畜牧兽医学报  2021, Vol. 52 Issue (6): 1670-1676. DOI: 10.11843/j.issn.0366-6964.2021.06.021    PDF    
小熊猫源犬瘟热病毒株HF基因的克隆及序列分析
蒋梅1, 陈武2, 翟俊琼2, 卜婉迪1, 谢逸伦1, 刘灿彬1, 单芬2, 罗满林1     
1. 华南农业大学兽医学院, 广州 510642;
2. 广州动物园 广州市野生动物研究中心, 广州 510070
摘要:为了解1株圈养小熊猫源犬瘟热病毒(CDV)GD-1的遗传变异情况,通过RT-PCR方法对该株CDV进行HF基因的克隆、测序及序列分析。结果显示:该分离株的H基因序列与GenBank中丹麦报道的登录号为GU266280的犬源CDV毒株的核苷酸序列相似性最高,为96%;F基因序列与巴西报道的登录号为KY057355的犬源CDV的核苷酸序列相似性最高,为95.7%。下载CDV代表毒株序列进行遗传演化、氨基酸序列比对及分子特征分析。结果显示:H蛋白共有8个潜在的N-糖基化位点,分别位于19、149、309、391、422、456、587、603位点;H蛋白的SLAM受体结合位点氨基酸序列与欧亚野生型毒株一致,与疫苗株相比,530、549位氨基酸不同,与其他CDV参考毒株H蛋白相比还存在24、41等9处氨基酸位点发生明显变异,与标准强毒株A75/17的氨基酸相似性为95.2%,与Onderstepoort、Convac等5株疫苗株的氨基酸序列相似性为88.2%~89.3%;F蛋白共有6个N-糖基化位点,分别位于62、108、141、173、179、517位,与Onderstepoort等疫苗株氨基酸相似性为89.1%~89.7%;与其他参考毒株相比还存在115、130等11处氨基酸发生变异;构建基于HF基因的遗传进化树,结果显示:该毒株位于Asia-4型的一个小的进化分支,这与目前我国流行毒株主要位于Asia-1型存在明显不同。本研究首次报道了小熊猫源的Asia-4基因型CDV野毒株,并对毒株的HF基因进行了序列分析,对于了解我国CDV流行株的遗传变异情况、流行病学调查、疾病防控及疫苗研发等具有重要意义。
关键词小熊猫    犬瘟热    H基因    F基因    序列分析    
Cloning and Sequence Analysis of H and F Genes of Canine Distemper Virus Strain from Red Panda
JIANG Mei1, CHEN Wu2, ZHAI Junqiong2, BU Wandi1, XIE Yilun1, LIU Canbin1, SHAN Fen2, LUO Manlin1     
1. College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
2. Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou 510070, China
Abstract: To understand the genetic variation of a strain (GD-1) of canine distemper virus (CDV) from captive red panda, the H and F genes of the CDV were cloned by RT-PCR, then were sequenced and analyzed. The results showed that the H gene sequence of this isolate had the highest nucleotide similarity (96%) with the CDV strain (accession number: GU266280) reported from Denmark in GenBank, and the F gene sequence had the highest nucleotide similarity with the CDV strain (accession number: KY057355) reported from Brazil. The sequences of CDV representative strains were downloaded for genetic evolution, amino acid sequence alignment and molecular characterization analysis. The results showed that there were 8 potential N-glycation sites in H protein, which were located at sites 19, 149, 309, 391, 422, 456, 587 and 603, respectively. The amino acid sequence of the SLAM receptor binding site of H protein was the same as that of Eurasian wild type virulent strain. Compared with the vaccine strains, the amino acid sequences at positions 530, 549 were different. Compared with other CDV reference strains, there were significant variations in H protein at 24 and 41 sites. The amino acid homology between H protein and standard virulent strain A75/17 was 95.2%. The amino acid sequence similarity with five vaccine strains such as Onderstepoort and Convac was 88.2%-89.3%. There were six N-glycosylation sites in F protein, which were located at 62, 108, 141, 173, 179 and 517 sites, respectively. The amino acid similarity between F protein and other vaccine strains ranged from 89.1% to 89.7%. Compared with other reference strains, there were eleven amino acid mutations in 115, 130 and so on. The genetic evolution tree based on H and F genes was constructed. The results showed that the strain was located in a small evolutionary branch of Asia-4 type, which was different from the current epidemic strains mainly located in Asia-1 type in China. In this study, the Asia-4 genotype CDV wild strain from red panda was reported for the first time, and the H and F genes of the strain were sequenced, which is of great significance for the study of genetic variation, epidemiological investigation, disease prevention and control and vaccine development of CDV epidemic strains in China.
Key words: red panda    canine distermper    H gene    F gene    sequence analysis    

犬瘟热(cannine distermper, CD)由犬瘟热病毒(canine distermper virus, CDV)感染引起的高度接触性、致病性传染病,呈世界范围内广泛分布[1]。临床症状主要有发热、咳嗽、腹泻、呼吸困难、呕吐甚至死亡[2-3]。CDV是一种有包膜、不分节段、无重叠的单链负股RNA病毒,属于副黏病毒科(Paramyxoviride),麻疹病毒属(Morbillivirus)[4]。病毒基因组全长为15 690 bp,从3′到5′分别编码核衣壳(N)、磷蛋白(P)(包含两个非结构蛋白基因,C和V)、基质蛋白(M)、融合蛋白(F)、血凝素蛋白(H)、大蛋白(L)8个蛋白[5]。H和F糖蛋白是病毒粒子诱导中和保护性抗体的最外层蛋白质,比其他CDV蛋白更易变异,并决定病毒感染的宿主特异性[6]。两种糖蛋白都是诱导针对CDV的保护性免疫反应的抗原决定簇,HF基因的遗传变异被认为是宿主感染CDV数量增加的重要原因,因此对CDV毒株HF基因进行深入研究更为重要[7-8]

小熊猫(Ailurus fulgens),国家二级保护动物,目前多被圈养于动物园或野生动物救护站[9]。犬瘟热病毒已经成为我国圈养小熊猫大量死亡、种群数量急剧下降的主要病原,常与犬冠状病毒、犬细小病毒发生混合感染,危害严重[10-11]。1968年,米克维茨[12]首次报道犬瘟热病毒导致小熊猫的大规模疾病和死亡,随后,中国多地相继报道圈养小熊猫感染犬瘟热病毒的病例,包括因接种犬瘟热弱毒疫苗导致死亡的案例等[13]。本研究中的毒株来自江苏某地封闭管养圈养的小熊猫,此前从未发生过犬瘟热感染,所以,探究病毒的遗传演化背景,了解病毒基因的变异情况对疾病防控具有指导意义。

1 材料与方法 1.1 材料

1.1.1 病料、菌株   病料采集自江苏某地感染犬瘟热病毒病死小熊猫的肺组织;大肠杆菌DH5α感受态购自天根生化(北京)科技有限公司。

1.1.2 主要试剂   病毒基因组DNA/RNA提取试剂盒,购自AXYGEN生物技术有限公司产品;胶回收试剂盒,购自OMEGA公司产品;DNA Marker、pMD18-T载体,PrimerScriptTM One step RT-PCR Kit,均购自宝生物(大连)有限公司;氨苄青霉素(Amp+)、LB培养基(酵母提取物2 g、胰蛋白胨1 g和氯化钠2 g,定容至200 mL)均购自广州华奇盛生物科技有限公司。

1.2 方法

1.2.1 病料处理   病料组织置于4倍体积的PBS中进行充分研磨,分装后4 ℃ 5 000 r·min-1离心10 min,弃沉淀,收取的上清液用0.22 μm滤器过滤除菌,保存于-80 ℃备用。

1.2.2 基因克隆及测序   比较分析GenBank上发表的犬瘟热病毒N基因序列,设计合成用于鉴定感染CDV的特异性鉴定引物,比较分析GenBank上发表的HF基因全长序列,设计扩增HF基因的引物,引物由北京睿博兴科生物技术有限公司合成,引物详细情况见表 1。扩增的PCR产物经琼脂糖凝胶回收试剂盒回收后,与pMD18-T载体连接,连接产物转化至大肠杆菌DH5α感受态细胞,初步鉴定正确的重组质粒送生工生物工程(上海)股份有限公司测序。

表 1 扩增CDV的引物设计 Table 1 Primer design for amplification of CDV

1.2.3 序列分析   采用Lasergene Version 7.1软件中SeqMan、Meglign的对序列进行拼接、序列比对、抗原表位及分子特征分析。测得的序列登陆NCBI进行BLAST分析。同时下载不同基因型的犬瘟热病毒代表序列进行基因、氨基酸序列相似性分析。采用MEGA7.1软件绘制HF基因的系统进化树。进化树的绘制方法:应用Neighbor-joining法(参数设置为1 000 replications)及Maximum composite likelihood model比对核苷酸序列。采用NetNGlyc1.0软件进行糖基化位点分析。

2 结果 2.1 鉴定引物RT-PCR扩增及HF全长基因扩增

采用针对CDV N基因的特异性鉴定引物经RT-PCR扩增、1%琼脂糖凝胶电泳之后,得到大小约为637 bp的目的基因片段,结果与预期片段大小一致(图略),将PCR产物送生工生物工程(上海)股份有限公司进行序列测定,比对分析证实为CDV N基因序列。采用针对HF基因全长的特异性引物,对HF的全长基因进行扩增,产物经1%琼脂糖凝胶检测,获得与预期大小一致的H基因全长片段(1 824 bp)和F基因全长片段(1 989 bp),结果如图 1所示。

A. GD-1 H基因扩增;B. GD-1 F基因扩增;M. DL5000 DNA相对分子质量标准;1. 阴性对照;2. 扩增片段;3. 阳性对照 A. GD-1 H gene amplification; B. GD-1 F gene amplification; M. DL5000 DNA marker; 1. Negative control; 2. Amplified fragment; 3. Positive control 图 1 CDV毒株HF基因扩增结果 Fig. 1 The result of GD-1 H and F genes amplification
2.2 HF基因的序列及遗传演化分析

H基因序列测定结果表明:H基因全长为1 824 bp,编码607个氨基酸。登录GenBank进行Blast分析,H基因序列与丹麦报道的登录号为GU266280犬源犬瘟热病毒株的核苷酸序列相似性最高,为96%。与其他参考毒株的核苷酸相似性为88.5%~95.4%,相应的氨基酸序列相似性为83.1%~95.2%,与标准强毒株A75/17(登录号: AF164967,犬源CDV)氨基酸相似性为95.2%;与Convac、Onderstepoort、Recombinant Snyder Hill、CDV3四种经典疫苗株同源性较低,核苷酸相似性为90.3%~90.8%,对应的氨基酸序列相似性为88.2%~89.3%。

F基因测序结果表明,F基因全长为1 989 bp,编码663个氨基酸,其中1—135位是信号肽,136—224位为F2,225—662位为F1,切割位点的氨基酸序列为A↓QIHW。登录GenBank进行Blast分析,与巴西报道的登录号KY057355犬源犬瘟热病毒的核苷酸相似性最高,为95.7%;与其他CDV毒株相应的基因序列核苷酸相似性为92.2%~95.6%,其推定的氨基酸相似性为91.1%~99.0%,与疫苗株Onderstepoort、Recombinant Snyder Hill、CDV3、Shusiky等相应序列的核苷酸、氨基酸序列相似性较低,分别为91.0%~91.2%和89.1%~89.7%。

应用MEGA 7.0软件将GD-1株H、F基因与Asia-1、Asia-2、Asia-3、Asia-4、America-1、America-2、Europe、Europe-wildlife、Rockborn-like和Arctic-like等10个基因型的参考毒株进行遗传演化分析。结果发现:GD-1株分离株与Asia-4型的各参考毒株亲缘关系较近,位于同一大的进化分支,但是单独形成一个小的亚基因型分支,而与疫苗株America-1亲缘关系远,这与国内报道的流行毒株位于Asia-1型存在差异(图 2)。

“●”代表本研究CDV毒株;“▲”代表疫苗株 "●"represents identified canine distemper virus strian; "▲"represents vaccine strains 图 2 GD-1 HF基因系统发育树 Fig. 2 Phylogenetic trees of GD-1 H, F gene
2.3 HF基因的分子特征分析

对H、F蛋白基因进行N-糖基化位点分析,结果显示:H蛋白基因具有8个N-糖基化位点,分别在19、149、309、391、422、456、587、603位点。其中,309—311糖基化位点是野毒株所特有的;其他位点没有发现新增的糖基化位点,这和大量文献中报道的野毒株含有8个或9个糖基化位点相一致;F蛋白共有6个N-糖基化位点,分别位于62、108、141、173、179、517位。

HF基因编码氨基酸序列进行蛋白抗原表位预测,H蛋白的抗原表位在1—38、368—391、419—433、568—607位氨基酸,与CDV3、Convac、recombinant Snyder Hill和Onderstepoort疫苗株存在差异,与疫苗株Convac株、Onderstepoort株在393—408位氨基酸的抗原表位也有不同,与经典野毒株A75/17比对,在419—450、568—607位氨基酸处有较大差异。对F基因编码的F0蛋白进行抗原表位预测比对分析,在1—133、176—194、629—663位氨基酸的抗原表位与疫苗株(CDV3株、Shusiky株、recombinant Snyder Hill株和Onderstepoort株)和经典野毒株A75/17相应区域差异明显。

CDV H蛋白作为重要的膜蛋白,主要通过与宿主体内SLAM受体结合而复制。研究表明H蛋白个别氨基酸位点改变会影响与SLAM受体的结合能力。文献报道这些位点集中在525、526、529、530、549等,分析发现本分离株的这几个位点氨基酸与欧亚野生毒株的完全一致,与疫苗株相比530、549位氨基酸差异明显。

此外CDV H及F蛋白单个氨基酸的变异,可能引起毒力发生改变。分析发现该毒株的H蛋白氨基酸序列与其他CDV参考毒株相比,在24、41、85、219等共计9个氨基酸位点发生明显变异(表 2)。与其他参考毒株相比,F蛋白共计有115、130、162等11处氨基酸发生了新的变异(表 2)。

表 2 分离株H、F蛋白氨基酸变异位点分析 Table 2 Analysis of amino acid mutation sites in H, F proteins of isolates
3 讨论

CDV作为引起小熊猫大批量死亡、数量骤减的重要病原之一,其导致的CD暴发具有发病急、传播快、发病率高、死亡率高等特点[14-15]。近年来,各地不断有圈养野生动物感染CDV的报道,如1991—1992年北美动物园的虎、豹等,1994年坦桑尼亚塞伦盖蒂国家公园的狮子,1997年中国重庆动物园的大熊猫、2004年俄罗斯博克罗夫卡的西伯利亚虎,中国广西人工饲养场恒河猴等[16-21]。CDV的宿主范围也越来越广,由传统宿主犬科、浣熊科、鼬科动物扩大至食肉目所有8个科的动物,给疾病的预防增加了难度[22-24]。本研究中的小熊猫,此前未接种过相关疫苗,且长期封闭圈养,排除疫苗免疫造成的感染,更大可能性来自于野毒感染,病例发生之前有针对小熊猫分型研究的团队在该地进行过采样,据了解,研究人员此前的采样地是成都某小熊猫圈养地,而此地此前就发生过小熊猫感染CDV的病例,究竟两地之间的病例是否存在关联还在进一步研究中。

本分离株的H蛋白具有8个潜在糖基化位点(19、149、309、391、422、456、587、603),包含野毒株所特有的309—311糖基化位点,未发现新增的糖基化位点,这与大量文献中报道的野毒株含有8或9个糖基化位点相一致,与当前流行的Asia-4型的CDV一致。根据H、F抗原表位分析,GD-1株的抗原表位与疫苗株的相应序列存在较大差异,蛋白抗原决定簇发生改变,暗示更多免疫逃避株的存在。与各参考毒株相比,该株H、F蛋白还存在不同数量的氨基酸位点变异,这些关键位点氨基酸的变异,是否影响了病毒本身传播能力或毒力还有待进一步研究。

基于犬瘟热病毒的地域流行情况,目前已报道过约17个基因型[25-29],分别称为亚洲1~4型、美国1型(多为疫苗株)、美国2~5型、欧洲1型(南美洲1型)、欧洲野生动物型、南美洲2型、南美洲3型、北极型、类洛克伯恩型、非洲1型、非洲2型等。构建基于FH基因进化树,GD-1株在基因型判定为Asia-4,但是与Asia-4的毒株基因序列仍存在差异,隶属小的进化分支。与当前我国流行的Asia-1型各野毒株亲缘关系较远,之前本研究团队报道过广东某地分离小熊猫源CDV,均属于Asia-1型[30-31]。据Piewbang等[26]近年的报道,Asia-4基因型主要在泰国地区呈流行趋势,宿主源主要是犬、果子狸以及新报道的麝香猫等。本研究结果提示在高强度的疫苗免疫之下,国内犬瘟热病毒免疫逃避株越来越多,病毒本身发生更多漂移或漂变,而关于本研究中毒株的传播能力、致病机制等有待进一步研究。

4 结论

本研究在国内首次报道了位于Asia-4的小熊猫源CDV,并对病毒的H、F蛋白进行系统分析,在目前缺乏野生动物专用犬瘟热疫苗使用的情况下,了解新流行毒株的分子特点及变异情况、对于圈养野生动物犬瘟热的科学防控具有指导意义。

参考文献
[1] CHENG Y N, WANG J K, ZHANG M, et al. Isolation and sequence analysis of a canine distemper virus from a raccoon dog in Jilin Province, China[J]. Virus Genes, 2015, 51(2): 298–301. DOI: 10.1007/s11262-015-1236-3
[2] BEINEKE A, BAUMGÄRTNER W, WOHLSEIN P. Cross-species transmission of canine distemper virus-an update[J]. One Health, 2015, 1: 49–59. DOI: 10.1016/j.onehlt.2015.09.002
[3] LI W K, CAI C, XUE M Z, et al. Phylogenetic analysis of canine distemper viruses isolated from vaccinated dogs in Wuhan[J]. J Vet Med Sci, 2018, 80(11): 1688–1690. DOI: 10.1292/jvms.18-0116
[4] MAGANGA G D, LABOUBA I, NGOUBANGOYE B, et al. Molecular characterization of complete genome of a canine distemper virus associated with fatal infection in dogs in Gabon, Central Africa[J]. Virus Res, 2018, 247: 21–25. DOI: 10.1016/j.virusres.2018.01.012
[5] PARDO I D R, JOHNSON G C, KLEIBOEKER S B. Phylogenetic characterization of canine distemper viruses detected in naturally infected dogs in North America[J]. J Clin Microbiol, 2005, 43(10): 5009–5017. DOI: 10.1128/JCM.43.10.5009-5017.2005
[6] BAE C W, LEE J B, PARK S Y, et al. Deduced sequences of the membrane fusion and attachment proteins of canine distemper viruses isolated from dogs and wild animals in Korea[J]. Virus Genes, 2013, 47(1): 56–65. DOI: 10.1007/s11262-013-0916-0
[7] FREITAS L A, LEME R A, SAPORITI V, et al. Molecular analysis of the full-length F gene of Brazilian strains of canine distemper virus shows lineage co-circulation and variability between field and vaccine strains[J]. Virus Res, 2019, 264: 8–15. DOI: 10.1016/j.virusres.2019.02.009
[8] ROMANUTTI C, KELLER L, LA TORRE J, et al. Virus isolation and full-length genome sequencing of a representative canine distemper virus wild type strain of the South America 2 clade[J]. J Virol Methods, 2020, 279: 113857. DOI: 10.1016/j.jviromet.2020.113857
[9] IWATSUKI K, TOKIYOSHI S, HIRAYAMA N, et al. Antigenic differences in the H proteins of canine distemper viruses[J]. Vet Microbiol, 2000, 71(3-4): 281–286. DOI: 10.1016/S0378-1135(99)00172-8
[10] QIN Q, WEI F W, LI M, et al. Serosurvey of infectious disease agents of carnivores in captive red pandas (Ailurus fulgens) in China[J]. J Zoo Wildl Med, 2007, 38(1): 42–50. DOI: 10.1638/06-048.1
[11] PANTHI S, WANG T J, SUN Y W, et al. An assessment of human impacts on endangered red pandas (Ailurus fulgens) living in the Himalaya[J]. Ecol Evol, 2019, 9(23): 13413–13425. DOI: 10.1002/ece3.5797
[12] MICKWITZ V. Distemper in procyonidae and pandas[J]. Kleintier-Prax, 1968, 13(3): 80–90.
[13] 左奕, 郑英帅. 小熊猫犬瘟热的流行与防控[J]. 黑龙江畜牧兽医, 2018(24): 216–218.
ZUO Y, ZHENG Y S. The epidemic and control of canine distemper in red panda[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(24): 216–218. (in Chinese)
[14] 刘彩红, 曹玉姣, 丁航天, 等. 水貂犬瘟热病毒分离鉴定及其H基因序列分析[J]. 动物医学进展, 2020, 41(1): 27–33.
LIU C H, CAO Y J, DING H T, et al. Isolation and identification of canine distemper virus in minks and sequence analysis of H gene[J]. Progress in Veterinary Medicine, 2020, 41(1): 27–33. DOI: 10.3969/j.issn.1007-5038.2020.01.005 (in Chinese)
[15] 林希, 刘若寒, 郝香琪, 等. 广东地区犬瘟热病毒血凝素基因的克隆与序列分析[J]. 华南农业大学学报, 2019, 40(6): 22–28.
LIN X, LIU R H, HAO X Q, et al. Cloning and sequence analysis of haemagglutinin gene of canine distemper virus in Guangdong area[J]. Journal of South China Agricultural University, 2019, 40(6): 22–28. (in Chinese)
[16] SUZUKI J, NISHIO Y, KAMEO Y, et al. Canine distemper virus infection among wildlife before and after the epidemic[J]. J Vet Med Sci, 2015, 77(11): 1457–1463. DOI: 10.1292/jvms.15-0237
[17] JIN Y P, ZHANG X K, MA Y S, et al. Canine distemper viral infection threatens the giant panda population in China[J]. Oncotarget, 2017, 8(69): 113910–113919. DOI: 10.18632/oncotarget.23042
[18] ANIS E, NEEDLE D B, STEVENS B, et al. Genetic characteristics of canine distemper viruses circulating in wildlife in the United States[J]. J Zoo Wildl Med, 2020, 50(4): 790–797. DOI: 10.1638/2019-0052
[19] RILEY M C, WⅡKES R P. Sequencing of emerging canine distemper virus strain reveals new distinct genetic lineage in the United States associated with disease in wildlife and domestic canine populations[J]. Virol J, 2015, 12(1): 219. DOI: 10.1186/s12985-015-0445-7
[20] 陈美荣, 林伟东, 宋天琪, 等. 犬瘟热病毒BJ16B2株的分离鉴定及H基因遗传进化分析[J]. 畜牧与兽医, 2018, 50(8): 82–89.
CHEN M R, LIN W D, SONG T Q, et al. Isolation and identification of the canine distemper virus BJ16B2 strain and the genetic variability analysis of its H gene[J]. Animal Husbandry & Veterinary Medicine, 2018, 50(8): 82–89. (in Chinese)
[21] 卜研, 薛向红, 闫喜军, 等. 狐源犬瘟热病毒HBF-1株全基因组序列测定及其分析[J]. 中国兽医学报, 2020, 40(3): 510–516, 540.
BU Y, XUE X H, YAN X J, et al. Full-length genome sequencing and analysis of Vero-dSlam cell-adapted canine distemper virus HBF-1 strain[J]. Chinese Journal of Veterinary Science, 2020, 40(3): 510–516, 540. (in Chinese)
[22] CHEN M, XIN T, HOU S, et al. Genotyping and pathogenic characterization of canine distemper virus based on mutations in the hemagglutinin gene in Chinese domestic dogs[J]. Pol J Vet Sci, 2018, 21(3): 623–629.
[23] TAO R S, BA H X, CHEN J, et al. Phylodynamic analysis of two amino acid substitutions in the hemagglutinin protein of canine distemper virus strains detected in fur-bearing animals in China[J]. Virus Genes, 2020, 56(1): 58–66. DOI: 10.1007/s11262-019-01720-9
[24] MONTALI R J, BARTZ C R, TEARE J A, et al. Clinical trials with canine distemper vaccines in exotic carnivores[J]. J Am Vet Med Assoc, 1983, 183(11): 1163–1167.
[25] CALDERON M G, REMORINI P, PERIOLO O, et al. Detection by RT-PCR and genetic characterization of canine distemper virus from vaccinated and non-vaccinated dogs in Argentina[J]. Vet Microbiol, 2007, 125(3-4): 341–349. DOI: 10.1016/j.vetmic.2007.05.020
[26] PIEWBANG C, RADTANAKATIKANON A, PUENPA J, et al. Genetic and evolutionary analysis of a new Asia-4 lineage and naturally recombinant canine distemper virus strains from Thailand[J]. Sci Rep, 2019, 9(1): 3198. DOI: 10.1038/s41598-019-39413-w
[27] DUQUE-VALENCIA J, FORERO-MUÑOZ N R, DÍAZ F J, et al. Phylogenetic evidence of the intercontinental circulation of a Canine distemper virus lineage in the Americas[J]. Sci Rep, 2019, 9(1): 15747. DOI: 10.1038/s41598-019-52345-9
[28] SWATI, DEKA D, UPPAL S K, et al. Isolation and phylogenetic characterization of Canine distemper virus from India[J]. VirusDisease, 2015, 26(3): 133–140. DOI: 10.1007/s13337-015-0256-x
[29] YUAN C W, LIU W X, WANG Y B, et al. Homologous recombination is a force in the evolution of canine distemper virus[J]. PLoS One, 2017, 12(4): e0175416. DOI: 10.1371/journal.pone.0175416
[30] 熊焰, 徐志文, 王印, 等. 小熊猫犬瘟热病及病原研究[J]. 四川动物, 2000, 19(5): 13–15.
XIONG Y, XU Z W, WANG Y, et al. The study on the distemper and pathogen of canine distemper in red panda[J]. Sichuan Journal of Zoology, 2000, 19(5): 13–15. (in Chinese)
[31] ZHANG H, SHAN F, ZHOU X, et al. Outbreak and genotyping of canine distemper virus in captive Siberian tigers and red panda[J]. Sci Rep, 2017, 7(1): 8132. DOI: 10.1038/s41598-017-08462-4