畜牧兽医学报  2021, Vol. 52 Issue (6): 1652-1661. DOI: 10.11843/j.issn.0366-6964.2021.06.019    PDF    
猪源组织蛋白酶S抑制O型口蹄疫病毒在PK-15细胞复制
史喜绢1,2, 刘原子2, 张大俊2, 侯景2, 申超超2, 杨博2, 张婷2, 袁兴国1, 任瑞瑞2, 杜晓华1, 张克山2, 郑海学2, 刘湘涛2     
1. 甘肃农业大学动物医学院, 兰州 730070;
2. 中国农业科学院兰州兽医研究所 家畜疫病病原生物学 国家重点实验室 农业部畜禽病毒学重点开放实验室 国家口蹄疫参考实验室, 兰州 730046
摘要:前期研究数据表明组织蛋白酶S(cathepsin S,CTSS)在猪初乳中表达水平显著高于常乳,且CTSS有抑制病毒复制的作用,本研究旨在探究猪源CTSS对O型口蹄疫病毒(foot-and-mouth disease virus serotype O,FMDV-O)复制及对FMDV诱导的抗病毒细胞因子的影响。FMDV-O感染PK-15细胞,利用RT-qPCR和Western blot分别在转录和翻译水平探究FMDV-O感染对内源性CTSS表达的影响;使用CTSS活性检测试剂盒测定FMDV-O感染对CTSS酶活性的影响;根据GenBank公布的CTSS基因序列(XM_021089893.1)构建CTSS真核表达质粒,利用脂质体方法转染PK-15细胞,通过Western blot检测CTSS表达情况,并在此基础上通过Western blot和RT-qPCR检测过表达CTSS对FMDV-O复制及FMDV-O诱导的抗病毒细胞因子mRNA水平的影响;进一步针对CTSS设计合成3对特异性siRNA,利用Western blot和RT-qPCR检测CTSS和FMDV-O的变化。结果表明,FMDV-O感染PK-15细胞能显著上调猪源CTSS表达并增强CTSS酶活性;过表达CTSS能抑制FMDV-O在PK-15细胞中复制,这种抑制作用可能是通过促进FMDV-O诱导的抗病毒细胞因子产生而发挥功能的;干扰序列siRNA-2947下调内源性CTSS表达进而促进FMDV-O的复制。猪源CTSS促进宿主抗病毒细胞因子产生可能是抑制FMDV-O复制的原因之一,本研究为深入探究宿主CTSS在抗FMDV天然免疫应答中的作用及机制提供依据。
关键词组织蛋白酶S    FMDV-O    PK-15细胞    抗病毒功能    
Porcine Cathepsin S Inhibits the Replication of Foot-and-Mouth Disease Virus Serotype O in PK-15 Cells
SHI Xijuan1,2, LIU Yuanzi2, ZHANG Dajun2, HOU Jing2, SHEN Chaochao2, YANG Bo2, ZHANG Ting2, YUAN Xingguo1, REN Ruirui2, DU Xiaohua1, ZHANG Keshan2, ZHENG Haixue2, LIU Xiangtao2     
1. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
2. State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Animal Virology of Ministry of Agriculture/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou 730046, China
Abstract: The previous research data showed that the expression level of cathepsin S (CTSS) in sow colostrum was significantly higher than that of mature milk and CTSS has the effect of inhibiting virus replication. This study aims to explore the effect of pig-derived CTSS on the replication of foot-and-mouth disease virus serotype O (FMDV-O) and the production of antiviral cytokines induced by FMDV-O.PK-15 cells were infected with FMDV-O. The effect of FMDV-O infection on the expression of endogenous CTSS was investigated by RT-qPCR and Western blot at the transcriptional and translational level, respectively, and the effect of FMDV-O infection on the enzyme activity of CTSS in vitro was determined by CTSS activity detection kit. According to the CTSS gene sequence (XM_021089893.1) published by GenBank, the eukaryotic expression plasmid of CTSS was constructed and transfected into PK-15 cells by liposome. The expression of CTSS was detected by Western blot. On this basis, the effect of overexpressed CTSS on FMDV-O replication and the level of antiviral cytokine mRNA induced by FMDV-O was detected by Western blot and RT-qPCR, and three pairs of siRNA specific to CTSS were designed and synthesized. Western blot and RT-qPCR were used to detect the changes of CTSS and FMDV-O. The results showed that PK-15 cells infected with FMDV-O could significantly up-regulate the expression of porcine CTSS and enhance the activity of CTSS enzyme; overexpression of CTSS could inhibit the replication of FMDV-O in PK-15 cells, which may be through promoting the production of antiviral cytokines induced by FMDV-O; the interference sequence siRNA-2947 down-regulated the expression of endogenous CTSS and promoted the replication of FMDV-O. Porcine CTSS promoting the production of host antiviral cytokines may be one of the reasons for inhibiting FMDV-O replication. This study provides a basis for further exploring the role and mechanism of host CTSS in anti-FMDV innate immune response.
Key words: cathepsin S    FMDV-O    PK-15 cell    antiviral function    

口蹄疫(foot-and-mouth disease,FMD)是由口蹄疫病毒(foot-and-mouth disease virus,FMDV)感染偶蹄动物引起的一种烈性传染病[1-3]。FMDV是微RNA病毒科(Picornaviridae)口蹄疫病毒属(Aphthovirus)的成员,已知有O、A、C、Asia1和SAT1、SAT2、SAT3 7种血清型,成熟的FMDV粒子无囊膜,具有二十面体对称性[4-6]。FMDV全基因组约为8 400 bp,含有一个大的开放阅读框(ORF),ORF编码的多聚蛋白被病毒自身编码的蛋白酶(L、2A、3C)切割成4个结构蛋白和8个非结构蛋白[7-9]。FMDV可利用自身编码的蛋白进化形成抑制或逃避宿主先天性免疫反应,从而促进其自身在宿主体内的存活和复制[10]。FMDV前导蛋白酶(LPro)通过降低IFN-α/β和干扰素刺激因子的早期分泌水平,从而阻止宿主蛋白的合成[11]。FMDV 3A蛋白能抑制病毒触发的IFN-β信号通路,从而逃避宿主免疫反应[12]。同样,宿主也可以识别病原体并激发炎症反应来抑制病毒复制[13]。已经发现有一些宿主蛋白在FMDV复制过程中起重要作用,如DCTN3与FMDV 3A结合负调控FMDV复制[14]

CTSS是半胱氨酸蛋白酶家族中具有内切肽酶活性的重要成员,由N端16 aa信号肽(SP)、前肽和成熟肽331个氨基酸组成的非活化酶原,其活化需要蛋白酶裂解其N端前肽或由各种因素诱导[15]。CTSS酶活性是其发挥功能的关键,如棕榈酸酯抑制组织蛋白酶诱导内皮细胞侵袭从而抗血管生成,部分是通过抑制CTSL和CTSS活性而起作用的[16]。CTSS的N端有3个凹槽(S1、S2和S3)与底物的特异性结合相关,这一特性也决定了半胱氨酸蛋白酶抑制剂的特异性;该基因C端有一个与底物结合的位点,即S1’,在酶与主要组织相容性复合体二类分子(MHC-Ⅱ)保守区的特异性结合中起关键作用[17]。CTSS主要在树突状细胞、B细胞和巨噬细胞等抗原呈递细胞中表达[18],其参与细胞外基质、抗血管生成肽和黏附蛋白的降解,促进新生血管形成和肿瘤细胞侵袭转移[19]。CTSS通过调节p38 MAPK和JNK1途径参与甲基原薯蓣皂苷(methyl protodioscin, MP)诱导的细胞凋亡和自噬[20];通过激活NF-κB和caspase-3从而诱导肝癌细胞凋亡并增加其化学敏感性[21];也可通过激活CD74调控趋化因子CCL2的表达,进而对肿瘤微环境产生影响[22]。目前对CTSS的研究主要集中在自身免疫性疾病[23]、心血管疾病[24]及肿瘤相关疾病[25],目前尚无有关病原体方面的报道。

初乳在抵抗病原感染中具有重要作用[26]。本团队前期应用iTRAQ技术研究发现母猪初乳中CTSS的含量显著高于常乳,但目前对宿主CTSS在病原感染中的作用研究较少,宿主CTSS在FMDV感染中的作用及其调控机制至今尚不明确。为阐明宿主CTSS在FMDV-O感染过程中发挥的作用,本研究探究了FMDV-O感染和宿主CTSS的相互调控作用,发现宿主CTSS能够抑制FMDV-O在PK-15细胞中复制,而FMDV-O感染增加了宿主CTSS酶活性,进一步研究发现CTSS促进FMDV-O诱导的抗病毒细胞因子产生,明确了猪源CTSS抑制FMDV-O复制的初步原因。本研究结果为更深层次探究猪源CTSS在FMDV-O触发的免疫应答中的作用机制奠定了基础。

1 材料与方法 1.1 材料

口蹄疫病毒毒株FMDV O/MYA98/BY/2010、PK-15细胞和FMDV-O抗体由兰州兽医研究所口蹄疫与新发病流行病学团队保存;兔多克隆抗体CTSS购于Abcam公司;鼠抗Flag单抗、鼠抗Myc单抗、鼠抗β-actin单抗、HRP标记山羊抗鼠IgG二抗和HRP标记山羊抗兔IgG二抗均购于Thermo Scientific公司。

大肠杆菌DH5α感受态、LA Taq DNA聚合酶、限制性核酸内切酶BamHⅠ和XhoⅠ、T4 DNA连接酶、RNA抽提试剂Trizol、5×Prime script RT Master Mix、SYBR Permix Ex Taq Ⅱ和蛋白预染Marker均购于宝生物工程大连有限公司;LipofectamineTM 2000转染试剂购于Invitrogen公司;Opti-MEM、0.25% EDTA胰酶和胎牛血清(FBS)均购于Gibco公司;MEM细胞培养液和PBS溶液购于建顺公司;ECL显色剂购于Thermo Scientific公司;NP-40裂解液和PMSF购于碧云天公司;织蛋白酶S试剂盒(货号ab65306)购于艾博抗(上海)贸易有限公司;CTSS干扰序列由上海吉玛制药有限公司合成。

1.2 方法

1.2.1 CTSS真核表达质粒的构建   根据GenBank公布的CTSS基因序列(XM_021089893.1)设计合成CTSS引物,引入酶切位点BamHⅠ和XhoⅠ,以pcDNA3.1为载体,构建pcDNA3.1-CTSS-Myc真核表达质粒,进行PCR扩增、酶切和序列测定。

1.2.2 CTSS基因RNAi序列设计与合成   根据GenBank公布的CTSS基因序列(XM_021089893.1)设计并合成CTSS RNAi序列。分别设计了3对针对CTSS基因的RNAi序列。

1.2.3 细胞瞬时转染和病毒感染   将细胞消化后接种于细胞板中, 待细胞长至70%~90%时,将质粒与Lip2000试剂(DNA∶Lip2000=1 μg∶2 μL)分别加至Opti-MEM中,混合后静置15 min,将Opti-MEM混合物直接加至细胞中,将细胞放于培养箱中培养数小时。用无血清的MEM清洗细胞,用无血清的MEM将FMDV-O稀释至MOI为1.0时感染PK-15细胞,置于37 ℃、5%CO2培养箱孵育1 h之后,弃去病毒液,用含2% FBS的MEM维持液继续培养。在感染后12 h收取2份细胞样品,一份用于RT-qPCR,分别检测CTSS和FMDV-O转录水平的变化,并以猪源GAPDH作为内参;一份用于Western blot,分别检测CTSS和FMDV-O蛋白水平的变化,并以β-actin作为内参。

1.2.4 RT-qPCR   收集细胞样品,采用Triozl法提取细胞总RNA,利用合成好的引物进行绝对定量和相对定量检测[1]。相关定量扩增引物信息见表 2

表 1 干扰序列信息 Table 1 Information of primer sequence
表 2 引物序列信息 Table 2 Information of primer sequence

1.2.5 CTSS酶活性测定   利用组织蛋白酶S活性检测试剂盒(货号ab65306;Abcam)提供的裂解液裂解细胞,离心取50 μL上清于96孔板,加等量反应缓冲液和10 mmol·L-1 Ac-VVR-AFC(CTSS底物), 根据试剂盒说明书进行处理。使用SpectraMax M5荧光计在400 nm激发波长和505 nm发射波长下测量荧光。

1.2.6 Western blot   收样并处理细胞样品,加入适量的NP-40裂解液(PMSF 1 mol·L-1);充分裂解后,12 000 r·min-1离心10 min,取上清加入含β-巯基乙醇的5×SDS Loading Buffer,100 ℃变性10~15 min, 按20 μL的上样量进行SDS-PAGE凝胶电泳[1],最后用高分辨图像采集系统进行ECL显影并保存结果。

1.2.7 数据分析   所有试验至少重复3次,应用GraphPad Prism 7软件进行分析并作图,运用独立样品T检验进行统计学分析,*.P < 0.05表示数据具有统计学意义,* *.P <0.01表示数据具有显著性差异,* * *.P < 0.001表示数据间具有极显著性差异。

2 结果 2.1 FMDV-O感染PK-15细胞促进内源性CTSS表达

将PK-15细胞铺于35 mm小皿中,待细胞长至80%~90%,用MOI为1的FMDV-O感染PK-15细胞,在0、4、8、12 h后收取细胞样品,利用RT-qPCR和Western blot方法检测内源性CTSS的变化。结果表明FMDV-O感染PK-15细胞后内源性的CTSS蛋白水平(图 1A)和转录水平(图 1B)均高于对照组,提示FMDV-O感染可促进宿主细胞内源性CTSS的表达。

A. Western blot检测CTSS蛋白水平的变化;B. RT-qPCR检测CTSS转录水平的变化;*.P < 0.05 A. The protein level of CTSS was detected by Western blot; B. The mRNA level of CTSS was detected by RT-qPCR 图 1 FMDV-O感染上调内源性CTSS Fig. 1 FMDV-O infection increase endogenous CTSS
2.2 CTSS重组质粒构建及表达验证

构建pcDNA3.1-CTSS-Myc重组质粒,进行PCR扩增,用BamH Ⅰ和Xho Ⅰ双酶切鉴定,10 g·L-1琼脂糖凝胶电泳检测可在1 000 bp处见目的条带,在5 000 bp见载体条带(图 2A)。经测序后进一步确定该真核质粒构建成功。将构建的pcDNA3.1-CTSS-Myc以不同的剂量分别瞬时转染PK-15细胞,24 h后收取细胞样品,处理样品并进行Western blot验证其表达情况,结果表明pcDNA3.1-CTSS-Myc重组质粒在PK-15细胞中呈剂量依赖性表达(图 2B)。

A. 双酶切鉴定结果(M. DL5000 DNA相对分子质量标准;1. BamHⅠ和XhoⅠ酶切产物);B. Western blot验证CTSS蛋白在PK-15细胞表达 A.Double digestion identification results (M. DL5000 DNA marker; 1. BamHⅠ and XhoⅠ digested products); B. Verification of the expression of CTSS protein in PK-15 cells by Western blot 图 2 pcDNA3.1-CTSS-Myc重组质粒的酶切鉴定及表达验证 Fig. 2 Identification of CTSS recombinant plasmid pcDNA3.1-CTSS-Myc
2.3 FMDV-O感染能上调CTSS酶活性

转染0.25 μg CTSS重组质粒至PK-15细胞,20 h后用FMDV-O(MOI=1)感染细胞,同时设不用病毒刺激的Mock组,收取0、2、4、6、8、10、12、14 h细胞样品,裂解细胞用Fluorometric Method检测CTSS酶活性。结果表明,FMDV-O感染能上调CTSS酶活性,且随着FMDV-O感染时间的增加,CTSS的活性也随之增加(图 3)。

图 3 FMDV-O感染上调CTSS酶活性 Fig. 3 FMDV-O infection up-regulates the activity of CTSS
2.4 过表达CTSS能抑制FMDV-O复制

转染1、2、4 μg pcDNA3.1-CTSS-Myc至PK-15细胞,转染24 h后用MOI为1的FMDV-O感染细胞,12 h后收取细胞样品,检测其对FMDV-O复制的调控作用,发现随着CTSS表达量增加(图 4AC),FMDV-O复制水平呈现剂量依赖性降低(图 4BC)。结果表明,过表达CTSS抑制FMDV-O在PK-15细胞中复制。

A. RT-qPCR检测CTSS转录水平的变化;B. RT-qPCR检测FMDV-O拷贝数的变化;C. Western blot检测CTSS和FMDV-O蛋白水平的变化; *.P < 0.05; **.P < 0.01; ***.P < 0.001 A. The mRNA level of CTSS was detected by qPCR; B. Copy number of FMDV was detected by RT-qPCR; C. The Protein level of CTSS and FMDV was detected by Western blot; *.P < 0.05; **.P < 0.01; ***.P < 0.001 图 4 过表达CTSS抑制FMDV-O的复制 Fig. 4 Overexpression of CTSS inhibited FMDV-O replication
2.5 CTSS siRNA干扰序列的筛选及其对FMDV-O复制的促进作用

为进一步确定宿主CTSS对FMDV-O复制的影响,针对CTSS设计合成3对特异性siRNA(表 1),将siRNA-2947、siRNA-3629、siRNA-3458分别转染至PK-15细胞, 在24和36 h分别收取样品,用RT-qPCR方法选择干扰效果最好的序列,结果显示编号siRNA-2947的干扰效果最好(图 5A)。在此试验结果基础上,PK-15细胞转染siRNA-2947,以NC siRNA为对照,36 h后用等量FMDV-O(MOI=1)感染细胞,12 h后收取细胞样品,用RT-qPCR和Western blot检测siRNA-2947对FMDV复制的影响,结果表明siRNA-2947能下调宿主CTSS的表达进而促进FMDV-O在PK-15细胞中复制(图 5BC)。

A. RT-qPCR检测CTSS转录水平的变化;B. RT-qPCR检测FMDV-O拷贝数的变化;C. Western blot检测CTSS和FMDV-O蛋白水平的变化; *.P < 0.05; **.P < 0.01; ***.P < 0.001 A. The mRNA level of CTSS was detected by qPCR; B. Copy number of FMDV was detected by RT-qPCR; C. The Protein level of CTSS and FMDV was detected by Western blot; *.P < 0.05; **.P < 0.01; ***.P < 0.001 图 5 干扰CTSS促进FMDV-O复制 Fig. 5 Interfering CTSS promoted FMDV-O replication
2.6 过表达CTSS促进FMDV-O诱导的宿主抗病毒细胞因子产生

为明确猪源CTSS抑制FMDV-O复制的原因,检测宿主CTSS是否影响由FMDV-O感染诱导的抗病毒细胞因子产生。在PK-15细胞中分别转染CTSS和pcDNA3.1,24 h后感染FMDV-O(MOI=1),并设无FMDV-O感染对照组,12 h后收集细胞处理样品。RT-qPCR结果显示,CTSS可促进FMDV诱导的IFN-α、IFN-β、IFN-γ、IL-6、IL-10、IL-4的mRNA水平, 说明宿主CTSS能激活FMDV-O诱导的宿主抗病毒细胞因子产生。

*.P < 0.05; **.P < 0.01; ***.P < 0.001 图 6 过表达CTSS促进FMDV-O诱导的抗病毒细胞因子的产生 Fig. 6 Overexpression of CTSS promotes the production of antiviral cytokines induced by FMDV-O
3 讨论

CTSS是一种溶酶体蛋白酶,主要在抗原呈递细胞中表达,其活性调节对于MHC-Ⅱ信号传导及CD4+T细胞介导的免疫反应激活非常重要[27]。有研究报道CTSS活性可以由肠道菌群调节,共生体触发生理性CTSS活性;病原体引起病理性CTSS活性增加,导致T细胞活化和增殖[28]。而本研究发现FMDV-O感染PK-15细胞可上调内源性CTSS的表达并增强CTSS活性。

FMDV以其自身优势拮抗宿主免疫应答进而达到成功感染宿主的目的,当然其生命周期也受不同宿主因素影响[29-32]。有文献报道热休克蛋白DNAJA3与VP1互作并通过自噬/溶酶体途径降解VP1,从而减弱VP1对IFN-β信号通路的拮抗作用,最终抑制FMDV复制[30]。本研究发现FMDV-O感染PK-15细胞可上调内源性CTSS的表达并增强CTSS活性,过表达CTSS抑制FMDV-O在PK-15细胞中复制,而下调内源性CTSS能促进FMDV-O复制。有报道称CTSS能使CX3CL1与CX3CR1相互作用,将免疫细胞募集到炎症部位增加CX3CL1脱落进入间质,从而改变自身免疫性泪腺炎和泪腺分泌[33];干燥综合征患者泪液中CTSS活性升高可诱导促炎细胞因子产生[34];缺乏CTSS会增加高血压小鼠线粒体的受损并提高ROS水平和NF-κB活性,从而调节心脏炎症和纤维化[35]。笔者随后检测了CTSS对抗病毒细胞因子mRNA水平的影响,RT-qPCR结果显示CTSS可促进FMDV-O诱导的IL-6、IL-10、IL-4、IFN-α、IFN-β、IFN-γ基因的转录。这一结果与文献报道一致,提示CTSS可能参与炎症反应。天然杀伤细胞(NKT)可募集并激活其他先天免疫细胞,从而调节多种免疫反应,以加剧肝的炎症反应,但CTSB和CTSS抑制剂可降低LPS诱导的炎症过程中NKT细胞的活化[36],进一步说明CTSS可能与炎症有关。FMDV在进化过程中获得了许多逃避宿主免疫系统的策略[37], 例如FMDV 3A通过破坏RIG-Ⅰ、MDA5和VISA蛋白的表达而抑制病毒触发的IFN-β信号通路[12];FMDV VP3降解JAK1以抑制IFN-γ信号转导途径[38];LPro可以抑制天然免疫下游抗病毒细胞因子的产生从而促进病毒的复制[39-41],本文虽然检测了抗病毒细胞因子的变化,但机体的免疫系统是一个错综复杂的网络,宿主除了通过调控干扰素信号通路发挥抗病毒功能;还可以通过自噬和凋亡途径影响病毒复制,比如PCBP2和FMDV VP0互作可以通过凋亡途径促进FMDV复制[42]。这说明CTSS促进FMDV-O诱导的抗病毒细胞因子的产生,可能是宿主CTSS抑制FMDV-O复制的原因之一,具体详细机制还需要进一步研究。

本研究首次证实了CTSS在FMDV-O感染过程中发挥抗病毒作用的新功能,为宿主CTSS拮抗FMDV-O感染方面的研究提供了理论依据,也为下一步探究猪源CTSS在FMDV-O触发的免疫应答中的作用积累了素材;此外,本研究结果也提示CTSS可能作为抑制FMDV-O复制的潜在靶点发挥作用。

4 结论

FMDV-O感染与宿主CTSS之间具有相互调控作用,FMDV-O感染PK-15细胞显著上调内源CTSS表达并增强CTSS酶活性;过表达CTSS能抑制FMDV-O在PK-15细胞中复制,利用特异性siRNA干扰CTSS表达可以促进FMDV-O复制,并且CTSS能促进FMDV-O诱导的IFN-α、IFN-β、IFN-γ、IL-6、IL-10和IL-4细胞因子上调表达,明确了CTSS抑制FMDV-O复制的初步原因,具体机制将是下一步研究的方向和重点。

参考文献
[1] ALEXANDERSEN S, MOWAT N. Foot-and-mouth disease: host range and pathogenesis[M]//MAHY B W J. Foot-and-Mouth Disease Virus. Berlin, Heidelberg: Springer, 2005: 9-42.
[2] AL AMIN M, ALI M R, ISLAM M R, et al. Development and serology based efficacy assessment of a trivalent foot-and-mouth disease vaccine[J]. Vaccine, 2020, 38(32): 4970–4978. DOI: 10.1016/j.vaccine.2020.05.079
[3] CROFT S, AEGERTER J N, MASSEI G, et al. The risk of foot-and-mouth disease becoming endemic in a wildlife host is driven by spatial extent rather than density[J]. PLoS One, 2019, 14(6): e0218898. DOI: 10.1371/journal.pone.0218898
[4] YANG F, ZHU Z X, CAO W J, et al. Genetic determinants of altered virulence of type O foot-and-mouth disease virus[J]. J Virol, 2020, 94(7): e01657–19.
[5] ZHAO F R, XIE Y L, LIU Z Z, et al. Lithium chloride inhibits early stages of foot-and-mouth disease virus (FMDV) replication in vitro[J]. J Med Virol, 2017, 89(11): 2041–2046. DOI: 10.1002/jmv.24821
[6] MASON P W, GRUBMAN M J, BAXT B. Molecular basis of pathogenesis of FMDV[J]. Virus Res, 2003, 91(1): 9–32. DOI: 10.1016/S0168-1702(02)00257-5
[7] SUN C, LIU M M, CHANG J T, et al. Heterogeneous nuclear ribonucleoprotein L negatively regulates foot-and-mouth disease virus replication through inhibition of viral RNA synthesis by interacting with the internal ribosome entry site in the 5' untranslated region[J]. J Virol, 2020, 94(10): e00282–20.
[8] BUSCH G K, TATE E W, GAFFNEY P R J, et al. Specific N-terminal protein labelling: use of FMDV 3Cpro protease and native chemical ligation[J]. Chem Commun (Camb), 2008(29): 3369–3371. DOI: 10.1039/b806727a
[9] LIN Y, HUNG C Y, BHATTACHARYA C, et al. An effective way of producing fully assembled antibody in transgenic tobacco plants by linking heavy and light chains via a self-cleaving 2A peptide[J]. Front Plant Sci, 2018, 9: 1379. DOI: 10.3389/fpls.2018.01379
[10] DUAN X, SUN P, LAN Y, et al. 1IFN-α modulates memory Tfh cells and memory B cells in mice, following recombinant FMDV adenoviral challenge[J]. Front Immunol, 2020, 11: 701. DOI: 10.3389/fimmu.2020.00701
[11] WANG D, FANG L R, LUO R, et al. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type Ⅰ interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels[J]. Biochem Biophys Res Commun, 2010, 399(1): 72–78. DOI: 10.1016/j.bbrc.2010.07.044
[12] LI D, LEI C Q, XU Z S, et al. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway[J]. Sci Rep, 2016, 6(1): 21888. DOI: 10.1038/srep21888
[13] NGUYEN T A, PANG K C, MASTERS S L. Intercellular communication for innate immunity[J]. Mol Immunol, 2017, 86: 16–22. DOI: 10.1016/j.molimm.2016.10.002
[14] GLADUE D P, O'DONNELL V, BAKER-BRANSETTER R, et al. Interaction of foot-and-mouth disease virus nonstructural protein 3A with host protein DCTN3 is important for viral virulence in cattle[J]. J Virol, 2014, 88(5): 2737–2747. DOI: 10.1128/JVI.03059-13
[15] BARARIA D, HILDEBRAND J A, STOLZ S, et al. Cathepsin S alterations induce a tumor-promoting immune microenvironment in follicular lymphoma[J]. Cell Rep, 2020, 31(5): 107522. DOI: 10.1016/j.celrep.2020.107522
[16] ZHANG J, SHAN Y, LI Y, et al. Palmitate impairs angiogenesis via suppression of cathepsin activity[J]. Mol Med Rep, 2017, 15(6): 3644–3650. DOI: 10.3892/mmr.2017.6463
[17] NI H E, XU S, CHEN H W, et al. Nicotine modulates CTSS (Cathepsin S) synthesis and secretion through regulating the autophagy-lysosomal machinery in atherosclerosis[J]. Arterioscler, Thromb, Vasc Biol, 2020, 40(9): 2054–2069. DOI: 10.1161/ATVBAHA.120.314053
[18] WIENER J J M, WICKBOLDT JR A T, WIENER D K, et al. Discovery and SAR of novel pyrazole-based thioethers as cathepsin S inhibitors. Part 2:modification of P3, P4, and P5 regions[J]. Bioorg Med Chem Lett, 2010, 20(7): 2375–2378. DOI: 10.1016/j.bmcl.2010.01.104
[19] Cathepsin S protease mediates T-cell response in non-hodgkin lymphoma[J]. Cancer Discovery, 2020, 10(6): 761.
[20] HSIEH M J, LIN C W, CHEN M K, et al. Inhibition of cathepsin S confers sensitivity to methyl protodioscin in oral cancer cells via activation of p38 MAPK/JNK signaling pathways[J]. Scientific Reports, 2017, 7(1): 45039. DOI: 10.1038/srep45039
[21] CHANG Z Y, ZHAO G Z, ZHAO Y, et al. BAF60a deficiency in vascular smooth muscle cells prevents abdominal aortic aneurysm by reducing inflammation and extracellular matrix degradation[J]. Arterioscler, Thromb, Vasc Biol, 2020, 40(10): 2494–2507. DOI: 10.1161/ATVBAHA.120.314955
[22] RIESE R J, WOLF P R, BRÖMME D, et al. Essential role for cathepsin S in MHC class Ⅱ-associated invariant chain processing and peptide loading[J]. Immunity, 1996, 4(4): 357–366. DOI: 10.1016/S1074-7613(00)80249-6
[23] KIM S J, SCHÄTZLE S, AHMED S S, et al. Increased cathepsin S in Prdm1-/- dendritic cells alters the T cell repertoire and contributes to lupus[J]. Nat Immunol, 2017, 18(9): 1016–1024. DOI: 10.1038/ni.3793
[24] FIGUEIREDO J L, AIKAWA M, ZHENG C Y, et al. Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease[J]. Am J Pathol, 2015, 185(4): 1156–1166. DOI: 10.1016/j.ajpath.2014.11.026
[25] KIM S Y, JIN H, SEO H R, et al. Regulating BRCA1 protein stability by cathepsin S-mediated ubiquitin degradation[J]. Cell Death Differ, 2019, 26(5): 812–825. DOI: 10.1038/s41418-018-0153-0
[26] IMUS J K, LEHMKUHL H D, WOODS L W. Resistance of colostrum-deprived domestic lambs to infection with deer adenovirus[J]. J Vet Diagn, 2019, 31(1): 78–82. DOI: 10.1177/1040638718817508
[27] CONUS S, SIMON H U. Cathepsins and their involvement in immune responses[J]. Swiss Med Wkly, 2010, 140: w13042.
[28] STEIMLE A, GRONBACH K, BEIFUSS B, et al. Symbiotic gut commensal bacteria act as host cathepsin S activity regulators[J]. J Autoimmun, 2016, 75: 82–95. DOI: 10.1016/j.jaut.2016.07.009
[29] GLADUE D P, O'DONNELL V, BAKER-BRANSTETTER R, et al. Foot-and-mouth disease virus nonstructural protein 2C interacts with beclin1, modulating virus replication[J]. J Virol, 2012, 86(22): 12080–12090. DOI: 10.1128/JVI.01610-12
[30] ZHANG W, YANG F, ZHU Z X, et al. Cellular DNAJA3, a novel VP1-interacting protein, inhibits foot-and-mouth disease virus replication by inducing lysosomal degradation of VP1 and attenuating its antagonistic role in the beta interferon signaling pathway[J]. J Virol, 2019, 93(13): e00588–19.
[31] FENG H H, ZHU Z X, CAO W J, et al. Foot-and-mouth disease virus induces lysosomal degradation of NME1 to impair p53-regulated interferon-inducible antiviral genes expression[J]. Cell Death Dis, 2018, 9(9): 885. DOI: 10.1038/s41419-018-0940-z
[32] ZHU Z X, WANG G Q, YANG F, et al. Foot-and-mouth disease virus viroporin 2B antagonizes RIG-I-mediated antiviral effects by inhibition of its protein expression[J]. J Virol, 2016, 90(24): 11106–11121. DOI: 10.1128/JVI.01310-16
[33] FU R Z, GUO H, JANGA S, et al. Cathepsin S activation contributes to elevated CX3CL1 (fractalkine) levels in tears of a Sjögren's syndrome murine model[J]. Sci Rep, 2020, 10(1): 1455. DOI: 10.1038/s41598-020-58337-4
[34] KLINNGAM W, FU R Z, JANGA S R, et al. Cathepsin S alters the expression of pro-inflammatory cytokines and MMP-9, partially through protease—Activated receptor-2, in human corneal epithelial cells[J]. Int J Mol Sci, 2018, 19(11): 3530. DOI: 10.3390/ijms19113530
[35] PAN L L, LI Y L, JIA L X, et al. Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang Ⅱ-induced cardiac inflammation[J]. PLoS One, 2012, 7(4): e35315. DOI: 10.1371/journal.pone.0035315
[36] DE MINGO PULIDO Á, DE GREGORIO E, CHANDRA S, et al. Differential role of cathepsins S and B in hepatic APC-mediated NKT cell activation and cytokine secretion[J]. Front Immunol, 2018, 9: 391. DOI: 10.3389/fimmu.2018.00391
[37] ZHANG K S, YAN M H, HAO J H, et al. Foot-and-mouth disease virus structural protein VP1 destroys the stability of TPL2 trimer by degradation TPL2 to evade host antiviral immunity[J]. J Virol, 2021, 95(6): e02149–20.
[38] LI D, WEI J, YANG F, et al. Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways[J]. Cell Cycle, 2016, 15(6): 850–860. DOI: 10.1080/15384101.2016.1151584
[39] DE LOS SANTOS T, DE AVILA BOTTON S, WEIBLEN R, et al. The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response[J]. J Virol, 2006, 80(4): 1906–1914. DOI: 10.1128/JVI.80.4.1906-1914.2006
[40] VISSER L J, ALOISE C, SWATEK K N, et al. Dissecting distinct proteolytic activities of FMDV Lpro implicates cleavage and degradation of RLR signaling proteins, not its deISGylase/DUB activity, in type Ⅰ interferon suppression[J]. PLoS Pathog, 2020, 16(7): e1008702. DOI: 10.1371/journal.ppat.1008702
[41] MEDINA G N, KNUDSEN G M, GRENINGER A L, et al. Interaction between FMDV Lpro and transcription factor ADNP is required for optimal viral replication[J]. Virology, 2017, 505: 12–22. DOI: 10.1016/j.virol.2017.02.010
[42] LI D, ZHANG J, YANG W P, et al. Poly (rC) binding protein 2 interacts with VP0 and increases the replication of the foot-and-mouth disease virus[J]. Cell Death Dis, 2019, 10(7): 516. DOI: 10.1038/s41419-019-1751-6