINGAM L, et al. Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes[J]. J Nutr Biochem, 2017, 39: 101–109. |
| [50] | DHILLON S S, BELSHAM D D. Estrogen inhibits NPY secretion through membrane-associated estrogen receptor (ER)-α in clonal, immortalized hypothalamic neurons[J]. Int J Obes (Lond), 2011, 35(2): 198–207. |
| [51] |
LOH K, LEE K, CLARKS I, et al. Peripheral Y1 receptor antagonism promotes browning of white adipose tissue and protects from diet-induced obesity[C]//第三届中国生物物理学会代谢生物学分会学术研讨会论文集. 上海: 中国生物物理学会, 2019.
LOH K, LEE K, CLARKS I, et al. Peripheral Y1 receptor antagonism promotes browning of white adipose tissue and protects from diet-induced obesity[C]//Proceedings of the 3rd Symposium of metabolic biology branch of Biophysical Society of China. Shanghai: Biophysical Society of China, 2019. (in Chinese) |


