畜牧兽医学报  2021, Vol. 52 Issue (7): 1800-1808. DOI: 10.11843/j.issn.0366-6964.2021.07.004    PDF    
食源性病原菌激发固有免疫细胞胞外诱捕网的研究进展
钱满, 廖成水, 张春杰     
河南科技大学动物科技学院 洛阳市活载体生物材料与动物疫病防控重点实验室, 洛阳 471023
摘要:固有免疫细胞在外源物质刺激后向细胞胞外环境释放由染色质DNA和多种胞内颗粒蛋白组成的纤维样网状物质,称为胞外诱捕网(extracellular traps,ETs)。ETs是一种新型的宿主防御机制,能够捕获或杀灭病原菌,有效控制病原菌的扩散,从而使机体免受感染。大肠杆菌、沙门菌等食源性人兽共患病病原体引发的疾病是全球广泛关注的公共卫生问题。本文就食源性病原菌激发固有免疫细胞ETs的形成、ETs的生物学活性以及细菌部分蛋白对ETs形成的影响等研究进展进行综述,以期为食源性疾病的防控提供相关理论参考。
关键词食源性病原菌    胞外诱捕网    固有免疫细胞    防御机制    
Research Progress on Extracellular Traps of Innate Immune Cells Stimulated by Foodborne Pathogens
QIAN Man, LIAO Chengshui, ZHANG Chunjie     
Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
Abstract: Innate immune cells release fibrous net substances which are composed of chromatin DNA and various intracellular protein components to the extracellular environment after being stimulated by exogenous substances. Those substances are called extracellular traps (ETs). ETs are new types of host defense mechanism that can capture or kill pathogens, control the spread of pathogens, and protect the body from infection. Diseases caused by foodborne zoonotic pathogens, such as Escherichia coli and Salmonella, are public health issues of widespread concern worldwide. This article reviews the research progress of the formation of ETs stimulated by foodborne pathogens, the biological activity of ETs, and the influence of some bacterial proteins on the formation of ETs. This article is intended to provide theoretical reference for the prevention and control of foodborne diseases.
Key words: foodborne pathogens    extracellular traps    innate immune cells    defense mechanism    

大肠杆菌、沙门菌、单增李斯特菌、葡萄球菌、链球菌等食源性病原菌在食品加工、运输、储藏过程中造成污染。这些病原菌在食品中能够引发食物的腐败变质,病原菌产生的有毒物质也在食品中累积,直接或间接导致动物和人体的感染,从而引发严重的公共卫生问题。免疫细胞受到病原菌刺激后活化并释放以DNA为骨架的网状结构,该网状结构物被称为胞外诱捕网(extracellular traps, ETs)。ETs是一种新发现的固有免疫防御机制,可以捕获入侵的病原菌,使其聚集在较小的范围内,防止其进一步扩散。此外,ETs的DNA骨架上还分布有许多颗粒蛋白和水解酶,这些毒性蛋白和水解酶可杀伤病原菌,从而发挥抗感染作用[1-2]。目前,食源性人兽共患病的防控是解决公共卫生问题的关键之一。本文就食源性病原菌激发固有免疫细胞ETs的研究进展作一综述(表 1),以期为病原微生物感染性疾病的防控提供新的思路。

表 1 食源性病原菌激发固有免疫细胞ETs释放的研究概况 Table 1 Outline of study on extracellular traps of innate immune cells stimulated by foodborne pathogens
1 大肠杆菌与固有免疫细胞ETs

人类单核细胞分别与大肠杆菌、金黄色葡萄球菌和白念珠菌孵育后,均可形成单核细胞胞外诱捕网(mononuclear extracellular traps, MoETs),并通过吞噬作用、核DNA和MoETs胞外DNA的解聚作用对病原菌作出应答[3]。小鼠巨噬细胞J774A.1在大肠杆菌刺激下可形成类似巨噬细胞胞外诱捕网(macrophage extracellular traps, METs)样的结构(METs-like structures, METs-LS),METs-LS由DNA和杀菌蛋白(如组蛋白、髓过氧化物酶和溶菌酶)组成,其形成过程与NADPH氧化酶(NADPH oxidase, NOX)产生的活性氧(reactive oxygen species, ROS)无关,该过程不会导致细胞裂解。另外METs-LS可以在感染部位捕获入侵的病原菌并防止其扩散,但不能杀死病原菌,且产生过量的METs-LS还会破坏巨噬细胞的正常功能[4]。此外,虾的血细胞受到大肠杆菌刺激也可形成ETs捕获大肠杆菌[5]。从患败血症儿童外周血中分离得到的大肠杆菌,不能诱导源于健康个体的中性粒细胞释放中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs),这可能与患病儿童的免疫力低下有关[6]。研究发现,髓系中性粒细胞PLB-985在感染野生型大肠杆菌菌株C1845后形成的NETs,不仅可以捕获、固定和杀死野生型C1845菌株,还能通过与肠上皮细胞的局部直接接触导致上皮损伤,尤其在患者患有肠炎性疾病的情况下,其导致的损伤更严重[7]

致病性大肠杆菌(uropathgenic Escherichia coli, UPEC)感染泌尿系统期间,细菌被中性粒细胞释放的DNA纤维结构物捕获,并遭遇到DNA纤维上的抗菌颗粒和组蛋白[8]。人乳铁蛋白的外源性治疗降低了UPEC对上皮细胞的黏附,增强了中性粒细胞的杀菌作用,促进ETs的形成[9]。乳腺病原性大肠杆菌菌株P4能激活正常的牛中性粒细胞产生NETs,利用与临床牛酮病相当的β-羟基丁酸酯(β-hydroxybutyrate, BHBA)浓度刺激牛体,发现BHBA可降低中性粒细胞对牛乳腺致病性大肠杆菌和其他肠致病性大肠杆菌菌株的杀菌活性和NETs释放水平,原因可能是BHBA会抑制细胞凋亡和影响ROS的形成[10]。NETs存在的条件下,C-型凝集素-1(dendritic cell-associated C-type lectin-1, dectin-1)受体蛋白可作为传感器,通过下调中性粒细胞弹性蛋白酶到细胞核的转运过程,从而抑制NETosis的产生,且缺乏dectin-1会加重感染期间NETosis和NETs介导的组织损伤[11]。另外,在肠致病性大肠杆菌和产志贺毒素大肠杆菌感染时,肠道内形成的尿酸晶体可诱导肠道的炎症反应,从而促进NETs的形成与释放[12]

2 沙门菌与固有免疫细胞ETs

肠炎沙门菌或雏鸡沙门菌与异嗜性粒细胞共孵育后,异嗜性粒细胞能够产生ETs[13]。沙门菌耐药位点SAL1和SLC11A1与嗜异性粒细胞抗菌活性以及胞外诱捕物的产生有关。NETs与SIVA-1/CD27介导的细胞凋亡共同决定了SAL1的抗性作用,而ETs形成的细胞死亡机制ETosis可能通过CD27/SIVA-1介导的凋亡途径起作用[14]

生物素A(biochanin A, BCA)、遗传系差异、饲料日粮中免疫调节剂的添加等多种因素影响ETs的形成。BCA是部分植物中存在的异黄酮成分,可通过AMPK/ULK1/mTOR介导的自噬和METs的释放增强机体对沙门菌的杀伤和清除胞外沙门菌[15]。而日粮中添加免疫调节剂可增强鸡异嗜性粒细胞ETs的释放和对病原菌的杀灭作用[16]

3 单增李斯特菌与固有免疫细胞ETs

单增李斯特菌能够刺激肥大细胞,使其进行被膜修饰并释放纤维网状DNA,该DNA与组蛋白和类胰蛋白酶复合形成肥大细胞胞外诱捕网(mast cell extracellular traps, MCETs)。此外,阻断NADPH氧化酶可减少肥大细胞释放DNA,抑制MCETs的形成,从而降低MCETs杀死病原体的能力[17]。小胶质细胞属于中枢神经系统中的单核吞噬细胞,其在受到细菌刺激后,能形成和释放小胶质细胞胞外诱捕网(microglia extracellular traps, MiETs)并杀灭细菌,从而阻止菌体在机体内的传播与扩散[18]

脱氧核糖核酸酶I(deoxyribonuclease I, DNase I)不能抑制髓过氧化物酶和NADPH氧化酶的活性,但能够降解ETs的DNA,从而影响ROS的产生。因此,病原微生物衍生的DNase I对ROS产生的抑制作用将有助于病原逃避宿主细胞的杀伤作用[19]。β-己糖胺酶属外切糖苷酶,是调控部分MCETs抗菌活性的关键酶[18]。C型凝集素5A是黄病毒家族的模式识别受体,其参与NETs和NETosis的形成,也与单增李斯特菌的ROS和促炎细胞因子的产生与释放有关[20]。BH3-only蛋白是Bcl-2蛋白家族中启动和调节细胞凋亡的重要成员,当细胞受到某些信号刺激后,BH3-only蛋白活化,其活性受转录和翻译后修饰的调控,且BH3-only蛋白缺陷小鼠清除细菌的能力比野生型小鼠强,这可能与ROS的浓度增加、NETs的释放和肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)的下调有关[21]。γ干扰素(IFN-γ)能够增强NADPH氧化酶介导的单增李斯特菌感染的MiETs的形成,而且李斯特菌脑膜炎模型鼠脑匀浆和脑脊液中IFN-γ、环境DNA和核小体水平的升高与临床脑膜炎患者脑脊液中水平呈正相关[18]

4 葡萄球菌与固有免疫细胞ETs

金黄色葡萄球菌通常不存在于健康人的皮肤中,但易定植在皮炎患者皮肤上。中性粒细胞并非直接捕获病原微生物[22],而是间接通过NETs与角质形成细胞的相互作用促进金黄色葡萄球菌的皮肤定植[23]。金黄色葡萄球菌通过将NETs转换为脱氧腺苷来逃避中性粒细胞的杀伤,并且脱氧腺苷可诱导Caspase-3介导的免疫细胞凋亡过程。在此过程中,NETs需要金黄色葡萄球菌所分泌的核酸酶和腺苷合酶才能够转化为脱氧腺苷,且核酸酶和腺苷合酶是巨噬细胞清除葡萄球菌的关键酶[24]。DNase I的预防性给药可显著减少耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)和甲氧西林敏感金黄色葡萄球菌(methicillin sensitive Staphylococcus aureus, MSSA)菌株生物被膜的形成。因此,DNase I在临床中具有控制金黄色葡萄球菌诱导感染性心内膜炎的潜力。另外,血小板有助于NETs的形成,在血小板存在的条件下,MRSA分离物(MW2)诱导NETs的形成与产生水平比MSSA分离物(HG001)高[25]

社区获得性耐甲氧西林金黄色葡萄球菌(community-associated methicillin-resistant Staphylococcus aureus, CA-MRSA)菌株能够分泌高水平的水溶性酚醛树脂调控蛋白(PSMs),这些肽是CA-MRSA的重要毒力因子。CA-MRSA与水溶性酚醛树脂调控蛋白α(phenol-soluble modulin α, PSMα)能够触发中性粒细胞迅速形成NET,且该过程不依赖ROS、髓过氧化物酶(myeloperoxidase, MPO)和去甲肾上腺素(norepinephrine, NE)的活性,4 ℃条件下也可形成NETs。有趣的是,PSMα诱导形成的细胞外诱捕网的形态和功能与丙二醇甲醚醋酸酯诱导形成的经典NETs难以区分[26]。蛋白A是金黄色葡萄球菌诱导NETosis的决定因素。添加纯化的蛋白A可提高该蛋白基因缺失菌株引起的NETosis,且灭活的金黄色葡萄球菌不会诱导NETosis[27]。杀白细胞素(LukGH)不会引发人类中性粒细胞产生更多ROS,也不能增强人类中性粒细胞对金黄色葡萄球菌的结合与摄取。LukGH促进NETs的释放,释放的NETs虽然可捕捉金黄色葡萄球菌,但却无法将其杀死[28]。由于LukGH的作用,中性粒细胞的吞噬作用和NETs两种杀菌机制均无法有效清除生物被膜,且金黄色葡萄球菌核酸酶介导的NETs DNA降解作用有助于被NET捕获的生物被膜状态细菌的存活[29]

潘顿-瓦伦丁杀白细胞毒素能刺激中性粒细胞迅速产生针对金黄色葡萄球菌的NETs,这与之前报道的NETs形成方式不同,主要区别在于它不依赖氧化过程,且中性粒细胞的裂解和线粒体DNA的释放并不需要破坏质膜[30]。Toll样受体(toll-like receptor, TLR)是脊椎动物天然免疫系统中的关键模式识别受体,地塞米松能够降低中性粒细胞对胞外病原体的杀伤,且金黄色葡萄球菌诱导的中性粒细胞胞外病原体杀伤作用可能是通过调节Toll样受体来控制的[31]。核酸酶Nuc1是金黄色葡萄球菌的主要毒力因子之一,有助于细菌逃避NETs介导的杀伤作用。而克林霉素和免疫球蛋白可降低Nuc1的转录水平,减弱核酸酶的活性,从而增强NETs介导的清除作用[32]。此外,通过电渗作用在中性粒细胞质膜上形成孔洞,也可以诱导NETs的形成,这一发现与NETs在非特异性细胞溶解过程中形成的观点一致[28]。白介素33(interleukin-33,IL-33)是IL-1家族细胞因子的一员,被认为是Th2型免疫反应的强触发器。在体外和体内试验中,IL-33引起的NETs产量增加提高了NETs对金黄色葡萄球菌的诱捕和杀伤活性[33]

5 链球菌与固有免疫细胞ETs

生物被膜状态和浮游状态的猪链球菌2型(SS2)均能够诱导中性粒细胞趋向感染部位,且生物被膜状态的SS2能够逃避NETs的杀伤作用。因为生物被膜基质可以抑制NETs的释放,但从生物被膜基质中分离出来的细菌却仍然具有诱导宿主细胞形成NETs的能力[34]。A族链球菌是一种重要的人类病原体,参与多种黏膜和系统感染。A族链球菌菌毛可诱导中性粒细胞IL-8的产生与释放,从而促进NETs释放,捕获和杀死病原体[35]。研究发现,NETs的降解产物可能在A族链球菌引起的咽部感染中起作用。脱氧核糖核酸酶通过降解NETs逃避中性粒细胞胞外杀伤作用,且经消化处理的NETs上清液可促进A族链球菌诱导的细胞死亡[36]。噬菌体编码的A族链球菌DNase(Sda1)有利于病原体逃避NETs的杀伤。固有免疫系统的免疫压力可促进高毒力突变细菌的产生,从而增加感染与传播的风险[37]。通过研究马链球菌亚种胞外核酸酶单突变ENuc或5 Nuc菌株及双突变ENuc和5 Nuc菌株发现,马链球菌主要通过ENuc或5 Nuc的作用直接将NETs DNA主链降解为脱氧腺苷,但双突变ENuc 5 Nuc菌株不能将NETs DNA主链降解为脱氧腺苷[38]

肺炎链球菌是引起儿科传染病——中耳炎的重要病原菌。在患急性中耳炎期间,Toll样受体4通过调节ROS和自噬来控制抗肺炎链球菌的NETs形成,且NETs能够捕获并杀死肺炎链球菌[39]。肺炎链球菌α-烯醇化酶是一种新型的中性粒细胞结合蛋白,可诱导NETs的形成,增加中性粒细胞的迁移活性并诱导中性粒细胞的死亡[40]。NETs的形成依赖于自噬,不受溶血素的影响,但溶血素能够抑制NETs对细菌的捕获和杀伤[41]。猪链球菌膜囊泡(MVs)中存在的枯草素样蛋白酶(SspA)和DNase(SsnA)两种毒力因子也可降解NETs,这将有助于猪链球菌逃避NETs的杀伤作用[42]。肺炎链球菌菌株具有不同程度的耐药性,这种耐药性的变异是由于肺炎链球菌毒力因子表面蛋白A(PspA)的异质性造成的。缺乏PspA表达的菌株对NETs介导的杀伤作用更加敏感。经抗PspA抗体处理的肺炎球菌对NETs的黏附性增强,但对NETs杀伤的敏感性降低[43]。链球菌胶原样蛋白1(Scl-1)是侵袭性M1T1血清型A族链球菌中表达水平较高的蛋白之一。Scl-1保护A族链球菌免受NETs内抗菌肽的影响,有利于细菌抵抗NETs的杀伤作用。此外,Scl-1可干扰髓过氧化物酶的产生,从而抑制NETs的形成与释放[44]

6 其他病原菌与固有免疫细胞ETs

结核分枝杆菌可在体内诱导NETs的产生,且灭活的结核分枝杆菌、牛分枝杆菌卡介苗、耻垢分枝杆菌以及结核分枝杆菌衍生的脂质体均是NETs的良好诱导剂[45]。另外,缺氧条件下,结核分枝杆菌抑制NETs的产生以及影响中性粒细胞的凋亡和坏死[46]。在指数生长期,铜绿假单胞菌诱导人中性粒细胞ETs的形成,而在细菌生长的后期,其诱导NETs能力显著下降。鞭毛是铜绿假单胞菌的主要成分,可诱导NETs的产生,但纯化的铜绿假单胞菌鞭毛蛋白却不能刺激人中性粒细胞产生ETs。因此,铜绿假单胞菌诱导NETs释放需要的是鞭毛的运动性,而不是鞭毛与宿主细胞上的鞭毛感受器的结合活性[47]。从严重慢性疲劳综合征重症患者中获得的NETs结构为扩散形式,而从轻/中度疾病患者中获得的NETs为球形,且细菌分子外毒素S、绿脓杆菌素S2和铜绿假单胞菌铁载体均与NET的形成有关[48]。人的中性粒细胞在体外受到烟曲霉菌刺激时也会产生NETs,NETosis对菌丝的抑制作用最强,但对休眠和膨大的分生孢子抑制作用较弱。此外,烟曲霉中疏水蛋白RodA是一种能够引发免疫抑制作用的表面蛋白,可减少NETs的形成与释放[49]

C型凝集素受体Mincle在肺炎克雷伯菌感染期可诱导NETs的形成,Mincle-/-能够减弱中性粒细胞形成NETs的能力,这与体内外自噬激活过程的受损有关,但中性粒细胞ROS的形成并不受影响。利用外源性自噬诱导物三苯氧胺的治疗研究解决了Mincle-/-中性粒细胞的NETs形成能力减弱的问题,这进一步证明了Mincle具有调节自噬的重要作用[50]。结核分枝杆菌诱导的NETs依赖于活性氧和吞噬作用,且中性粒细胞弹性蛋白酶抑制剂可延迟NETs的形成。而结核分枝杆菌诱导的NETs与热休克蛋白72(Hsp72)结合,可触发Hsp72介导的巨噬细胞促炎作用[51]。双功能酶Rv0888是一种新的结核分枝杆菌细胞外因子,具有核酸酶和鞘磷脂酶活性,Rv0888鞘磷脂酶活性可以在小鼠体外和肺中诱导NETs的形成,并增强耻垢分枝杆菌在小鼠肺中的定植能力[52]。ESX-1分泌系统是结核分枝杆菌中存在的一种特殊的蛋白分泌系统,也被称为Ⅶ型分泌系统,ESX-1分泌系统在细菌发挥毒力的过程中起着重要作用。ESAT-6是最早发现的ESX-1分泌蛋白之一,它引起细胞内Ca2+超负荷,紧接着磷脂酰丝氨酸翻转到细胞外表面,中性粒细胞发生坏死,并刺激以DNA和髓过氧化物酶为主要成分的NETs的形成[53]。ESX-1分泌系统能够促进IFN-γ诱导的METs形成,有助于结核分枝杆菌在METs中的聚集,且IFN-γ反过来能够增强ESX-1介导的巨噬细胞坏死[54]

铜绿假单胞菌是造成细菌性角膜炎的主要原因。活体显微镜观察发现,中性粒细胞移动到铜绿假单胞菌生物被膜处,在细菌三型分泌系统释放的毒力因子刺激下形成NETs。此时NETs作为一个类似屏障的结构,将细菌限制在局部环境中,阻止细菌的进一步扩散[55]。Zn2+螯合剂钙卫蛋白与曲霉诱导的NETs有关,虽然加入的Zn2+能消除NETs介导的烟曲霉芽管生长的抑制作用,但是还不足以杀死烟曲霉菌[56]。霍乱弧菌胞外核酸酶Xds和Dns在与中性粒细胞接触后诱导NETs的形成,而霍乱弧菌在NETs的存在下反过来诱导两种胞外核酸酶并迅速降解NETs的DNA组分[57]。铜绿假单胞菌能够编码DNA酶的操纵子,分泌的DNA酶有助于降解NETs的DNA,有利于铜绿假单胞菌逃避NETs介导的杀伤作用[58]。黏附素A(YadA)是食源性小肠结肠炎耶尔森菌和假结核耶尔森菌的重要毒力因子,NETs能捕获并杀灭表达YadA的小肠结肠炎耶尔森菌。此外,野生型鼠疫耶尔森菌EV76能够逃避NETs的杀伤作用,而表达YadA的重组菌EV76不能够逃避NETs的杀伤作用[59]

7 展望

食源性病原菌污染造成的食品公共卫生安全问题形势愈加严峻。作为新型的抗菌机制,ETs可以捕获和杀死病原体,阻止病原体的扩散与传播,表现出抗病毒、抗菌、抗寄生虫等活性[60],这为食源性疾病的预防和治疗提供了新的方向。尽管国内外学者针对病原体与固有免疫细胞ETs的互作已开展了大量研究,但绝大多数工作仍停留在病原体激发ETs释放的浅层次阶段,对于ETs形成的分子机制及信号通路仅限于初步研究。此外,ETs是一把“固有免疫的双刃剑”,ETs的主骨架DNA可作为抗原诱导局部组织损伤或血栓形成,进而导致自身免疫性疾病[61]。因此,在未来的研究中,应进一步揭示病原体激发ETs形成的机制,并明确异常ETs对自身正常细胞和组织产生损伤的相关机制。

参考文献
[1] LIANG X F, LIU L, WANG Y, et al. Autophagy-driven NETosis is a double-edged sword-review[J]. Biomed Pharmacother, 2020, 126: 110065. DOI: 10.1016/j.biopha.2020.110065
[2] 廖成水, PASCALB, 刘明远, 等. 胞外捕获器: 固有免疫细胞第三种防御机制的研究进展[J]. 畜牧兽医学报, 2016, 47(9): 1768–1774.
LIAO C S, PASCAL B, LIU M Y, et al. Research progress on extracellular traps: the third kinds of defence mechanisms of innate immune cells[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(9): 1768–1774. (in Chinese)
[3] HALDER L D, ABDELFATAH M A, JO E A H, et al. Factor H binds to extracellular DNA traps released from human blood monocytes in response to Candida albicans[J]. Front Immunol, 2017, 7: 671.
[4] LIU P, WU X P, LIAO C S, et al. Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity[J]. PLoS One, 2014, 9(2): e90042. DOI: 10.1371/journal.pone.0090042
[5] NG T H, CHANG S H, WU M H, et al. Shrimp hemocytes release extracellular traps that kill bacteria[J]. Dev Comp Immunol, 2013, 41(4): 644–651. DOI: 10.1016/j.dci.2013.06.014
[6] BYSTRZYCKA W, SIECZKOWSKA S, MANDA-HANDZLIK A, et al. Influence of different bacteria strains isolated from septic children on release and degradation of extracellular traps by neutrophils from healthy adults[M]//POKORSKI M. Current Trends in Immunity and Respiratory Infections. Advances in Experimental Medicine and Biology. Cham: Springer, 2018, 1108: 1-12.
[7] MARIN-ESTEBAN V, TURBICA I, DUFOUR G, et al. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells[J]. Infect Immun, 2012, 80(5): 1891–1899. DOI: 10.1128/IAI.00050-12
[8] YU Y B, KWON K, PIEPER R. Detection of neutrophil extracellular traps in urine[M]//PEARSON M. Proteus Mirabilis. New York: Humana, 2019: 241-257.
[9] PATRAS K A, HA A D, ROOHOLFADA E, et al. Augmentation of urinary lactoferrin enhances host innate immune clearance of uropathogenic Escherichia coli[J]. J Innate Immun, 2019, 11(6): 481–495. DOI: 10.1159/000499342
[10] GRINBERG N, ELAZAR S, ROSENSHINE I, et al. β-Hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli[J]. Infect Immun, 2008, 76(6): 2802–2807. DOI: 10.1128/IAI.00051-08
[11] BRANZK N, LUBOJEMSKA A, HARDISON S E, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens[J]. Nat Immunol, 2014, 15(11): 1017–1025. DOI: 10.1038/ni.2987
[12] CRANE J K, BROOME J E, LIS A. Biological activities of uric acid in infection due to enteropathogenic and shiga-toxigenic Escherichia coli[J]. Infect Immun, 2016, 84(4): 976–988. DOI: 10.1128/IAI.01389-15
[13] PIEPER J, LOCKE M, RUZAIKE G, et al. In vitro and in vivo generation of heterophil extracellular traps after Salmonella exposure[J]. Vet Immunol Immunopathol, 2017, 188: 1–11. DOI: 10.1016/j.vetimm.2017.04.008
[14] REDMOND S B, CHUAMMITRI P, ANDREASEN C B, et al. Genetic control of chicken heterophil function in advanced intercross lines: associations with novel and with known Salmonella resistance loci and a likely mechanism for cell death in extracellular trap production[J]. Immunogenetics, 2011, 63(7): 449–458. DOI: 10.1007/s00251-011-0523-y
[15] ZHAO X C, TANG X D, GUO N, et al. Biochanin a enhances the defense against Salmonella enterica infection through AMPK/ULK1/mTOR-mediated autophagy and extracellular traps and reversing SPI-1-dependent macrophage (MΦ) M2 polarization[J]. Front Cell Infect Microbiol, 2018, 8: 318. DOI: 10.3389/fcimb.2018.00318
[16] CHUAMMITRI P, REDMOND S B, KIMURA K, et al. Heterophil functional responses to dietary immunomodulators vary in genetically distinct chicken lines[J]. Vet Immunol Immunopathol, 2011, 142(3-4): 219–227. DOI: 10.1016/j.vetimm.2011.05.019
[17] CAMPILLO-NA V M, LEYVA-PAREDES K, DONIS-MATURANO L, et al. Listeria monocytogenes induces mast cell extracellular traps[J]. Immunobiology, 2017, 222(2): 432–439. DOI: 10.1016/j.imbio.2016.08.006
[18] WANG C, WANG Y, SHI X C, et al. The TRAPs from microglial vesicles protect against Listeria infection in the CNS[J]. Front Cell Neurosci, 2019, 13: 199.
[19] MUNAFO D B, JOHNSON J L, BRZEZINSKA A A, et al. DNase I inhibits a late phase of reactive oxygen species production in neutrophils[J]. J Innate Immun, 2009, 1(6): 527–542. DOI: 10.1159/000235860
[20] CHEN S T, LI F J, HSU T Y, et al. CLEC5A is a critical receptor in innate immunity against Listeria infection[J]. Nat Commun, 2017, 8(1): 299. DOI: 10.1038/s41467-017-00356-3
[21] MARGAROLI C, OBERLE S, LAVANCHY C, et al. Role of proapoptotic BH3-only proteins in Listeria monocytogenes infection[J]. Eur J Immunol, 2016, 46(6): 1427–1437. DOI: 10.1002/eji.201545857
[22] DAINICHI T, NAKAJIMA S, IWATA M, et al. NET effects of NETs: New concepts[J]. J Invest Dermatol, 2020, 140(5): 939–941. DOI: 10.1016/j.jid.2019.12.016
[23] BITSCHAR K, STAUDENMAIER L, KLINK L, et al. Staphylococcus aureus skin colonization is enhanced by the interaction of neutrophil extracellular traps with keratinocytes[J]. J Invest Dermatol, 2020, 140(5): 1054–1065. DOI: 10.1016/j.jid.2019.10.017
[24] THAMMAVONGSA V, MISSIAKAS D M, SCHNEEWIND O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death[J]. Science, 2013, 342(6160): 863–866. DOI: 10.1126/science.1242255
[25] HSU C C, HSU R B, OHNIWA R L, et al. Neutrophil extracellular traps enhance Staphylococcus aureus vegetation formation through interaction with platelets in infective endocarditis[J]. Thromb Haemost, 2019, 119(5): 786–796. DOI: 10.1055/s-0039-1678665
[26] BJÖRNSDOTTIR H, RUDIN A D, KLOSE F P, et al. Phenol-soluble modulin α peptide toxins from aggressive Staphylococcus aureus induce rapid formation of neutrophil extracellular traps through a reactive oxygen species-independent pathway[J]. Front Immunol, 2017, 8: 257.
[27] HOPPENBROUWERS T, SULTAN A R, ABRAHAM T E, et al. Staphylococcal protein a is a key factor in neutrophil extracellular traps formation[J]. Front Immunol, 2018, 9: 165. DOI: 10.3389/fimmu.2018.00165
[28] MALACHOWA N, KOBAYASHI S D, FREEDMAN B, et al. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps[J]. J Immunol, 2013, 191(12): 6022–6029. DOI: 10.4049/jimmunol.1301821
[29] BHATTACHARYA M, BERENDS E T M, ZHENG X H, et al. Leukocidins and the nuclease nuc prevent neutrophil-mediated killing of Staphylococcus aureus biofilms[J]. Infect Immun, 2020, 88(10): e00372–20.
[30] PILSCZEK F H, SALINA D, POON K K H, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol, 2010, 185(12): 7413–7425. DOI: 10.4049/jimmunol.1000675
[31] WANG T, ZHAO Y Y, FAN F L, et al. Dexamethasone inhibits S. aureus-induced neutrophil extracellular pathogen-killing mechanism, possibly through Toll-Like receptor regulation[J]. Front Immunol, 2017: 8–60.
[32] SCHILCHER K, ANDREONI F, UCHIYAMA S, et al. Increased neutrophil extracellular trap-mediated Staphylococcus aureus clearance through inhibition of nuclease activity by clindamycin and immunoglobulin[J]. J Infect Dis, 2014, 210(3): 473–482. DOI: 10.1093/infdis/jiu091
[33] WANG X D, LI X Y, CHEN L Y, et al. Interleukin-33 facilitates cutaneous defense against Staphylococcus aureus by promoting the development of neutrophil extracellular trap[J]. Int Immunopharmacol, 2020, 81: 106256. DOI: 10.1016/j.intimp.2020.106256
[34] MA F, YI L, YU N, et al. Streptococcus suis serotype 2 biofilms inhibit the formation of neutrophil extracellular traps[J]. Front Cell Infect Microbiol, 2017, 7: 86.
[35] ALEXANDER L E C, MAISEY H C, TIMMER A M, et al. M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment[J]. J Mol Med, 2010, 88(4): 371–381. DOI: 10.1007/s00109-009-0566-9
[36] TANAKA M, KINOSHITA-DAITOKU R, KIGA K, et al. Group A Streptococcus establishes pharynx infection by degrading the deoxyribonucleic acid of neutrophil extracellular traps[J]. Sci Rep, 2020, 10(1): 3251. DOI: 10.1038/s41598-020-60306-w
[37] WALKER M J, HOLLANDS A, SANDERSON-SMITH M L, et al. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection[J]. Nat Med, 2007, 13(8): 981–985. DOI: 10.1038/nm1612
[38] MA F, GUO X, FAN H J. Extracellular Nucleases of Streptococcus equi subsp. zooepidemicus degrade neutrophil extracellular traps and impair macrophage activity of the host[J]. Appl Environ Microbiol, 2016, 83(2): e02468–16.
[39] DONG Y L, JIN C F, DING Z Q, et al. TLR4 regulates ROS and autophagy to control neutrophil extracellular traps formation against Streptococcus pneumoniae in acute otitis media[J]. Pediatr Res, 2020. DOI: 10.1038/s41390-020-0964-9
[40] MORI Y, YAMAGUCHI M, TERAO Y, et al. α-enolase of Streptococcus pneumoniae induces formation of neutrophil extracellular traps[J]. J Biol Chem, 2012, 287(13): 10472–10481. DOI: 10.1074/jbc.M111.280321
[41] ULLAH I, RITCHIE N D, EVANS T J. The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae[J]. Innate Immun, 2017, 23(5): 413–423. DOI: 10.1177/1753425917704299
[42] HAAS B, GRENIER D. Isolation, characterization and biological properties of membrane vesicles produced by the swine pathogen Streptococcus suis[J]. PLoS One, 2015, 10(6): e0130528. DOI: 10.1371/journal.pone.0130528
[43] MARTINEZ P J, FARHAN A, MUSTAFA M, et al. PspA facilitates evasion of pneumococci from bactericidal activity of neutrophil extracellular traps (NETs)[J]. Microb Pathog, 2019, 136: 103653. DOI: 10.1016/j.micpath.2019.103653
[44] DÖHRMANN S, ANIK S, OLSON J, et al. Role for streptococcal collagen-like protein 1 in M1T1 group A Streptococcus resistance to neutrophil extracellular traps[J]. Infect Immun, 2014, 82(10): 4011–4020. DOI: 10.1128/IAI.01921-14
[45] FILIO-RODRÍGUEZ G, ESTRADA-GARCÍ I, ARCE-PAREDES P, et al. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model[J]. Innate Immun, 2017, 23(7): 625–637. DOI: 10.1177/1753425917732406
[46] ONG C W M, FOX K, ETTORRE A, et al. Hypoxia increases neutrophil-driven matrix destruction after exposure to Mycobacterium tuberculosis[J]. Sci Rep, 2018, 8(1): 11475. DOI: 10.1038/s41598-018-29659-1
[47] FLOYD M, WINN M, CULLEN C, et al. Swimming motility mediates the formation of neutrophil extracellular traps induced by flagellated Pseudomonas aeruginosa[J]. PLoS Pathog, 2016, 12(11): e1005987. DOI: 10.1371/journal.ppat.1005987
[48] MARTÍZ-ALEMÁN S, BUSTAMANTE A E, JIMENEZ-VALDES R J, et al. Pseudomonas aeruginosa isolates from cystic fibrosis patients induce neutrophil extracellular traps with different morphologies that could correlate with their disease severity[J]. Int J Med Microbiol, 2020, 310(7): 151451. DOI: 10.1016/j.ijmm.2020.151451
[49] BRUNS S, KNIEMEYER O, HASENBERG M, et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA[J]. PLoS Pathog, 2010, 6(4): e1000873. DOI: 10.1371/journal.ppat.1000873
[50] SHARMA A, SIMONSON T J, JONDLE C N, et al. Mincle-mediated neutrophil extracellular trap formation by regulation of autophagy[J]. J Infect Dis, 2017, 215(7): 1040–1048. DOI: 10.1093/infdis/jix072
[51] BRAIAN C, HOGEA V, STENDAHL O. Mycobacterium tuberculosis-induced neutrophil extracellular traps activate human macrophages[J]. J Innate Immun, 2013, 5(6): 591–602. DOI: 10.1159/000348676
[52] DANG G H, CUI Y Y, WANG L, et al. Extracellular sphingomyelinase Rv0888 of Mycobacterium tuberculosis contributes to pathological lung injury of Mycobacterium smegmatis in mice via inducing formation of neutrophil extracellular traps[J]. Front Immunol, 2018, 9: 677. DOI: 10.3389/fimmu.2018.00677
[53] FRANCIS R J, BUTLER R E, STEWART G R. Mycobacterium tuberculosis ESAT-6 is a leukocidin causing Ca2+ influx, necrosis and neutrophil extracellular trap formation[J]. Cell Death Dis, 2014, 5(10): e1474. DOI: 10.1038/cddis.2014.394
[54] WONG K W, JACOBS W R Jr. Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis[J]. J Infect Dis, 2013, 208(1): 109–119. DOI: 10.1093/infdis/jit097
[55] THANABALASURIAR A, SCOTT B N V, PEISELER M, et al. Neutrophil extracellular traps confine Pseudomonas aeruginosa ocular biofilms and restrict brain invasion[J]. Cell Host Microbe, 2019, 25(4): 526–536. e4. DOI: 10.1016/j.chom.2019.02.007
[56] MCCORMICK A, HEESEMANN L, WAGENER J, et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus[J]. Microbes Infect, 2010, 12(12-13): 928–936. DOI: 10.1016/j.micinf.2010.06.009
[57] SEPER A, HOSSEINZADEH A, GORKIEWICZ G, et al. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases[J]. PLoS Pathog, 2013, 9(9): e1003614. DOI: 10.1371/journal.ppat.1003614
[58] WILTON M, HALVERSON T W R, CHARRON-MAZENOD L, et al. Secreted phosphatase and deoxyribonuclease are required by Pseudomonas aeruginosa to defend against neutrophil extracellular traps[J]. Infect Immun, 2018, 86(9): e00403–18.
[59] CASUTT-MEYER S, RENZI F, SCHMALER M, et al. Oligomeric coiled-coil adhesin yada is a double-edged sword[J]. PLoS One, 2010, 5(12): e15159. DOI: 10.1371/journal.pone.0015159
[60] 刘春晓, 胡庆华. 中性粒细胞胞外诱捕网及其参与的免疫炎症性疾病研究进展[J]. 药学研究, 2020, 39(7): 405–410.
LIU C X, HU Q H. Research progress on neutrophil extracellular traps and related immune-inflammatory diseases[J]. Journal of Pharmaceutical Research, 2020, 39(7): 405–410. (in Chinese)
[61] FOUSERT E, TOES R, DESAI J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses[J]. Cells, 2020, 9(4): 915. DOI: 10.3390/cells9040915