畜牧兽医学报  2021, Vol. 52 Issue (6): 1760-1764. DOI: 10.11843/j.issn.0366-6964.2021.06.031    PDF    
携带猪流行性腹泻病毒S1抗原表位的乙肝核心抗原病毒样颗粒的构建与鉴定
刘如月1, 范京惠1, 刘涛2, 苑军辉3, 李清艳1, 翟向和1, 左玉柱1     
1. 河北农业大学动物医学院/科教兴农中心, 保定 071001;
2. 瑞普(保定)生物药业有限公司, 保定 071001;
3. 行唐县动物卫生监督所, 行唐 050600
摘要:旨在构建以乙肝核心抗原(HBcAg)为载体呈现猪流行性腹泻病毒(PEDV)S1抗原表位的病毒样颗粒。将PEDV S1蛋白中含B细胞表位的270 bp片段插入到HBcAg主要免疫显性区域(MIR),构建重组质粒pET-32a(+)-HBcAg-PEDV S1,转化到感受态细胞BL21(DE3)中,经IPTG诱导表达,SDS-PAGE鉴定纯化后的重组蛋白,通过透射电镜观察其形态结构。结果显示,成功构建重组质粒pET-32a(+)-HBcAg-PEDV S1,并在BL21(DE3)中以包涵体形式表达,纯化、复性后的重组蛋白经过2%磷钨酸负染后透射电子显微镜检测到病毒样颗粒结构。HBcAg-PEDV S1重组蛋白能够自发形成病毒样颗粒,在原核表达中,乙肝核心抗原可作为载体呈现PEDV S1抗原表位,为今后新型PED疫苗的研究提供了思路。
关键词猪流行性腹泻病毒    S1抗原表位    乙肝核心抗原    病毒样颗粒    原核表达    
Construction and Identification of Hepatitis B Core Antigen Virus-like Particles Carrying PEDV S1 Epitope
LIU Ruyue1, FAN Jinghui1, LIU Tao2, YUAN Junhui3, LI Qingyan1, ZHAI Xianghe1, ZUO Yuzhu1     
1. College of Veterinary Medicine/Agriculture Science and Education Center, Hebei Agricultural University, Baoding 071001, China;
2. Ringpu(Baoding) Biological Pharmaceutical Co. Ltd., Baoding 071001, China;
3. Xingtang Animal Health Supervision Institution, Xingtang 050600, China
Abstract: A study was undertaken to construct a virus-like particle that uses hepatitis B core antigen (HBcAg) as a carrier to present PEDV S1 epitope. In this work, the 270 bp gene containing the B cell epitope in the PEDV S1 protein was inserted into the main immunodominant region (MIR) of the HBcAg to construct the recombinant plasmid pET-32a(+)-HBcAg-PEDV S1 and transform it into competent cell BL21 (DE3), the expression was induced by IPTG, and the expressed protein was purified with Ni column. The purified recombinant protein was identified by SDS-PAGE, and its morphology was detected by transmission electron microscope. The recombinant plasmid pET-32a(+)-HBcAg-PEDV S1 was successfully constructed and expressed as inclusion bodies in BL21(DE3). The purified and renatured recombinant protein, virus-like particle structure was detected by transmission electron microscope after 2% phosphotungstic acid negative staining. HBcAg-PEDV S1 recombinant protein can spontaneously form a virus-like particle structure. In prokaryotic expression, HBcAg can be used as a carrier to present PEDV S1 epitope, which provides ideas for future research on new PED vaccines.
Key words: porcine epidemic diarrhea virus    S1 epitope    hepatitis B core antigen    virus-like particles    prokaryotic expression    

猪流行性腹泻病毒(porcine epidemic diarrhea virus, PEDV)主要引起新生仔猪水样腹泻,致死率高达80%~100%[1]。自1973年,猪流行性腹泻在我国多有发生[2],2010年,在我国大规模暴发,给我国生猪产业带来了严重的损失[3]。目前,市面上商品化的灭活疫苗和弱毒活疫苗不够安全[4]。所以,研制一种安全且有效的新型PED疫苗就显得尤为重要。

PEDV主要编码E、S、M和N蛋白这4种结构蛋白[5]。将PEDV的S蛋白分为S1、S2两个区域,S1集中了多个中和表位,其中,包含两个短的保守的B细胞中和表位,分别为744YSNIGVCK752756SQYGQVKI771,它们主要决定病毒的抗原性[6-8]。所以,PED亚单位疫苗多基于S1蛋白来构建。

乙肝核心抗原(hepatitis B core antigen, HBcAg)能够在酵母表达系统、大肠杆菌表达系统及杆状病毒-昆虫表达系统等多种表达系统中表达[9]。本研究选择的大肠杆菌表达系统和其他系统相比具有表达周期短、经济、易于操作和表达蛋白量高等优点[10]。当外源基因表位插入到HBcAg的主要免疫优势区(MIR)时,可在原核系统中进行表达,重组蛋白自发装配成病毒样颗粒(virus like particle, VLP),且可增强外源基因表位的免疫原性[11-12]。VLP是具备病毒的一些抗原性,但不具备感染性的能够自我组装的类病毒粒子。

因此,本研究以HBcAg作为呈现PEDV S1抗原表位的载体,构建了重组质粒,表达获得重组蛋白HBcAg-PEDV S1,通过透射电镜检测发现其可以形成VLP,这为今后研制PED的新型疫苗提供研究方法及理论依据。

1 材料与方法 1.1 材料和试剂

限制性内切酶为宝生物工程(大连)有限公司产品;PEDV HB/HS株(JQ862708.1) 及大肠杆菌DH5α和BL21(DE3)感受态菌细胞由河北农业大学动物医学院动物传染病实验室保存;pcDNA3.1(+)-HBcAg(编码1—144 aa)质粒由河北农业大学王家鑫教授惠赠。

1.2 方法

1.2.1 引物设计   根据GenBank中乙肝核心抗原基因序列(KC774394)及PEDV的S基因(JQ862708.1,与CV777相似性为96.9%),分别设计引物P1、P2及P5并添加相应酶切位点及终止密码子;设计引物P3-R重叠S1的18个碱基,设计引物P4-F重叠HBcAg的17个碱基(表 1)。

表 1 构建重组质粒的引物 Table 1 Primers for constructing recombinant plasmid

1.2.2 重组质粒的构建   用引物P3、P4通过融合PCR扩增HBcAg(编码1—74 aa)-S1片段;用引物P5进行PCR扩增HBcAg(编码83—144 aa)片段;回收目的片段进行连接转化并且测序正确后,提取质粒。对上述两个质粒用HindⅢ和XhoⅠ进行双酶切并连接。取连接完成的重组质粒pET-32a(+)-HBcAg-PEDV S1,用EcoR Ⅰ和XhoⅠ进行双酶切鉴定, 再送生工生物工程(上海)股份有限公司测序。

1.3 目的蛋白的表达及纯化

将测序正确的重组质粒pET-32a(+)-HBcAg- PEDV S1转化至大肠杆菌BL21(DE3)中,表达并纯化重组蛋白,SDS-PAGE检测。

1.4 重组蛋白的复性

用尿素浓度梯度法透析法复性重组蛋白,检测复性后的蛋白浓度,SDS-PAGE检测。

1.5 透射电镜检测HBcAg-PEDV S1病毒样颗粒结构

将复性蛋白浓度调整至200 μL·mL-1,取蛋白样品滴于铜网上,滴加2%的磷钨酸负染液,自然干燥后,将样品置于透射电子显微镜下观察样品形态。

2 结果 2.1 重组质粒pET-32a(+)-HBcAg-PEDV S1的鉴定

EcoR Ⅰ和Xho Ⅰ对pET-32a(+)-HBcAg- PEDV S1重组质粒进行双酶切鉴定,经琼脂糖凝胶电泳检测酶切产物,可见702 bp的目的条带,对重组质粒的测序结果与目的序列进行比对,结果显示, 与预期完全相符,表明成功构建重组质粒。

2.2 重组蛋白HBcAg-PEDV S1的纯化和复性

SDS-PAGE结果(图 1)显示,重组蛋白HBcAg-PEDV S1通过纯化和复性后, 可见43.1 ku目的蛋白;复性蛋白浓度约为1.5 mg·mL-1

M.蛋白相对分子质量标准;1.pET-32a(+)空载体对照;2.纯化蛋白;3.复性蛋白 M. Protein marker; 1. pET-32a(+) null vector; 2. Purified protein; 3. Renatured protein 图 1 重组蛋白HBcAg-PEDV S1纯化和复性的SDS-PAGE检测 Fig. 1 Purification and renaturation of recombinant HBcAg-PEDV S1 by SDS-PAGE
2.3 VLPs的透射电镜鉴定

透射电镜结果显示,可看到大小均匀的粒子形成,并且直径在30 nm左右,与预期相符(图 2)。

图 2 HBcAg-PEDV S1 VLP的透射电镜观察 Fig. 2 Transmission electron microsecope of HBcAg-PEDV S1 VLPs
3 讨论

目前, 国内控制PEDV的主要手段是为猪群接种传统灭活疫苗和弱毒活疫苗。而传统灭活疫苗多选用经典毒株,这造成疫苗对各地的猪群免疫保护能力参差不齐;而弱毒活疫苗虽然免疫效果远优于传统灭活疫苗,但其研发成本较高、周期较长,并且基于目前的研究和临床观察发现,有弱毒活疫苗与流行毒株基因重组的现象发生[13-14],这就要求对其进行进一步研究,研发有效且安全的PED新型疫苗。

以HBcAg为载体可用于新型疫苗的研发,在美国等国家允许应用于疫苗中[15]。近期在研发PED的亚单位疫苗中,以基因重组HBcAg与PEDV S蛋白上的B细胞表位构建了VLP,并且可在小鼠体内诱导产生特异性抗体,证明成功构建PED的基因工程疫苗[16-17]。与其相比,本研究优势在于利用融合PCR将其B细胞表位插入到HBcAg中,而不是直接由生物公司合成,降低成本的同时,可以达到相同的免疫效果。

VLP能够自发装配成类病毒粒子,具备病毒的一些抗原性,但不具备感染性[18]。1986年,乙肝表面抗原(HBsAg)作为第一种基于病毒样颗粒的商业疫苗被批准上市[19]。大肠杆菌表达系统是第一个用于生产VLPs的系统,已经生产了几种商业VLPs疫苗,例如,抗戊型肝炎病毒VLPs疫苗[20]

PEDV S1区包含多个主要B细胞表位和受体结合域,与病毒抗原性和吸附入侵密切相关。其主要的两个B细胞表位为744YSNIGVCK752756SQYGQVKI771[21]。据此,本研究通过设计融合PCR[22]将PEDV S1的B细胞表位插入到HBcAg中,成功构建了pET-32a(+)-HBcAg-PEDV S1重组质粒。将其诱导表达、纯化并复性,通过透射电镜检测到形成VLPs,表明利用大肠杆菌表达系统成功表达了PEDV S1 VLPs。本研究为后续PED疫苗的研制提供了进一步的参考。

4 结论

作者将PEDV S1中含B细胞表位的270 bp片段插入到HBcAg的MIR区域,利用大肠杆菌表达系统表达其重组蛋白,经过透射电镜检测到成功形成HBcAg-PEDV S1 VLPs,为今后PED疫苗的研究提供了进一步的理论依据。

参考文献
[1] STEVENSON G W, HOANG H, SCHWARTZ K J, et al. Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences[J]. J Vet Diagn Invest, 2013, 25(5): 649–654. DOI: 10.1177/1040638713501675
[2] LIN C M, SAIF L J, MARTHALER D, et al. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains[J]. Virus Res, 2016, 226: 20–39. DOI: 10.1016/j.virusres.2016.05.023
[3] WANG D, FANG L R, XIAO S B. Porcine epidemic diarrhea in China[J]. Virus Res, 2016, 226: 7–13. DOI: 10.1016/j.virusres.2016.05.026
[4] SEKHON S S, NGUYEN P L, AHN J Y, et al. Porcine epidemic diarrhea (PED) infection, diagnosis and vaccination: A mini review[J]. Toxicol Environ Health Sci, 2016, 8(5): 277–289. DOI: 10.1007/s13530-016-0287-8
[5] SONG D, PARK B. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines[J]. Virus Genes, 2012, 44(2): 167–175. DOI: 10.1007/s11262-012-0713-1
[6] LEE D K, PARK C K, KIM S H, et al. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea[J]. Virus Res, 2010, 149(2): 175–182. DOI: 10.1016/j.virusres.2010.01.015
[7] WICHT O, LI W, WILLEMS L, et al. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture[J]. J Virol, 2014, 88(14): 7952–7961. DOI: 10.1128/JVI.00297-14
[8] SUN D B, FENG L, SHI H Y, et al. Spike protein region (aa 636789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies[J]. Acta Virol, 2007, 51(3): 149–156.
[9] SCHÖDEL F, PETERSON D, MILICH D. Hepatitis B virus core and e antigen: immune recognition and use as a vaccine carrier moiety[J]. Intervirology, 1996, 39(1-2): 104–110. DOI: 10.1159/000150481
[10] LEE P S, LEE K H. Escherichia coli-a model system that benefits from and contributes to the evolution of proteomics[J]. Biotechnol Bioeng, 2003, 84(7): 801–814. DOI: 10.1002/bit.10848
[11] LIN L C, LEE T H, CHANG C H, et al. Predictors of clinical deterioration during hospitalization following acute ischemic stroke[J]. Eur Neurol, 2012, 67(3): 186–192. DOI: 10.1159/000334723
[12] SCHÖDEL F, PETERSON D, HUGHES J, et al. Hybrid hepatitis B virus core antigen as a vaccine carrier moiety: I. presentation of foreign epitopes[J]. J Biotechnol, 1996, 44(1-3): 91–96. DOI: 10.1016/0168-1656(95)00118-2
[13] LI W, LI H, LIU Y, et al. New variants of porcine epidemic diarrhea virus, China, 2011[J]. Emerg Infect Dis, 2012, 18(8): 1350–1353. DOI: 10.3201/eid1803.120002
[14] LI R F, QIAO S L, YANG Y Y, et al. Genome sequencing and analysis of a novel recombinant porcine epidemic diarrhea virus strain from Henan, China[J]. Virus Genes, 2016, 52(1): 91–98. DOI: 10.1007/s11262-015-1254-1
[15] SCHÖDEL F, KELLY S M, PETERSON D, et al. Development of recombinant Salmonellae expressing hybrid hepatitis B virus core particles as candidate oral vaccines[J]. Dev Biol Stand, 1994, 82: 151–158.
[16] GILLAM F, ZHANG J, ZHANG C. Hepatitis B core antigen based novel vaccine against porcine epidemic diarrhea virus[J]. J Virol Methods, 2018, 253: 61–69. DOI: 10.1016/j.jviromet.2017.11.003
[17] GILLAM F, ZHANG C. Epitope selection and their placement for increased virus neutralization in a novel vaccination strategy for porcine epidemic diarrhea virus utilizing the Hepatitis B virus core antigen[J]. Vaccine, 2018, 36(30): 4507–4516. DOI: 10.1016/j.vaccine.2018.06.015
[18] ROLDÃO A, MELLADO M C M, CASTILHO L R, et al. Virus-like particles in vaccine development[J]. Expert Rev Vaccines, 2010, 9(10): 1149–1176. DOI: 10.1586/erv.10.115
[19] MICHEL M L, TIOLLAIS P. Hepatitis B vaccines: protective efficacy and therapeutic potential[J]. Pathol Biol (Paris), 2010, 58(4): 288–295. DOI: 10.1016/j.patbio.2010.01.006
[20] DENNER J. Hepatitis E virus (HEV)-The future[J]. Viruses, 2019, 11(3): 251. DOI: 10.3390/v11030251
[21] WANG K, LU W, CHEN J, et al. PEDV ORF3 encodes an ion channel protein and regulates virus production[J]. FEBS Lett, 2012, 586(4): 384–391. DOI: 10.1016/j.febslet.2012.01.005
[22] LIAO L B, YANG L, XU Y X, et al. Fusion-PCR generates attL recombination site adaptors and allows rapid one-step gateway (ROG) cloning[J]. Biochimie, 2020, 174: 69–73. DOI: 10.1016/j.biochi.2020.04.002