畜牧兽医学报  2021, Vol. 52 Issue (7): 1778-1788. DOI: 10.11843/j.issn.0366-6964.2021.07.002    PDF    
环状RNA的生物学功能及其在家禽中的研究进展
王卫振1, 邓占钊2, 辛国省3, 蔡正云1, 顾亚玲1, 张娟1*     
1. 宁夏大学农学院, 银川 750021;
2. 彭阳县畜牧技术推广服务中心, 固原 756599;
3. 宁夏大学生命科学学院 宁夏饲料工程技术研究中心, 银川 750021
摘要:近年来随着高通量测序和生物信息学的发展,环状RNA(circular RNA,circRNA)在生物学领域作为新起之秀备受关注。circRNAs是一种内源性的非编码RNA(non-coding RNA,ncRNAs),通常是由pre-mRNA的反向剪接(back-splicing)而来,形成一个共价闭合环。circRNA在真核细胞中没有自由表达的3'和5'末端,这种特殊的结构使其对核酸外切酶高度不敏感。本文综述了circRNAs的研究简史、种类、可变剪接、生物学功能及在家禽中最新研究进展,为家禽的遗传改良提供新视野。
关键词环状RNA    可变剪接    生物学功能    家禽    
The Biological Function of Circular RNA and Its Research Progress in Poultry
WANG Weizhen1, DENG Zhanzhao2, XIN Guosheng3, CAI Zhengyun1, GU Yaling1, ZHANG Juan1*     
1. School of Agriculture, Ningxia University, Yinchuan 750021, China;
2. Pengyang County Animal Husbandry Technology Popularization Service Center, Guyuan 756599, China;
3. Ningxia Feed Engineering Technology Research Center, School of Life Sciences, Ningxia University, Yinchuan 750021, China
Abstract: With the development of high-throughput sequencing and bioinformatics in recent years, as a newcomer, circular RNA (circRNA) has attracted much attention in the field of biology. circRNAs are endogenous non-coding RNAs (ncRNAs) that usually derived from back-splicing of pre-mRNA to form a covalent closed loop. circRNA has no freely expressed 3' and 5' ends in eukaryotic cells, this special structure makes it highly insensitive to exonucleases. This article reviews the brief research history, type, alternative splicing, biological function of circRNA and its latest research progress in poultry to provide new perspectives for genetic improvement of poultry.
Key words: circular RNA    alternative splicing    biological function    poultry    

环状RNA(circular RNA, circRNA)与线性RNA相比不具有3′端ploy(A)和5′端帽子,在真核生物组织或细胞中丰富、稳定表达,对RNA外切酶(RNase R)具有抗性[1-2]。circRNA作为内源性非编码RNA (non-coding RNAs, ncRNAs)还具有高度保守性[3-4]。虽然circRNA早在1976年就被发现,由于circRNA不具有游离的3′和5′端,无法通过依赖于多聚poly(A)的分子技术检测到;同时,环化外显子是经反向剪接(back-splicing)形成共价环,异于经典线性剪接,早期转录组分析的映射算法无法直接将测序得到的片段联配到基因组上,使得在早期的研究中,circRNA被认为是线性转录本异常剪接的副产物,随着深入研究发现,circRNA的异常剪接是受到剪接机制严格调控的[3]。近几年的研究发现,circRNA在人类疾病尤其是癌症方面发挥着重要的生物学功能,成为RNA领域研究的新热点。伴随着高通量测序技术的普及和应用,越来越多的circRNA被鉴定出来。在未来,研究这些不同寻常分子的关键挑战是如何发挥其功能。本文综述了circRNA的研究简史、种类、可变剪接、生物学功能及在家禽中的研究进展,以期为在家禽中深入研究circRNA提供理论基础。

1 circRNA的研究简史

基于PubMed数据库,本文梳理了1971年之后circRNA的研究进程。1971年,Diener[5]在马铃薯块茎病中发现一种类病毒,令人不解的是这种病毒的RNA呈环形结构;1976年,基于电子显微镜分析,在植物类病毒和仙台病毒中发现共价闭合circRNA分子[6-7],至此,一种全新的、未知的RNA出现在研究者的视野。随后,在人类抑癌基因DDCETS-1、小鼠Sry基因、大鼠细胞色素P450、2C24基因中都发现异常剪接转录本形成circRNA[8-11]。2012年,Salzman等[12]对人类多种类型细胞数百种基因进行RNA-seq测序证实,circRNA是基因表达程序的普遍特征。对于circRNA的功能研究最早报道于1988年,在肝炎病毒中发现具有开放阅读编码框(ORF)的circRNA编码抗原多肽P24Delta和P27Delta[13];真核生物circRNA可在核糖体上翻译启动,前提是circRNA具有内部核糖体进入位点(IRESs),才能在ORF上合成多肽链[14]。Hansen等[15]首次证明,circRNA可以作为miRNA的海绵,竞争性吸附miRNA,提高miRNA的靶标水平。circRNA的发现和功能研究为ncRNAs研究注入新的活力,也使得ncRNA在转录后的调控网络更加复杂化、多样化。circRNA作为一种新兴功能大分子,为生命科学领域的探索掀开崭新的一页。

2 circRNA的分类

根据基因注释信息,circRNA大部分来源于编码蛋白质基因的外显子,通常包含1~5个外显子[16],也有一些circRNAs来源于内含子、非编码区、反义链、3′非翻译区(3′UTR)、5′非翻译区(5′UTR)或基因间区[16-18]。依据序列来源将circRNA分为4种类型:仅由外显子衍生的circRNA (exonic circular RNA, EciRNA) (图 1A~B);仅由内含子衍生的circRNA (intronic circular RNA, ciRNA) (图 1D);外显子-内含子衍生的circRNA(exon-intron circular RNA, EIciRNA) (图 1C)[19];基因间区circRNA (intergenic circular RNA)[19]

A.单外显子反向剪接形成EciRNA;B.脱去内含子,外显子反向剪接形成多外显子EciRNA;C.外显子之间保留内含子形成EIciRNA;D.内含子套索结构逃避脱支和降解形成ciRNA A. Single exon back splicing to form EciRNA; B. Removal of introns, back splicing of exons to form multiple exon EciRNA; C. Introns are retained between exons to form EIciRNA; D. Intron lariat structure escapes debranching and degradation to form ciRNA 图 1 不同亚型circRNA示意图 Fig. 1 Schematic representation of different subtypes of circRNA
3 circRNA生物发生机制

基因转录后的pre-mRNA要经过复杂的加工才能形成成熟的mRNA(图 2A)。单个基因位点经过可变剪接(alternative splicing)产生多种类型的circRNA(图 2B~G)。目前,已报道的circRNA的生物发生机制有5种:1)内含子配对驱动环化(直接反向剪接模型)[4];2)套索驱动环化(外显子跳越模型)[4];3)RNA结合蛋白(RBPs)驱动环化[20];4)重剪接驱动环化[21];5)反式元件驱动环化[22]。此外,circRNA的发生还受到聚合酶Ⅱ(Pol-Ⅱ)[23]、聚合酶Ⅲ(Pol-Ⅲ)[24]、RNA编辑酶腺苷脱氢酶(ADAR)[1, 25]、内含子中G-U摆动碱基对[26]、poly(A)的延伸[26]等影响。

A.pre-mRNA通过经典剪接生成mRNA;B.套索驱动环化,pre-mRNA折叠成套索前体,套索前体反向剪接生成circRNA;C.内含子配对驱动环化,两侧翼内含子在反向互补串联重复序列ALU元件作用下碱基互补配对,经反向剪接生成circRNA;D.RBPs驱动环化,RBPs与侧翼内含子特定基序结合促使两侧翼内含子形成二聚体环化,经反向剪接生成circRNA;E.ADAR1破坏反向互补配对碱基,发生U-I错配,削弱双链结合能力抑制环化;F.重剪接驱动环化,成熟mRNA经反向剪接形成套索外显子环,导致mRNA片段缺失;G.反式元件驱动环化,含有内含子反式元件形成的套索结构逃避脱支和降解,形成ciRNA A.pre-mRNA generated mRNA by classical splicing; B.Lariat driven circularization, pre-mRNA folds into lariat precursors, and back splicing of lariat precursors to generated circRNA; C.Intron pairing driven circularization, the base complementary pairing of two flanking intronic in the action of reverse complementary tandem repeat sequence ALU element, and circRNA is generated by back splicing; D.RBPs driven circularization, binding of RBPs to flanking intronic specific sequence motifs induces dimerize cyclization of flanking intronic, and circRNA is generated by back splicing; E.ADAR1 destabilizes reverse complementary pairing bases, generates U-I mismatches, and weakens duplex binding ability to inhibit cyclization; F.Resplicing drives circularization, mature mRNA is back splicing to form a larita exon loop, causes deletion of mRNA fragments; G.Trans acting splicing elements driven cyclization, the larita structure formed by the intron trans acting splicing element escapes debranching and degradation to form ciRNA 图 2 circRNA驱动环化示意图 Fig. 2 Schematic representation of circRNA driven circularization
3.1 内含子配对驱动环化和套索驱动环化

在内含子配对驱动环化中(图 2C),两侧翼内含子中反向互补串联重复序列,如ALU元件、RCMs元件、ICSs元件等,能有效促进内含子互补配对环化[26]。在套索驱动环化中(图 2B),pre-mRNA遵循经典GU-AG法则剪接,规范剪接的pre-mRNA发生折叠,使非相邻的外显子相互靠近发生外显子跳跃,经反向剪接形成包含外显子和内含子的套索前体,该前体通过内部剪接去除内含子,形成EciRNA[4]。在这两种机制中,当内含子未被完全剪接,而保留在新生成的circRNA中时,就形成了EIciRNA[27]

3.2 RNA结合蛋白驱动环化

RNA结合蛋白(RBPs)作为circRNA生物发生机制的激活剂或抑制剂在调控circRNA发生中的重要作用已经被证实。震动蛋白(quaking, QKI)和盲肌蛋白(muscleblind, MBL/MBNL1)能与pre-mRNA侧翼内含子中特定基序列结合,将侧翼内含子连接在一起,这个过程类似于内含子配对驱动环化,不同的是,RBPs与特定位点结合后形成二聚体促进pre-mRNA环化[28-29](图 2D)。此外,免疫因子NF90/NF110[30]、异质核糖核蛋白L(HRNPL)[31]、FUS蛋白[32]、RNA结合基序蛋白20 (RBM20)[33]、脯氨酸-谷氨酰胺剪接因子(SFPQ)[34]等RBPs都能通过与特定位点结合促进环化。与之相反的是,作用于双链RNA的ADAR1能将腺苷编辑为肌苷(A-I),主要进攻对象为ALU元件,导致双链RNA发生U-I错配,削弱双链RNA的结合能力进而抑制circRNA的产生[1, 25] (图 2E)。

3.3 重剪接驱动环化

在肿瘤基因中报道了一种异常剪接方式,对成熟的mRNAs进行重剪接产生circRNA[21]。值得注意的是,这种重新剪接能够使较远的弱替代剪接位点替代真实的强剪接位点,形成大型套索外显子环(图 2F),从而导致mRNA片段的缺失[21]。乳腺癌细胞人类肿瘤易感基因TSG101的mRNA第2外显子至第9外显子重剪接组成内源性的circRNA[21]

3.4 反式元件驱动环化

ciRNA的生物发生机制不同于EciRNA和EIciRNA,它由反式元件(trans-acting splicing elements) 驱动环化而来。在内含子中的特殊序列5′SS附近的7nt-GU富集元件和3′SS附近的11nt-C富集元件,在反向剪接中,两种元件结合形成包含内含子的套索结构,通过2′, 5′-磷酸二酯键共价连接成环,接着下游3′端的残余序列在脱支酶和核酸外切酶作用下降解[17, 19, 35]。一般而言,内含子套索会在脱支酶的作用下开环,随后被降解,但含有7nt-GU富集元件和11nt-C富集元件的内含子能阻止脱分支酶的结合[17] (图 2G)。

3.5 其他因子调控的环化

circRNAs来源于Pol-Ⅱ转录本,抑制Pol-Ⅱ活性,发现直接从内源性的pre-mRNA到circRNA环化效率极低,深入研究发现,反向剪接与Pol-Ⅱ的延伸率呈正相关,并受顺式元件(cis-acting splicing regulatory elements)的调控[23]。此外,有报道显示,切割或聚腺苷酸化抑制Pol-Ⅱ终止转录,circRNA的表达水平升高,原因在于转录本通读延伸至下游基因,并进行反向剪接[36]。Pol-Ⅲ作为转录中常见的聚合酶,也能启动高效环化[24, 37]。在内含子反向重复序列中出现的G-U摆动碱基对及poly(A)的延伸都会限制circRNA的形成[26]。在古细菌中发现内含子的环化至少涉及两种酶,特定的核酸内切酶和连接酶,核酸内切酶特异性识别切割凸起-螺旋-凸起(B-H-B)结构;连接酶连接外显子,并将剪切暴露出2′, 3′-环磷酸和5′-羟基末端连接转化为结合型环磷酸盐,形成7nt的发夹环[38]。也有报道证实,pre-tRNA能剪接成tRNA内含子circRNA (trciRNA),这需要保守的tRNA序列基序和连接-内切酶复合体参与[39]

4 circRNA的功能

cirRNA在调控基因表达中发挥重要作用。有证据表明,circRNA不仅自身与转录因子结合参与基因表达调控,还可以靶向吸附miRNA或与RBPs结合作为转录调节因子影响基因表达[15, 17, 19-20]。circRNA可以作用转录因子调控亲本基因转录(图 3A),small RNA干扰或RNase H反义寡核苷酸(ASOs)34靶向敲除EIciRNA导致亲本基因中mRNA表达水平下降[19]。进一步研究发现,EIciRNA通过与Pol-Ⅱ和U1SNP在亲本基因启动区域结合启功亲本基因顺式表达[19]。miRNA是长度仅有22 nt左右的ncRNA,在基因转录后调控中发挥重要作用,miRNA介导的转录后调控与mRNA的UTRs结合阻碍翻译的进行或降解mRNA[40-41]。circRNA富含miRNA的竞争性靶点,发挥类似海绵作用吸附miRNA (图 3B),从而阻断miRNA与mRNA的结合,调节miRNA对基因转录后调控[2, 15, 35]。在人脑和小鼠脑中小脑变性相关蛋白1反义(CDR1as)环状转录本ciRS-7富含70多个保守miRNA靶点,作为miR-7的海绵以miR-7依赖性的AGO2蛋白缔合,完全抵抗miRNA介导的靶点失稳,强烈抑制miR-7活性,提升miR-7靶基因水平[15, 35]。已经证实circRNA能与RBPs结合,形成circRNA-RBPs复合体发挥生物学功能(图 3C)。ciRS-7结合miR-671激发ciRS-7的解环和AGO2介导的mRNA沉默,从而使吸附的miR-7脱靶得以释放[15, 35, 42]。circ-Foxo3与CDK2和p21蛋白结合形成三元复合体阻断CDK2的功能抑制细胞周期进程[43]

A.circRNA调控亲本基因转录;B.circRNA充当miRNA的海绵;C.circRNA与RBP结合;D-E.circRNA编码蛋白质;F.调控亲本基因的选择性剪接;G.表观遗传修饰,调控DNA甲基化 A.circRNA regulates parental gene transcription; B.circRNA acts as miRNA sponge; C.circRNA binds to RBP; D-E.circRNA encoded proteins; F. Regulate the selective splicing of parental genes; G. Epigenetic modification, regulating the DNA methylation 图 3 circRNA功能示意图 Fig. 3 Schematic representation of circRNA function

circRNA作为ncRNA并非不能编码蛋白质,目前已知circRNA依赖于以下两种机制翻译。1)N6-甲基腺苷甲基化修饰(m6A) [44-45] (图 3D);2)IRSEs或原核生物核糖体结合位点[46-48] (图 3E)。m6A是RNA碱基修饰中最丰富的存在,有报道证实,人细胞内源性circRNA经m6A修饰促进内源性circRNA翻译[44]。共识的m6A基序富集于大量circRNA上,使circRNA不依赖于帽子进行翻译,这种受m6A驱动的翻译在circRNA中普遍存在,并依赖起始因子eIF4G2和m6A阅读器YTHDF3,被甲基转移酶METTL3/14增强,被去甲基酶FTO抑制[44]。一项在胶质母细胞瘤中的研究发现,circ-SHPRH编码的SHPRH-146aa通过保护全长的SHPRH蛋白免受泛素蛋白酶的降解,从而抑制癌细胞的增殖和致瘤性[46]。对果蝇内源性circMBL1的研究发现,核糖体-circMBL1 UTR具有允许不依赖于帽子结构在体内翻译的能力[47]。重要的是,circMbl和一些Mbl mRNA亚型在突触中翻译,circMbl的翻译在果蝇大脑中可能发挥重要作用,但Mbl和circMbl分子编码的蛋白质不包含可识别的肽信号序列[47]。在小鼠和人体细胞中鉴定的circZNF609包含一个从起始密码子开始的ORF,circZNF609与重链多核糖体结合,并以剪接依赖性和帽依赖性的方式通过ORF编码蛋白质[48]。但对circ-ZNF609衍生蛋白的分子活性及它是否有助于调节或控制ZNF609衍生蛋白的活性还没有进展,circ-ZNF609编码的蛋白质缺乏锌指结构域提示它可以作为显性-阴性竞争者或作为替代ZNF609复合物形成的调节剂[48]

circRNA通过与线性RNA竞争调控亲本基因的选择性剪接(图 3F),果蝇MBL/MBNL1蛋白第二外显子侧翼内含子富含MBL蛋白亚型结合位点,过表达MBL-A,内源性circ-MBL增加13倍而mRNA表达水平降低2倍[20]。显然,MBL蛋白促进了circ-MBL生成,使反向剪接更具竞争力。拟南芥SEP3基因第6外显子生成的circRNA强烈结合亲本基因DNA基因座,形成RNA-DNA杂合体R-loop结构,R-loop结构抑制杂合体区段转录,发生跨外显子选择性剪切,促进转录本突变体SPE3.3的产生[49]

一些circRNAs被发现调节表观遗传基因表达相关的异常甲基化和组蛋白修饰(图 3G)。晚期乳腺癌中ETS转录因子家族成员FLI1启动子染色质复合物外显子产生一个circRNA,称作FECR1[50]。circFECR1利用正反馈机制在启动子的CpG岛诱导DNA低甲基化激活FLI1,circFECR1募集双加氧酶-1(TET1)到FLI1,诱导DNA脱甲基,circFECR1还通过与DNA甲基转移酶-1(DNMT1)结合并下调DNMT1,DNMT1是维持DNA甲基化关键酶[50]。hsa_circ_0012919是自身免疫病系统性红斑狼疮(SLE)的一种潜在生物标识物,hsa_circ_0012919下调降低肿瘤坏死因子超家族(TNFSF) CD70和CD11a的表达,上调DNMT1的表达,逆转CD4+T细胞中CD70和CD11a的DNA甲基化不足[51]

circRNA除了上述生物学功能外,在临床医学上还具有新兴作用——生物标记物,尤其在癌症的发生和发展方面。circRNA的稳定性、保守性、普遍性和特异性使其成为潜在的有、价值的肿瘤预后和诊断生物标志物,其在肿瘤细胞中的功能和调节作用使其成为肿瘤治疗的靶点。circFoxo3在乳腺肿瘤组织中普遍下调,并可能抑制肿瘤生长和癌细胞活性[52]。circ-FBXW7在胶质母细胞瘤组织中表达下调,并与胶质母细胞瘤患者的总体生存率相关,并且circ-FBXW7编码的FBXW7-185aa可以通过降低C-myc的半衰期,抑制胶质瘤细胞周期阻滞和增殖[53]

5 circRNA在家禽方面的的研究进展

在各种肉制品中,由家禽衍生出的产品是人类在日常生活中的重要食品来源之一。目前,禽肉已经取代牛肉成为世界上第二大消费肉类,消费水平仅次于猪肉。家禽的经济性状、氧化应激与疾病免疫是家禽养殖行业盈利和规避风险的着力点。最近的研究提示,在家禽的经济性状、氧化应激与疾病免疫等领域都不难发现circRNA的踪迹。

5.1 circRNA调控家禽的肌细胞增殖与分化

肌细胞的增殖与分化是家禽生长发育的基础,但肌细胞的增殖与分化受一系列复杂因素的影响,如基因、细胞因子、ncRNAs的调控[54]。circRNA作为ncRNAs在家禽肌细胞发生中的作用日益凸现。Ouyang等[55]对不同胚龄鸡胚骨骼肌发育过程中circRNA的表达进行RNA-seq测序,鉴定出462个差异表达circRNAs,一些差异circRNAs来源基因与肌肉生物学进程有关,并证实circRBFOX2S与miR-206相互作用促进细胞增殖。Chen等[56]在对成纤维细胞因子受体2(FGFR2)的研究中发现,该基因3~6号外显子产生的circFGFR2在鸡胚骨骼肌发育中差异表达;进一步探究该circRNA在鸡胚发育中的作用机制发现,circFGFR2过表达促进成肌细胞和QM-7细胞增殖,加速生肌决定因子1(MYOD1)、肌细胞生成素(MYOG)的表达和肌管的形成,而敲除circFGFR2对成肌细胞则有相反作用;并且circFGFR2能够直接靶向miR-133a-5p和miR-29b-1-5p两个miRNAs,抑制其表达和活性,解除对成肌细胞增殖和分化的抑制作用。为确定circRNA在鸡胚胎骨骼肌发育中的机制,Shen等[57]对4个不同胎龄肉鸡和蛋鸡的胸肌进行RNA-seq测序,由TMTC1基因转录而来的circTMTC1在不同胚龄表达水平蛋鸡显著高于肉鸡,对circTMTC1敲除后加速鸡骨骼肌卫星细胞的增殖分化;miR-128-3p能够靶向MSTN基因,抑制其表达,促进鸡骨髓间充质干细胞分化,而circTMTC1则通过吸附miR-128-3p抑制鸡胚胎干细胞分化。这些研究说明,circRNA广泛参与肌细胞发生过程中的调控。

5.2 circRNA调控家禽的卵泡发育

卵泡发育是决定家禽生殖性能的关键因素,但卵泡发育受到颗粒细胞、卵泡膜细胞和卵母细胞的共同作用,在转录水平也涉及到circRNA的调控。Shen等[58]在4个发育层次卵泡的卵泡膜细胞上鉴定到14 502个circRNAs,有5 622个circRNAs分布在多个层次卵泡膜细胞中;在与生殖相关的通路中都富集到差异表达circRNAs和mRNA,包括TGF-β信号通路、卵母细胞减数分裂和血管平滑肌收缩;与此同时,Shen等[59]在对4个不同发育层次鸡颗粒细胞RNA测序后发现,差异表达的circRNAs呈现组织特异性和阶段特异性的动态变化。对DEcircRalGPS2的生物信息学分析发现,来源于RalGPS2基因的3个差异circRNAs可能共享相同的miRNA作为海绵。Wu等[60]对鸭白卵泡和黄卵泡卵测序分析发现,共预测到4 204个circRNAs,14个circRNAs在两种卵泡中差异表达;Wu等[60]研究表明,aplacirc_(013267)可促进鸭颗粒细胞凋亡,aplacirc_(013267)能直接结合并抑制apla-mir-1-13,上调血小板凝血酶蛋白1表达促进颗粒细胞凋亡。综上所述,circRNA在家禽卵泡发育中具有潜在的作用,并且circRNA可作为了解卵泡发育的新途径。

5.3 circRNA调控家禽的疾病与免疫

研究证实,circRNA能与免疫应答基因相互作用,介导疾病的发生、发展过程,并可作为生物标记物参与疾病诊断[61-63]。病毒引起的传染性疾病会在家禽养殖业中造成毁灭性的经济损失,其中以马立克病毒(marek disease virus, MDV)、禽白血病病毒亚群(avian leukosis virus subgroup, ALV-J)为最。为揭示ncRNAs在疾病中的调控作用,对鸡MDV感染肿瘤脾、MDV感染无损伤存活脾、健康脾进行RNA-seq测序显示,鉴定出的2 169个circRNAs有113个差异表达,对circRNA/LncRNA-miRNA-mRNA的互作网络分析发现,内源竞争RNA(competing endogenous RNA, ceRNA)参与肿瘤调控[62]。在circRNA-miRNA-mRNA调控网络中,circZMYM3与7个靶向免疫基因的miRNAs互作,表明ncRNAs介导免疫应答基因的调控网络[64]。在感染ALV-J的鸡中发现,circRNA与ALV-J诱导的肿瘤形成有关,并可能有助于介导鸡肿瘤的诱导和发展[61, 63]。对ALV-J抗性鸡和ALV-J易感鸡肝组织进行测序,并对在抗性鸡中12个上调的circRNAs的前5个miRNAs靶基因进行GO和KEGG分析,发现靶基因主要参与免疫途径[61]。同样,Qiu等[63]对ALV-J的研究发现,比较差异表达的circRNAs的来源基因和mRNA,并进行内源竞争RNA网络分析发现,几个与肿瘤和免疫相关的基因同时存在于差异mRNA和circRNAs的来源基因中,并参与内源竞争RNA调控网络。

5.4 circRNA调控家禽的氧化应激

在现代家禽集约化养殖模式下,氨气(NH3)作为一种具有强烈刺激性的有害气体是禽舍内主要空气污染物,严重影响家禽和工人的健康状况[64]。有研究发现,长时间暴露于高浓度NH3环境中会导致家禽的严重应激反应,造成呼吸道损伤出血、肝损伤、脾损伤、胸腺损伤和免疫反应等[65]。Chen等[66]基于转录谱分析发现,在高NH3胁迫下,5个circRNAs和100个mRNAs显著失调,并且GO结果表明,免疫反应和细胞因子调控因高NH3胁迫而失调,共表达分析发现,circRNA-mRNA调控网络与氧化应激和炎症反应紧密相关。高NH3胁迫下调了抗氧化基因GPxGST4的表达,上调炎性基因IL-1、IL-6和IL-8的表达[66]

5.5 circRNA调控家禽的肌内脂肪沉积

家禽以其肉质鲜美、风味独特而受消费者青睐,而脂肪是决定肉质风味关键性因素。影响畜禽机体内脂肪含量的因素包括脂肪合成代谢和肌内脂肪沉积。有研究表明,肌内脂肪沉积受到circRNA调控,王莎莎[67]在对樱桃谷鸭的诱导前后脂肪细胞的RNA测序中发现,大量ncRNAs差异表达,其中有66个circRNAs显著上调,75个显著下调;GO和KEGG结果显示,差异基因大量富集在脂肪酸合成代谢,不饱和脂肪酸合成等通路中,进一步构建circRNA/LncRNA-miRNA-mRNA调控网络为研究鸭脂肪沉积调控机制奠定基础[67]

6 展望

借助于第二代高通量测序平台,circRNA如雨后春笋般由无用的剪接垃圾走进研究者的学术殿堂。虽然大量的基础研究已经证实了circRNA的剪接机制和功能,但有一些问题仍亟待解决,如circRNAs的降解机制。目前,仅有有限的研究报道阐释circRNA的降解,在这一方向的研究十分匮乏。Hansen等[42]报道了ciRS-7结合miR-671激发ciRS-7的解环降解和AGO2介导的的mRNA沉默,然而这是基于特定序列,对于成千上万种circRNAs并不适用。Lasda和Parker[68]一项使用三细胞系的研究发现,circRNA的代谢是通过胞外小体和微囊泡将聚集过量的circRNA从细胞中清除,对于这一降解机制是否适用于不同细胞定位circRNA的降解仍有待研究,此外,是否还存在其他降解机制或胞内排出机制也不可知。在circRNA的研究中大多仅限于转录组学,而对于多组学的联合分析少之又少。如果在circRNA翻译功能研究中联合蛋白质组学和代谢组学,从多组学、多角度、多方向进行整合研究,可能会发现非常有研究价值的circRNA翻译调控机制。目前,circRNA的研究对象主要集中在医学领域生物标志物的研究,但circRNA在家禽等经济动物中的研究也在蓬勃兴起,筛选家禽经济性状中关键circRNA,深度挖掘circRNA在家禽经济性状中的调控网络,是未来circRNA在家禽研究中的重点突破对象。

参考文献
[1] RYBAK-WOLF A, STOTTMEISTER C, GLAŽAR P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870–885. DOI: 10.1016/j.molcel.2015.03.027
[2] MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333–338. DOI: 10.1038/nature11928
[3] COSTELLO A, LAO N T, BARRON N, et al. Reinventing the wheel: synthetic circular RNAs for mammalian cell engineering[J]. Trends Biotechnol, 2020, 38(2): 217–230. DOI: 10.1016/j.tibtech.2019.07.008
[4] JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141–157. DOI: 10.1261/rna.035667.112
[5] DIENER T O. Potato spindle tuber "virus".IV.A replicating, low molecular weight RNA[J]. Virology, 1971, 45(2): 411–428. DOI: 10.1016/0042-6822(71)90342-4
[6] SANGER H L, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852–3856. DOI: 10.1073/pnas.73.11.3852
[7] KOLAKOFSKY D. Isolation and characterization of Sendai virus DI-RNAs[J]. Cell, 1976, 8(4): 547–555. DOI: 10.1016/0092-8674(76)90223-3
[8] NIGRO J M, CHO K R, FEARON E R, et al. Scrambled exons[J]. Cell, 1991, 64(3): 607–613. DOI: 10.1016/0092-8674(91)90244-S
[9] COCQUERELLE C, DAUBERSIES P, MAJÉRUS M A, et al. Splicing with inverted order of exons occurs proximal to large introns[J]. EMBO J, 1992, 11(3): 1095–1098. DOI: 10.1002/j.1460-2075.1992.tb05148.x
[10] CAPEL B, SWAIN A, NICOLIS S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis[J]. Cell, 1993, 73(5): 1019–1030. DOI: 10.1016/0092-8674(93)90279-Y
[11] ZAPHIROPOULOS P G. Circular RNAs from transcripts of the rat cytochrome P4502C24 gene: correlation with exon skipping[J]. Proc Natl Acad Sci U S A, 1996, 93(13): 6536–6541. DOI: 10.1073/pnas.93.13.6536
[12] SALZMAN J, GAWAD C, WANG P L, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2): e30733. DOI: 10.1371/journal.pone.0030733
[13] WEINER A J, CHOO Q L, WANG K S, et al. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta[J]. J Virol, 1988, 62(2): 594–599. DOI: 10.1128/jvi.62.2.594-599.1988
[14] CHEN C Y, SARNOW P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs[J]. Science, 1995, 268(5209): 415–417. DOI: 10.1126/science.7536344
[15] HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384–388. DOI: 10.1038/nature11993
[16] YOSHIMOTO R, RAHIMI K, HANSEN T B, et al. Biosynthesis of circular RNA ciRS-7/CDR1as is mediated by mammalian-wide interspersed repeats[J]. IScience, 2020, 23(7): 101345. DOI: 10.1016/j.isci.2020.101345
[17] ROBIC A, DEMARS J, KVHN C. In-depth analysis reveals production of circular RNAs from non-coding sequences[J]. Cells, 2020, 9(8): 1806. DOI: 10.3390/cells9081806
[18] LIU X X, HU Z F, ZHOU J F, et al. Interior circular RNA[J]. RNA Biol, 2020, 17(1): 87–97. DOI: 10.1080/15476286.2019.1669391
[19] LI Z Y, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256–264. DOI: 10.1038/nsmb.2959
[20] ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al. CircRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55–66. DOI: 10.1016/j.molcel.2014.08.019
[21] KAMEYAMA T, SUZUKI H, MAYEDA A. Re-splicing of mature mRNA in cancer cells promotes activation of distant weak alternative splice sites[J]. Nucleic Acids Res, 2012, 40(16): 7896–7906. DOI: 10.1093/nar/gks520
[22] SAAOUD F, DRUMMER I V C, SHAO Y, et al. Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers[J]. Pharmacol Ther, 2021, 220: 107715. DOI: 10.1016/j.pharmthera.2020.107715
[23] ZHANG Y, XUE W, LI X, et al. The biogenesis of nascent circular RNAs[J]. Cell Rep, 2016, 15(3): 611–624. DOI: 10.1016/j.celrep.2016.03.058
[24] LITKE J L, JAFFREY S R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts[J]. Nat Biotechnol, 2019, 37(6): 667–675. DOI: 10.1038/s41587-019-0090-6
[25] SHEN P, YANG T Y, CHEN Q, et al. CircNEIL3 regulatory loop promotes pancreatic ductal adeno-carcinoma progression via miRNA sponging and A-to-I RNA-editing[J]. Mol Cancer, 2021, 20(1): 51. DOI: 10.1186/s12943-021-01333-7
[26] LIANG D M, WILUSZ J E. Short intronic repeat sequences facilitate circular RNA production[J]. Genes Dev, 2014, 28(20): 2233–2247. DOI: 10.1101/gad.251926.114
[27] HU Q, ZHOU T S. ElciRNA-mediated gene expression: tunability and bimodality[J]. FEBS Lett, 2018, 592(20): 3460–3471. DOI: 10.1002/1873-3468.13253
[28] ZHANG X O, DONG R, ZHANG Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016, 26(9): 1277–1287. DOI: 10.1101/gr.202895.115
[29] CONN S J, PILLMAN K A, TOUBIA J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125–1134. DOI: 10.1016/j.cell.2015.02.014
[30] AWAN F M, YANG B B, NAZ A, et al. The emerging role and significance of circular RNAs in viral infections and antiviral immune responses: possible implication as theranostic agents[J]. RNA Biol, 2021, 18(1): 1–15. DOI: 10.1080/15476286.2020.1790198
[31] PHILLIPS J W, PAN Y, TSAI B L, et al. Pathway-guided analysis identifies myc-dependent alternative pre-mRNA splicing in aggressive prostate cancers[J]. Proc Natl Acad Sci U S A, 2020, 117(10): 5269–5279. DOI: 10.1073/pnas.1915975117
[32] ERRICHELLI L, MODIGLIANI S D, LANEVE P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons[J]. Nat Commun, 2017, 8: 14741. DOI: 10.1038/ncomms14741
[33] KHAN M A F, RECKMAN Y J, AUFIERO S, et al. RBM20 regulates circular RNA production from the titin gene[J]. Circ Res, 2016, 119(9): 996–1003. DOI: 10.1161/CIRCRESAHA.116.309568
[34] STAGSTED L V W, O'LEARY E T, EBBESEN K K, et al. The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals[J]. Elife, 2021, 10: e63088. DOI: 10.7554/eLife.63088
[35] BOLHA L, RAVNIK-GLAVAČ M, GLAVAČ D. Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers[J]. Int J Genomics, 2017, 2017: 6218353.
[36] LIANG D M, TATOMER D C, LUO Z, et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting[J]. Mol Cell, 2017, 68(5): 940–954. DOI: 10.1016/j.molcel.2017.10.034
[37] SCHMIDT C A, NOTO J J, FILONOV G S, et al. Chapter nine-a method for expressing and imaging abundant, stable, circular RNAs in vivo using tRNA splicing[J]. Methods Enzymol, 2016, 572: 215–236.
[38] SCHWARZ T S, BERKEMER S J, BERNHART S H, et al. Splicing endonuclease is an important player in rRNA and tRNA maturation in archaea[J]. Front Microbiol, 2020, 11: 594838. DOI: 10.3389/fmicb.2020.594838
[39] SCHMIDT C A, GIUSTO J D, BAO A, et al. Molecular determinants of metazoan tricRNA biogenesis[J]. Nucleic Acids Res, 2019, 47(12): 6452–6465. DOI: 10.1093/nar/gkz311
[40] MICHLEWSKI G, CÁCERES J F. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1–16. DOI: 10.1261/rna.068692.118
[41] DE SOUSA M C, GJORGJIEVA M, DOLICKA D, et al. Deciphering miRNAs'Action through miRNA editing[J]. Int J Mol Sci, 2019, 20(24): 6249. DOI: 10.3390/ijms20246249
[42] HANSEN T B, WIKLUND E D, BRAMSEN J B, et al. MiRNA-dependent gene silencing involving ago2-mediated cleavage of a circular antisense RNA[J]. EMBO J, 2011, 30(21): 4414–4422. DOI: 10.1038/emboj.2011.359
[43] DU W W, YANG W N, LIU E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016, 44(6): 2846–2858. DOI: 10.1093/nar/gkw027
[44] YANG Y, FAN X J, MAO M W, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626–641. DOI: 10.1038/cr.2017.31
[45] TIMOTEO G D, DATTILO D, CENTRÓN-BROCO A, et al. Modulation of circRNA metabolism by m6A modification[J]. Cell Rep, 2020, 31(6): 107641. DOI: 10.1016/j.celrep.2020.107641
[46] ZHANG M L, HUANG N N, YANG X S, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J]. Oncogene, 2018, 37(13): 1805–1814. DOI: 10.1038/s41388-017-0019-9
[47] PAMUDURTI N R, BARTOK O, JENS M, et al. Translation of circRNAs[J]. Mol Cell, 2017, 66(1): 9–21. DOI: 10.1016/j.molcel.2017.02.021
[48] LEGNINI I, DI TIMOTEO G, ROSSI F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22–37. DOI: 10.1016/j.molcel.2017.02.017
[49] CONN V M, HUGOUVIEUX V, NAYAK A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Nat Plants, 2017, 3: 17053. DOI: 10.1038/nplants.2017.53
[50] CHEN N F, ZHAO G, YAN X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1[J]. Genome Biol, 2018, 19(1): 218. DOI: 10.1186/s13059-018-1594-y
[51] ZHANG C Z, WANG X, CHEN Y, et al. The down-regulation of hsa_circ_0012919, the sponge for miR-125a-3p, contributes to DNA methylation of CD11a and CD70 in CD4+T cells of systemic lupus erythematous[J]. Clin Sci, 2018, 132(21): 2285–2298. DOI: 10.1042/CS20180403
[52] QU S B, LIU Z C, YANG X S, et al. The emerging functions and roles of circular RNAs in cancer[J]. Cancer Lett, 2018, 414: 301–309. DOI: 10.1016/j.canlet.2017.11.022
[53] YANG Y B, GAO X Y, ZHANG M L, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis[J]. J Natl Cancer Inst, 2018, 110(3): 304–315. DOI: 10.1093/jnci/djx166
[54] CHEN B, YU J, GUO L J, et al. Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p[J]. Cells, 2019, 8(2): 177. DOI: 10.3390/cells8020177
[55] OUYANG H J, CHEN X L, WANG Z J, et al. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens[J]. DNA Res, 2018, 25(1): 71–86. DOI: 10.1093/dnares/dsx039
[56] CHEN X L, OUYANG H J, WANG Z J, et al. A novel circular RNA generated by FGFR2 gene promotes myoblast proliferation and differentiation by sponging miR-133a-5p and miR-29b-1-5p[J]. Cells, 2018, 7(11): 199. DOI: 10.3390/cells7110199
[57] SHEN X X, LIU Z H, CAO X N, et al. Circular RNA profiling identified an abundant circular RNA circTMTC1 that inhibits chicken skeletal muscle satellite cell differentiation by sponging miR-128-3p[J]. Int J Biol Sci, 2019, 15(10): 2265–2281. DOI: 10.7150/ijbs.36412
[58] SHEN M M, WU P, LI T T, et al. Transcriptome analysis of circRNA and mRNA in theca cells during follicular development in chickens[J]. Genes, 2020, 11(5): 489. DOI: 10.3390/genes11050489
[59] SHEN M M, LI T T, ZHANG G X, et al. Dynamic expression and functional analysis of circRNA in granulosa cells during follicular development in chicken[J]. BMC Genomics, 2019, 20(1): 96. DOI: 10.1186/s12864-019-5462-2
[60] WU Y, XIAO H W, PI J S, et al. The circular RNA aplacirc_13267 upregulates duck granulosa cell apoptosis by the Apla-miR-1-13/THBS1 signaling pathway[J]. J Cell Physiol, 2020, 235(7-8): 5750–5763. DOI: 10.1002/jcp.29509
[61] ZHANG X H, YAN Y M, LEI X Y, et al. Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens[J]. Oncotarget, 2017, 8(21): 34961–34970. DOI: 10.18632/oncotarget.16442
[62] WANG L L, YOU Z, WANG M Y, et al. Genome-wide analysis of circular RNAs involved in Marek's disease tumourigenesis in chickens[J]. RNA Biol, 2020, 17(4): 517–527. DOI: 10.1080/15476286.2020.1713538
[63] QIU L, CHANG G, BI Y, et al. Circular RNA and mRNA profiling reveal competing endogenous RNA networks during avian leukosis virus, subgroup J-induced tumorigenesis in chickens[J]. PLoS One, 2018, 13(10): e0204931.
[64] DAVID B, MEJDELL C, MICHEL V, et al. Air quality in alternative housing systems may have an impact on laying hen welfare.Part Ⅱ-ammonia[J]. Animals, 2015, 5(3): 886–896. DOI: 10.3390/ani5030389
[65] AN Y, XING H J, ZHANG Y, et al. The evaluation of potential immunotoxicity induced by environmental pollutant ammonia in broilers[J]. Poult Sci, 2019, 98(8): 3165–3175.
[66] CHEN D C, MIAO Z Y, PENG M Q, et al. The co-expression of circRNA and mRNA in the thymuses of chickens exposed to ammonia[J]. Ecotoxicol Environ Saf, 2019, 176: 146–152.
[67] 王莎莎. 整合组学分析鉴定鸭脂肪形成与沉积性状候选功能基因[D]. 扬州: 扬州大学, 2018: 43-53.
WANG S S. Integrated analysis to identify candidate functional genes for fat formation and deposition in ducks[D]. Yangzhou: Yangzhou University, 2018: 43-53. (in Chinese)
[68] LASDA E, PARKER R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance[J]. PLoS One, 2016, 11(2): e0148407.