畜牧兽医学报  2021, Vol. 52 Issue (6): 1498-1510. DOI: 10.11843/j.issn.0366-6964.2021.06.006    PDF    
蜂王浆生物学功能研究进展
刘一冰1, 吴德群2, 蔺哲广1, 吉挺1     
1. 扬州大学动物科学与技术学院, 扬州 225009;
2. 扬州市妇幼保健院检验科, 扬州 225002
摘要:蜂王浆是青年工蜂头部上颚腺和咽下腺共同分泌的化学成分复杂的天然产物,具有多种生物学功能,主要应用于传统医药、保健品和化妆品等领域。现针对蜂王浆抗菌、抗炎、抗肿瘤和抗氧化等重要生物学功能,以及蜂王浆对人体免疫、血压、胆固醇、血糖稳态和神经等的调节作用对近十年的相关研究进行综述,以期深入认识蜂王浆的生物学功能和药理活性,并为全面评价蜂王浆的保健作用及药用价值提供参考。
关键词蜂王浆    王浆主蛋白    脂肪酸    生物学功能    药理活性    
Review on Biological Function of Royal Jelly
LIU Yibing1, WU Dequn2, LIN Zheguang1, JI Ting1     
1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
2. Department of Clinical Laboratory, Yangzhou Maternal and Child Health Hospital, Yangzhou 225002, China
Abstract: Royal jelly is a traditional health-care product with complex chemical composition. It is secreted from the mandibular glands and hypopharyngeal glands of nurse worker bees. Royal jelly has been demonstrated to have a variety of biological functions and has been used in the field of traditional medicine, health care products and cosmetics. In this review, we reported the studies for the essential biological functions of royal jelly such as antibacterial, anti-inflammatory, anti-tumor and antioxidant, as well as its regulatory effects on immunity, blood pressure, cholesterol, blood glucose homeostasis and nerves of human beings. By summarizing the relevant researches over the last decade, we aim to provide insights into the biological functions and pharmacological activities and to provide reference to comprehensively evaluate the health care and medicinal value of royal jelly.
Key words: royal jelly    major royal jelly proteins    fatty acids    biological function    pharmacological activity    

蜂王浆(royal jelly, RJ)是青年工蜂(5~15日龄)头部上颚腺和咽下腺共同分泌的淡黄色浆状物,是饲喂蜂王、3日龄内工蜂和雄蜂幼虫的特殊营养物质[1]。蜂王浆是决定蜜蜂级型分化的关键物质,能够促进蜂王及3日龄内幼虫的生长发育,诱导蜜蜂幼虫发育成蜂王[2-3]。蜂王终生食用蜂王浆,其体型大,长寿(3~5年)且具有孕育后代的能力;而工蜂只在幼虫期前3 d食用蜂王浆,之后逐步开始被饲喂工蜂浆(掺有蜂蜜和花粉的蜂王浆混合物)直到发育成年,该混合物与蜂王浆中蛋白质、脂类等营养物质含量差异显著,且花粉中大量的多不饱和脂肪酸(polyunsaturated fatty acid, PUFA)会增加对工蜂的氧化损伤,这些可能是造成工蜂体型小,寿命短(30~60 d),生殖器官发育不完全的重要原因[2, 4-5]

蜂王浆是蜂群中重要的营养物质,也是公认的对人类健康有益的营养物质。在中国和日本,蜂王浆作为功能性保健品和化妆品在市场上大规模销售,深受广大消费者喜爱,并将其誉为“超级食品”[6-7]。目前,蜂王浆在细胞、动物模型、人类健康以及疾病的治疗和预防中被广泛研究[8],已发现在抗菌、抗炎、抗氧化、抗肿瘤、免疫力调节、降压、降胆固醇以及调节血糖稳态和保护神经系统等方面发挥作用[7, 9-10]

随着分子生物学、蛋白质组学及小分子检测技术的发展,蜂王浆的特殊化学成分、生物学功能等引起了国内外学者的关注。为了更好地了解蜂王浆的理化性质、生物学功能,笔者对近十年相关报道进行综述,以期为进一步研究蜂王浆对人类健康的影响提供思路。

1 蜂王浆的化学组分和理化性质

蜂王浆是一种黏稠的浆状物,具有特殊的芳香气味,口感酸涩(pH 4.0~4.5),略带甜味,部分溶于水,其风味和特殊组分的形成易受蜜源、季节和采收时间的影响[11-12]。蜂王浆的主要成分包括水(60%~ 70%)、蛋白质(9%~18%)、碳水化合物(7%~18%)、脂类(3%~8%)、矿物质(1%~3%)、维生素和少量未知成分[13]

蜂王浆易降解变性,温度、储存时间等因素均会对蜂王浆的质量造成影响。在常温储藏条件下蜂王浆中游离氨基酸的总量随着时间的延长呈下降趋势,且随着储藏温度升高,蔗糖的水解作用增强,葡萄糖和果糖含量迅速升高[14]。因此,适宜的储存条件是保证蜂王浆质量的必要条件,一些研究表明,将蜂王浆储存在-20 ℃或者更低温的环境中,能基本保持其品质不变[15]

蛋白质是蜂王浆中的主要组成成分,目前所发现的许多蜂王浆生物学功能与蜂王浆蛋白有着密切的联系。王浆主蛋白(major royal jelly proteins, MRJPs)约占蜂王浆总蛋白含量的90%,在调控蜂王行为及生理功能等方面起着非常重要的作用[16]。目前已知的MRJPs成员有MRJP1(也被称为royalactin)、MRJP2、MRJP3、MRJP4、MRJP5、MRJP6、MRJP7、MRJP8、MRJP9和MRJP-ψ[16]。MRJP1是蜂王表观遗传驱动因素,可作为诱导雌性蜜蜂发生级型分化的主要王浆蛋白,受关注度最高,其蛋白结构已被成功解析[2, 17]。除MRJPs外,王浆蛋白还包括Royalisin、Jelleine和Aspimin等,相对含量较少,其中Jelleine和Royalisin具有一定的抗菌作用[6]。此外,中华蜜蜂MRJP2可通过直接屏蔽细胞膜保护昆虫和哺乳动物细胞免受氧化损伤,并表现出抗活性氧的DNA保护活性[18]

蜂王浆中含有丰富的脂质,由脂肪酸和少量甾醇组成,占新鲜物质的4%~8%,占冻干制品的15%~30%,在发挥蜂王浆生物学功能方面同样起到了重要作用[19]。目前,蜂王浆乙醚提取物中88%的物质由以下6类脂肪酸组成,即10-羟基-2-癸烯酸(10-HDA)、3,10-二羟基癸酸(3, 10-DDA)、10-羟基癸酸(10-HDAA)、8-羟基辛酸、2-癸烯-1,10-二烯酸、(Z)-9-羟基-2-癸烯酸,其中特征性脂肪酸10-HDA和10-HDAA(后者是前者的前体物质)占蜂王浆有机酸总量的60%~80%[19-20]。10-HDA是蜂王浆中最丰富的脂肪酸类物质,在多种生物学功能中发挥作用[14]。例如:10-HDA能通过抑制组蛋白去乙酰化酶,对意大利蜜蜂的级型分化进行表观遗传控制[21];10-HDA作为一种强大的抗菌剂,能有效保护蜂巢内蜜蜂幼虫免受细菌感染[22]。另外,蜂王浆中10-HDA含量稳定,可作为判定蜂王浆等级的重要标志[23]

2 蜂王浆的生物学功能 2.1 抗菌

蜂王浆对真菌、革兰阳性菌、革兰阴性菌、支原体等具有独特的抗菌活性[24-25]。其中的有效抗菌物质包括10-HDA[26]、Royalisin[27]、Jelleines[24]、Apalbumin2a[28]、MRJP1、MRJP2和MRJP4等[29]。另外,Isidorow等[30]发现,蜂蜜中的抗菌物质可能部分来自于蜂王浆中的C8-C12脂肪酸以及不饱和脂肪酸。

2019年,科学家首次在蜂王浆中成功分离出含有外泌体样囊泡(exosome-like vesicles, ELVs)的蛋白质,通过对其抗菌特性的评价发现,ELVs对金黄色葡萄球菌具有抑菌、杀菌和生物膜抑制作用(抑制50%的生物膜形成),这表明蜂王浆中的ELVs有助于预防或治疗伤口源性感染[31]

2.2 抗炎及创伤修复

在动物试验中,食用蜂王浆可减少醋酸诱导结肠炎大鼠结肠损伤部位中肥大细胞(mast cell, MC)数量和受损面积,有效保护大鼠结肠黏膜免受醋酸的伤害[32]。后续试验中进一步发现,蜂王浆可促进细胞再生,保护大鼠结肠黏膜免受2, 4, 6-三硝基苯磺酸诱导的结肠炎的侵袭[33, 34]

促炎细胞因子(IL-1、IL-8、TNF-α等)、核因子-κB(NF-κB)信号通路的过度产生和激活在肠炎、类风湿性关节炎(rheumatoid arthritis, RA)等慢性炎症中起重要作用[26]。研究表明,蜂王浆中10-HDA、10-HDAA和SEA均呈剂量依赖性抑制主要炎性介质、促炎细胞因子和一氧化氮(NO)的释放。这3种脂肪酸类物质在调节一些关键炎症基因的同时还可调控参与丝裂原活化蛋白激酶(mitogen activated protein kinases, MAPK)和NF-κB信号通路的蛋白,其中10-HDA的调节作用较为突出[35-36]。另外,10-HDA还能促进受体拮抗细胞因子IL-1ra的产生,IL-1ra可抑制肿瘤细胞增长及主要促炎细胞因子IL-1的产生[26]

不仅如此,蜂王浆的抗炎与创伤修复作用间还存在紧密联系[37]。动物试验显示,应用蜂王浆治疗口腔黏膜炎及胃溃疡,可加快创面的愈合速度,有效保护口腔黏膜和胃黏膜[38-39]。蜂王浆可通过抑制生物膜的形成和细菌的黏附(平均减少50%以上)而消除耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)感染并促进创面愈合[40]。此外,蜂王浆中富含再生生长因子、抗菌肽等,在与其他常规治疗相结合治疗足溃疡时更安全、有效[41]。Pedyphar软膏(5%天然蜂王浆和1%泛醇)即是以蜂王浆为主要功能性组分为糖尿病足溃疡创面提供碱性环境,从而促进伤口愈合,并有助于根除感染[41]。因此,蜂王浆及其相关制剂可作为治疗糖尿病足溃疡及其他创伤类疾病的辅助治疗药物。

2.3 抗氧化

蜂王浆是天然的抗氧化剂,蛋白酶N(protease N)水解的蜂王浆蛋白具有较高的抗氧化活性,其中Phe-Asp、Trp-Val、Leu-Trp、Trp-Leu四种二肽抗氧化活性相对较强[42]。在体外试验中发现,酪氨酸二肽Lys-Tyr、Arg-Tyr和Tyr-Tyr具有较强的羟自由基清除活性,这些肽能通过清除抗氧化系统中的活性氧(reactive oxygen species, ROS)来起到抗氧化的作用[43]

酶处理蜂王浆(enzyme-treated royal jelly, ERJ)通过抑制脂多糖(lipopolysaccharide, LPS)诱导的巨噬细胞内ROS和NO的产生,提高超氧化物歧化酶(superoxide dismutase, SOD)活性和谷胱甘肽(glutathione, GSH)水平,达到抗氧化作用,因此,将ERJ作为抗氧化剂添加到人和动物的饮食中将有很大的应用前景[44]。MRJP2可作为抗氧化剂在蜂王浆中发挥重要作用,它通过降低氧化应激和半胱氨酸蛋白酶-3(caspase-3)活性水平来诱导微生物细胞凋亡,进而提高正常细胞存活率,保护哺乳动物和昆虫细胞免受氧化应激的影响[18]

临床研究表明,补充蜂王浆可以通过提高糖尿病患者红细胞中谷胱甘肽过氧化物酶(glutathione-peroxidase, GSH-Px)和SOD的活性,降低丙二醛(malondialdehyde, MDA)水平,从而减少氧化应激对机体造成的伤害[45]。蜂王浆的抗氧化应激作用在修复H2O2诱导的小鼠胚胎成纤维细胞(NIH-3T3)损伤,改善细胞生长停滞和细胞凋亡中起关键作用,能有效延缓氧化应激造成的NIH-3T3衰老[46]

氧化应激可能与帕金森病(parkinson’s disease, PD)的发病机制密切相关[47]。蜂王浆具有良好的抗氧化活性,其中脂肪酸衍生物4-羟基-2-癸烯酸乙酯(HPO-DAEE)预处理人神经母细胞瘤SH-SY5Y细胞能减少ROS的产生;NRF2是抗氧化反应的主要调节因子,HPO-DAEE通过激活NrF2-抗氧化反应元件(antioxidant response element, ARE)和真核细胞起始因子2α-ARE通路来诱导机体对氧化应激产生适应性反应,保护细胞免受氧化应激损伤[47]。因此,应用蜂王浆可能对PD的症状起到缓解作用。顺铂(cisplatin, CP)可诱导大鼠发生肾功能衰竭,蜂王浆联合CP治疗时,氧化应激指标和生化指标均有改善,因此,蜂王浆可部分逆转CP引起的肾组织的病理改变[48]。蜂蜜和蜂王浆联合应用还可使CP诱导的肝氧化应激生物标志物出现改善[49]

综上,蜂王浆抗氧化作用的主要机制包括增强总抗氧化能力和提高SOD、GSH-Px活性,以及降低MDA水平等,并且可对多系统及器官起到很好的保护作用。

2.4 免疫调节

免疫调节机制在维持机体内环境稳态中发挥重要作用,如果免疫调节功能下降,机体就会受到影响,并发生与自身免疫性相关的疾病。研究表明,蜂王浆中10-HDA可提高免疫器官胸腺和脾的免疫功能,说明蜂王浆可能在提高机体免疫力和免疫性疾病的治疗中发挥作用[50]

Dzopalic等[51]阐明了蜂王浆中脂肪酸类物质3, 10-DDA具有促进人单核细胞来源的树突状细胞(monocyte-derived dendritic cells, MoDCs)成熟和刺激辅助性T细胞1(T helper cells, Th1)极化的能力。随后,Mihajlovic等[52-53]报道了蜂王浆脂肪酸中10-HDA和3, 10-DDA均具有显著的免疫调节作用及剂量依赖性。其中,低浓度10-HDA和3, 10-DDA可支持Th1免疫应答,3, 10-DDA还可支持Th17免疫应答,这是刺激免疫系统对抗肿瘤和感染性物质所必需的。而高剂量10-HDA可抑制人外周血单个核细胞(peripheral blood mononuclear cell, PBMC)增殖和MoDCs的功能和成熟,降低IL-1β和TNF-α的产生,抑制Th1型和Th2型免疫应答。基于这些活性,10-HDA可能是一种有效的免疫抑制剂。因此,在蜂王浆发挥免疫调节作用时,10-HDA和3, 10-DDA可能起至关重要的作用。研究表明,蜂王浆中10-HDA可能通过阻断p38和JNK-AP-1信号通路抑制胶原酶1(collagenase 1, MMP-1)和基质溶酶1(stromelysin 1, MMP-3)活性,减轻MMPs对类风湿性关节炎(RA,自身免疫病)患者关节造成的损坏[54]

在蜂王浆对甲状腺机能亢进机体自身免疫功能影响的试验中显示,用蜂王浆治疗甲状腺机能亢进,可改变Th1/Th2细胞因子的比例,增加IFN-γ的产生和诱导健康淋巴细胞的增殖[55]。因此,蜂王浆可作为免疫调节因子用于治疗甲状腺机能亢进。另外,蜂王浆可通过升高儿童系统性红斑狼疮(systemic lupus erythematosus, SLE)患者CD4+淋巴细胞含量和CD4+/CD8+淋巴细胞比例,来提高机体免疫力。经过3个月的蜂王浆治疗,SLE患者的症状得到显著改善[56]

2.5 抗肿瘤

蜂王浆在癌症的预防和辅助治疗等方面具有很大潜力。Miyata和Sakai[57]研究表明,蜂王浆可抑制多种恶性肿瘤细胞的增殖,刺激其凋亡,影响恶性肿瘤患者,尤其是接受抗癌药治疗的患者体内各种趋化因子、抗氧化剂和生长因子的产生以及肿瘤相关分子的表达,可有效降低药物对机体的危害程度。

蜂王浆脂肪酸中10-HDA具有一定的抗肿瘤活性,同时静脉注射肿瘤细胞和蜂王浆时可显著抑制小鼠肺部转移瘤的形成及转移,而在肿瘤发生前或肿瘤发生后单独腹腔或皮下注射蜂王浆时,对乳腺转移瘤的形成无影响[58]。因此,蜂王浆作为一种干预手段对肿瘤生长有明显的抑制作用。另外,在肿瘤细胞模型中,10-HDA还可抑制血管内皮生长因子(vascular endothelial growth factor, VEGF)诱导的血管生成[59-60]。VEGF是一种促血管生成蛋白,肿瘤依赖肿瘤细胞在缺氧时释放VEGF来引发新生血管的形成,进而促进自身的生长[61]。因此,10-HDA可通过抑制血管过度形成而间接抑制肿瘤生长。最新研究显示,MRJP2及其预测亚型X1可通过抑制TNF-α、混合谱系激酶结构域样蛋白(mixed lineage kinase domain-like protein, MLKL)和细胞内反应种类,减轻CCl4诱导的肝细胞坏死,并通过抑制人肝癌细胞(HepG2)生长,诱导半胱氨酸蛋白酶凋亡,起到抗癌作用[62]

蜂王浆可抑制肿瘤细胞的增殖,其中的脂溶性提取物对人神经母细胞瘤(human neuroblastoma, SH-SY5Y)细胞具有一定的抗增殖活性,可以预防和减缓SH-SY5Y细胞的发生和生长[63];蜂王浆体外蛋白消化产物能抑制胃癌细胞SGC-7901的增殖并诱导其发生凋亡[64]。另外,Zhang等[65]研究发现,蜂王浆可以减缓小鼠乳腺肿瘤的发展,提高血清、肝和肾的抗氧化能力,其预防性治疗效果尤为显著。蜂王浆还可作为治疗癌症的辅助药物,阿霉素(doxorubicin, DOX)是治疗前列腺癌等多种恶性肿瘤的药物,经蜂王浆处理可增强小剂量DOX对前列腺癌细胞PC3的细胞毒作用,避免因长期大剂量使用DOX对机体正常细胞造成损伤和产生耐药性[66]

2.6 血压调节

高血压是影响全球疾病负担和全球死亡率的最大单一因素,现在因不良习惯、压力以及嘈杂的社会环境所致的高血压疾病正逐年上升[67]。Matsui等[68]利用反相高效液相色谱技术从蜂王浆水解液中分离得到11个血管紧张素转换酶(angiotensin I-converting enzyme, ACE)抑制肽,其中有一部分来源于蜂王浆蛋白,说明蜂王浆蛋白可能是抑制ACE活性、降低血管收缩压的重要物质。

Fan等[69]将MRJP1基因插入小鼠血管平滑肌细胞(vessel smooth muscle cell, VSMC)中发现,MRJP1可通过减少能量和遗传物质的供应,抑制肌丝运动来降低VSMC的收缩和迁移,起到抑制血压升高的作用。VSMC是动脉壁的重要组成部分,它的异常迁移和收缩是高血压和动脉粥样硬化等多种心血管疾病的重要刺激因子。因此,将MRJP1整合到VSMC中,揭示了蜂王浆与降压活性相关的功能和机制,为利用其治疗高血压提供了新的思路。

2.7 胆固醇调节

大量研究表明,蜂王浆可以通过改善血脂状态降低患心血管疾病的风险[70]。MRJPs具有较高的胆汁结合力,特别是MRJP1和MRJP2可通过抑制胆固醇在空肠中的胶束溶解度来减低胆固醇的吸收,破坏胆汁酸在回肠的重吸收,促使过多的胆固醇从粪便中排除,从而起降低胆固醇的作用[71]。另外,有研究表明,MRJP1和MRJP2通过提高轻度高胆固醇血症患者的脱氢异雄酮硫酸盐(DHEA-S)等性激素的浓度,降低血清总胆固醇(serum total cholesterol, TC)和低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-c)水平[72]。LDL-c超标一般被认为是心血管疾病的前兆,摄入蜂王浆后极低密度脂蛋白(very-low-density lipoprotein, VLDL)降低可能是引起TC和LDL-c降低的主要原因[73]

高脂、高糖饮食和不规律的生活方式会提升胆固醇水平,胆固醇过高将引起一系列心脑血管疾病的发生。在动物试验中发现,蜂王浆能显著降低高胆固醇饲料诱导的去卵巢兔(动脉粥样硬化兔)及动脉粥样硬化雄兔的血脂水平,抑制氧化应激水平和炎症反应,提高机体NO水平;有效保护血管内皮功能[74-75]

2.8 对血糖稳态的影响

蜂王浆摄入可提高2型糖尿病(diabetes mellitus, type 2, T2DM)患者的总抗氧化能力,降低稳态模型胰岛素抵抗指数[76]。此外,蜂王浆可显著改善糖尿病患者的TC、高密度脂蛋白(high-density lipoprotein, HDL)、低密度脂蛋白(low-density lipoprotein, LDL)、VLDL、三酰甘油和载脂蛋白A-1的水平;降低氧化应激指标,提高抗氧化酶水平,有效改善患者的血糖状况、血脂谱和氧化应激[77]

血清载脂蛋白(apolipoprotein, Apo)A-I与ApoB是心血管疾病的最强预测因子,补充蜂王浆可增加T2DM患者ApoA-I水平,改善ApoB/ApoA-I比值,有效降低冠心病并发症带来的风险[78-79]。另外,蜂王浆可能会改善糖尿病或高糖情况下人血管内皮细胞的异常状态,对高糖或糖尿病引起的心血管疾病有一定的预防作用[80]。因此,蜂王浆的抗氧化、抗高血压活性及胆固醇调节功能可能会降低胰岛素抵抗和糖尿病并发症风险。

通过对补充蜂王浆的糖尿病女性患者进行调查发现,补充蜂王浆可能在控制糖尿病预后方面具有积极的作用[45]。蜂王浆可通过增加抗氧化酶和降低血糖水平来修复糖尿病大鼠的脾组织[81],通过提高总抗氧化能力和CAT含量,降低MDA含量来改善链脲霉素(streptozocin, STZ)诱导的大鼠肝、胰腺氧化损伤[82]。另外,蜂王浆还可显著升高糖尿病大鼠尿液中尿素、总蛋白和白蛋白水平,降低尿肌酐和尿酸水平,有效改善大鼠肾组织病理变化[83]

然而,补充蜂王浆对健康人或糖尿病患者血糖及糖代谢的影响一直备受争议。Mahboobi等[84]将所有关于蜂王浆与糖尿病相关研究进行汇总分析后发现,蜂王浆摄入对空腹血糖及糖化血红蛋白水平没有明显改善。另有研究表明,蜂王浆可改善大鼠血浆胰岛素和三酰甘油水平及稳态模型评估比率(HOMA-R,胰岛素抵抗指数),但对血糖水平无明显影响[10]。在以上研究中还发现,胰岛素抵抗与氧化应激水平的变化有关,蜂王浆可能是利用其抗氧化作用来改善胰岛素抵抗的。不同的研究结果可能是由于研究过程中不同方法、实验对象、环境以及实验所使用的蜂王浆品质差异等复杂因素所致[11-12]。因此,了解蜂王浆与血糖的关系还需要进行更深入的研究。

2.9 对神经系统的营养和保护

蜂王浆对神经的调节和保护功能早有研究,其特有成分AMP N1氧化物可促进神经干细胞分化[85-86]。AMP N1氧化物能抑制大鼠嗜铬细胞瘤PC12细胞生长并通过激活细胞外信号调节激酶1/2(extracellular signal-regulated kinases 1 or 2, ERK 1/2)促进神经突触生长,该氧化物可能是蜂王浆中唯一具有诱导神经突触生长的物质[87-88]。另外,蜂王浆中各种活性物质可能在脑细胞中发挥不同的作用,在整个培养过程中,10-HDA促进神经干细胞神经发生,并在增加神经元生成的同时减少星形胶质细胞的生成[86]

神经干/祖细胞(neural stem cell/neural progenitor cells, NS/NPC)对认知障碍有一定调节作用,蜂王浆可通过刺激受损伤的海马齿状回再生,增加海马齿状回颗粒细胞数量,来改善海马齿状回内NS/NPC的功能[89]。食用蜂王浆可提高小鼠海马环磷酸腺苷(cyclic adenosine monophosphate, CAMP)水平,对改善认知功能有一定辅助作用[90]。蜂王浆可增加甲状腺功能减退症(hypothyroidism, HT)大鼠海马神经元微管相关蛋白2(microtubule-associated protein 2, MAP-2)的表达,明显减轻HT大鼠的退行性变化[91]

蜂王浆具有神经保护作用,可防止脊髓损伤后发生脂质过氧化反应,增强内源性酶和非酶抗氧化防御系统,蜂王浆处理能显著减少脊髓损伤诱导的凋亡细胞数量[9]。β-淀粉样蛋白(amyloid-β, Aβ)在脑内的积聚是阿尔茨海默病(alzheimer disease, AD)的典型病理特征,对APP/PS_1小鼠进行3个月的蜂王浆治疗可减轻小鼠脑内Aβ斑块的形成,明显改善其认知功能障碍和空间记忆能力[90, 92]。纯化的蜂王浆多肽还可通过下调分泌酶(β-secretase, BACE1)来抑制N2a/β695细胞(应用于淀粉样蛋白发生途径产生Aβ的体外模型)外源β-淀粉样蛋白40(beta-amyloid 40, Aβ1-40)和Aβ1-42的产生,对神经起到保护作用,并有效改善试验兔的行为缺陷和脑图像结构[92-93]

血脑屏障(blood brain barrier, BBB)受损后通透性增加,脑内组织间液的渗出增多,会导致早期AD患者智力和认知能力下降[94]。最新研究显示,蜂王浆中10-HDA通过激活PI3K、AKT和AMPK信号通路降低脂多糖(lipopolysaccharide, LPS)诱导的BBB通透性,对BBB受损有一定保护作用[95]。因此,蜂王浆减轻Aβ积聚的能力和对BBB及神经的保护功能,可能在AD的预防和治疗中起到关键作用。

过度的神经炎症会促进各种神经退行性疾病的发生,蜂王浆中脂肪酸类物质10-HDA和10-HDAA对神经炎有一定的抑制作用,进一步说明蜂王浆可能会对神经退行性疾病及神经炎相关疾病的治疗带来积极作用[96-97]。另外,蜂王浆干预可调节高脂高糖诱导的自主神经功能紊乱,改善心脏的收缩和舒张功能,延缓动脉粥样硬化的发展[74, 80]。综上所述,蜂王浆对神经的营养、保护功能将有望应用于神经系统相关疾病的预防和治疗中。

2.10 其他

除以上生物学功能和药理作用外,蜂王浆还具有抗衰老、改善骨质、缓解焦虑等诸多保健作用。

研究表明,Royalactin(即MRJP1)是一种多能性因子,能在实现胚胎干细胞自我更新的同时促进幼稚多能性基因调控网络的出现,当纯化的Royalactin加入培养物后可在无白血病抑制因子的情况下维持小鼠胚胎干细胞的自我更新和多能性。这一发现将推动干细胞被更好地利用,并为多能性的研究提供一个新方向[98]。一项新的研究发现,MRJP3能通过结合并稳定蜂王浆中的RNA,起到在个体之间共享RNA的作用[99]。因此,当工蜂摄入标记的RNA后,这些RNA可随蜂王浆传递到幼虫体内,这种传播方式将推动蜂群产生特定病原体的社会免疫[99]

在一项临床试验中,31名42~83岁的健康志愿者连续服用蜂王浆(3 g·d-1)6个月后发现,他们的精神状态、红细胞生成和葡萄糖耐受能力均有所改善[100-101]。蜂王浆还可通过促进老年大鼠皮肤中胶原蛋白形成和增加表皮含水量,使皮肤恢复弹性,减缓皮肤衰老[102-103]。microRNA(miR)-129-5p在皮肤光老化和自然衰老过程中具有调控作用,应用蜂王浆可下调紫外线辐射诱导的人真皮微血管内皮细胞(human dermal microvascular endothelial cells, HDMEC)中miR-129-5p的表达,调控HDMEC的增殖,并可能通过维持HDMEC数量来防止皮肤衰老[104]。另外,蜂王浆主蛋白还具抗疲劳的作用[105]。因此,在化妆品及保健品领域蜂王浆具有很大的应用前景。

蜂王浆还具有改善骨质的作用,Kaku等[106]发现,蜂王浆处理可抑制胶原交联的减少,促进胶原蛋白修饰酶的编码和交联基因的表达,通过调节I型胶原的翻译后修饰来起到增强骨质的作用。此外,蜂王浆还可增强去卵巢大鼠的骨硬度[107]

最新研究表明,蜂王浆及其脂肪酸类物质(特别是10-HDA)能通过抑制肾上腺皮质酮的生物合成,改善小鼠应激诱导的焦虑和抑郁症状[108]。蜂王浆能促进小鼠褐色脂肪组织(brown adipose tissue, BAT)代谢产热,改善与饮食相关的肥胖、脂肪肝和葡萄糖耐受不良,有望作为未来人们对抗肥胖和代谢紊乱的新型膳食补充剂[109]。此外,MRJP2及其亚型X1,特别是MRJP2,可有效抑制丙型和乙型肝炎病毒在体外的早期侵染和复制,这为抗病毒药物的研发提供了新的思路[110]。蜂王浆还可通过直接刺激泪腺分泌来恢复干眼症患者的泪液量,改善干眼症患者眼部不适和视觉障碍[111]

3 小结与展望

蜂王浆成分复杂,其中含有的特殊化合物如MRJPs、10-HDA和抗菌肽等,在蜂王浆的各种活性功能及引申出的药理作用中起着关键的作用。随着MRJP1蛋白结构的解析,为蜂王浆蛋白单体药理作用机制的发掘揭开了序幕[17]

蜂王浆的众多生物学功能既是独立存在的,又是相互联系的。独立存在时,蜂王浆中的ELVs可抑制和杀灭金黄色葡萄球菌[31];Phe-Asp、Trp-Val和Arg-Tyr等抗氧化肽可清除抗氧化系统中的活性氧[43]。相互联系时,多种活性物质的功能可协同增强:如在伤口愈合过程中,蜂王浆的抗菌活性为创面提供一个碱性环境,抑制生物膜的形成和细菌的黏附;抗炎活性可抑制巨噬细胞产生促炎细胞因子,防止伤口发生炎性反应;蜂王浆又可作为免疫调节因子,提高机体免疫力,进一步促进伤口愈合[40-41, 55]。另外,蜂王浆抗氧化和抗高血压活性及抗高胆固醇血症活性相结合时,还可能降低胰岛素抵抗和糖尿病并发症的风险[78-80]

蜂王浆及其衍生物具有非常广泛的药用价值,目前在高血压、高胆固醇血症、糖尿病、癌症、神经调节、中老年疾病、生殖及内分泌系统疾病中均有涉及,已被证明对多种疾病具有显著的预防及治疗作用[112-113]。同时,蜂王浆对心血管、神经和消化系统及肾、肺等脏器具有保护作用。

有研究表明,在某些情况下首次摄入RJ后会出现过敏反应,如有过敏性疾病史的人(阿尔茨海默病、哮喘或过敏性鼻炎患者),应在医生指导下谨慎服用蜂王浆[114]。在一项动物试验中发现,蜂王浆可促进未成熟雌性大鼠卵泡的生长和发育,其作用机制可能是通过对生殖系统的抗氧化和雌激素效应来发挥作用的[112]。那么,摄入蜂王浆是否会对青年女性生殖参数造成影响还是未知的。目前,关于蜂王浆可能存在的副作用研究还不够充分,如过敏反应、类激素成分等是否会带来不良后果还有待进一步论证[112, 114-115]。另外,蜂王浆具有一定的剂量依赖性,在不同个体或疾病中探究其安全、有效的应用剂量同样重要。因此,日后需要更多的临床试验来证实蜂王浆在人体模型中的有效性,积极发现和利用这一天然产物中特有的活性物质组分,使其在疾病的预防和治疗中发挥更好的作用。

致谢: 感谢浙江省农业科学院陈伊凡老师和中国农业科学院蜜蜂研究所张文文老师对本论文写作中的指导。

参考文献
[1] WYTRYCHOWSKI M, CHENAVAS S, DANIELE G, et al. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding[J]. J Food Composit Anal, 2013, 29(2): 126–133. DOI: 10.1016/j.jfca.2012.12.002
[2] KAMAKURA M. Royalactin induces queen differentiation in honeybees[J]. Nature, 2011, 473(7348): 478–483. DOI: 10.1038/nature10093
[3] ZHU K G, LIU M H, FU Z, et al. Plant microRNAs in larval food regulate honeybee caste development[J]. PLoS Genet, 2017, 13(8): e1006946. DOI: 10.1371/journal.pgen.1006946
[4] MARTIN N, HULBERT A J, BRENNER G C, et al. Honey bee caste lipidomics in relation to life-history stage and the long life of the queen[J]. J Exp Biol, 2019, 222(24): jeb207043.
[5] 王颖. 营养和空间因素对蜜蜂级型分化的影响[D]. 泰安: 山东农业大学, 2015.
WANG Y. Effects of nutritional factors and living space on the caste determination of honey bees[D]. Tai'an: Shandong Agricultural University, 2015. (in Chinese)
[6] FRATINI F, CILIA G, MANCINI S, et al. Royal Jelly: An ancient remedy with remarkable antibacterial properties[J]. Microbiol Res, 2016, 192: 130–141. DOI: 10.1016/j.micres.2016.06.007
[7] AHMAD S, CAMPOS M G, FRATINI F, et al. New insights into the biological and pharmaceutical properties of royal jelly[J]. Int J Mol Sci, 2020, 21(2): 382. DOI: 10.3390/ijms21020382
[8] PASUPULETI V R, SAMMUGAM L, RAMESH N, et al. Honey, Propolis, and royal jelly: A comprehensive review of their biological actions and health benefits[J]. Oxid Med Cell Longev, 2017, 2017: 1259510.
[9] ASLAN A, CEMEK M, BUYUKOKUROGLU M E, et al. Royal jelly can diminish secondary neuronal damage after experimental spinal cord injury in rabbits[J]. Food Chem Toxicol, 2012, 50(7): 2554–2559. DOI: 10.1016/j.fct.2012.04.018
[10] ZAMAMI Y, TAKATORI S, GODA M, et al. Royal jelly ameliorates insulin resistance in fructose-drinking rats[J]. Biol Pharmaceut Bull, 2008, 31(11): 2103–2107. DOI: 10.1248/bpb.31.2103
[11] ZHENG H Q, HU F L, DIETEMANN V. Changes in composition of royal jelly harvested at different times: consequences for quality standards[J]. Apidologie, 2011, 42(1): 39–47. DOI: 10.1051/apido/2010033
[12] ZHAO Y Z, LI Z G, TIAN W L, et al. Differential volatile organic compounds in royal jelly associated with different nectar plants[J]. J Integr Agric, 2016, 15(5): 1157–1165. DOI: 10.1016/S2095-3119(15)61274-6
[13] SUGIYAMA T, TAKAHASHI K, MORI H. Royal jelly acid, 10-hydroxy-trans-2-decenoic acid, as a modulator of the innate immune responses[J]. Endocr Metab Immune Disord Drug Targets, 2012, 12(4): 368–376. DOI: 10.2174/187153012803832530
[14] RAMADAN M F, AL-GHAMDI A. Bioactive compounds and health-promoting properties of royal jelly: A review[J]. J Funct Foods, 2012, 4(1): 39–52. DOI: 10.1016/j.jff.2011.12.007
[15] QIAO J T, WANG X Y, LIU L Q, et al. Nonenzymatic browning and protein aggregation in royal jelly during room-temperature storage[J]. J Agric Food Chem, 2018, 66(8): 1881–1888. DOI: 10.1021/acs.jafc.7b04955
[16] DRAPEAU M D, ALBERT S, KUCHARSKI R, et al. Evolution of the Yellow/Major royal jelly protein family and the emergence of social behavior in honey bees[J]. Genome Res, 2006, 16(11): 1385–1394. DOI: 10.1101/gr.5012006
[17] TIAN W L, LI M, GUO H Y, et al. Architecture of the native major royal jelly protein 1 oligomer[J]. Nat Commun, 2018, 9(1): 3373. DOI: 10.1038/s41467-018-05619-1
[18] PARK M J, KIM B Y, PARK H G, et al. Major royal jelly protein 2 acts as an antimicrobial agent and antioxidant in royal jelly[J]. J Asia-Pac Entomol, 2019, 22(3): 684–689. DOI: 10.1016/j.aspen.2019.05.003
[19] ISIDOROV V A, BAKIER S, GRZECH I. Gas chromatographic-mass spectrometric investigation of volatile and extractable compounds of crude royal jelly[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2012, 885-886: 109–116. DOI: 10.1016/j.jchromb.2011.12.025
[20] LERCKER G, CAPELLA P, CONTE L S, et al. Components of royal jelly Ⅱ. The lipid fraction, hydrocarbons and sterols[J]. J Apic Res, 1982, 21(3): 178–184. DOI: 10.1080/00218839.1982.11100538
[21] KAFANTARIS I, AMOUTZIAS G D, MOSSIALOS D, et al. Foodomics in bee product research: a systematic literature review[J]. Eur Food Res Technol, 2020: 1–23. DOI: 10.1007/s00217-020-03634-5
[22] HESKETH J. Personalised nutrition: how far has nutrigenomics progressed?[J]. Eur J Clin Nutr, 2013, 67(5): 430–435. DOI: 10.1038/ejcn.2012.145
[23] YANG X H, LI Y P, WANG L, et al. Determination of 10-HDA in royal jelly by ATR-FTMIR and NIR spectral combining with data fusion strategy[J]. Optik, 2020, 203: 164052. DOI: 10.1016/j.ijleo.2019.164052
[24] FONTANA R, MENDES M A, DE SOUZA B M, et al. Jelleines: a family of antimicrobial peptides from the royal jelly of honeybees (Apis mellifera)[J]. Peptides, 2004, 25(6): 919–928. DOI: 10.1016/j.peptides.2004.03.016
[25] VEZETEU T V, BOBIŞ O, MORITZ R F A, et al. Food to some, poison to others-honeybee royal jelly and its growth inhibiting effect on European foulbrood bacteria[J]. Microbiologyopen, 2017, 6(1): e00397. DOI: 10.1002/mbo3.397
[26] YANG Y C, CHOU W M, WIDOWATI D A, et al. 10-hydroxy-2-decenoic acid of royal jelly exhibits bactericide and anti-inflammatory activity in human colon cancer cells[J]. BMC Complement Altern Med, 2018, 18(1): 202. DOI: 10.1186/s12906-018-2267-9
[27] BÍLIKOVA K, HUANG S C, LIN I P, et al. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera[J]. Peptides, 2015, 68: 190–196. DOI: 10.1016/j.peptides.2015.03.001
[28] BÍLIKOVÁ K, MIRGORODSKAYA E, BUKOVSKÁ G, et al. Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2[J]. Proteomics, 2009, 9(8): 2131–2138. DOI: 10.1002/pmic.200800705
[29] KIM B Y, LEE K S, JUNG B, et al. Honeybee (Apis cerana) major royal jelly protein 4 exhibits antimicrobial activity[J]. J Asia Pac Entomol, 2019, 22(1): 175–182. DOI: 10.1016/j.aspen.2018.12.020
[30] ISIDOROW W, WITKOWSKI S, IWANIUK P, et al. Royal jelly aliphatic acids contribute to antimicrobial activity of honey[J]. J Apic Sci, 2018, 62(1): 111–123.
[31] SCHUH C M A P, AGUAYO S, ZAVALA G, et al. Exosome-like vesicles in Apis mellifera bee pollen, honey and royal jelly contribute to their antibacterial and pro-regenerative activity[J]. J Exp Biol, 2019, 222(20): jeb208702.
[32] KARACA T, BAYIROGLU F, YORUK M, et al. Effect of royal jelly on experimental colitis Induced by acetic acid and alteration of mast cell distribution in the colon of rats[J]. Eur J Histochem, 2010, 54(4): e35. DOI: 10.4081/ejh.2010.e35
[33] KARACA T, ŞIMŞEK N, USLU S, et al. The effect of royal jelly on CD3+, CD5+, CD45+ T-cell and CD68+ cell distribution in the colon of rats with acetic acid-induced colitis[J]. Allergol et Immunopathol, 2012, 40(6): 357–361. DOI: 10.1016/j.aller.2011.09.004
[34] KARACA T, UZ Y H, DEMIRTAS S, et al. Protective effect of royal jelly in 2, 4, 6 trinitrobenzene sulfonic acid-induced colitis in rats[J]. Iran J Basic Med Sci, 2015, 18(4): 370–379. DOI: 10.1016/j.str.2003.10.003
[35] CHEN Y F, WANG K, ZHANG Y Z, et al. In vitro anti-inflammatory effects of three fatty acids from royal jelly[J]. Mediators Inflamm, 2016, 2016: 3583684.
[36] CHEN Y F, YOU M M, LIU Y C, et al. Potential protective effect of trans-10-hydroxy-2-decenoic acid on the inflammation induced by lipoteichoic acid[J]. J Funct Foods, 2018, 45: 491–498. DOI: 10.1016/j.jff.2018.03.029
[37] 陈伊凡. 蜂王浆脂肪酸的抗炎活性及其机制研究[D]. 杭州: 浙江大学, 2019.
CHEN Y F. Anti-inflammatory effects and underlying mechanisms of royal jelly fatty acids[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
[38] MÜNSTEDT K, MÄNNLE H. Using bee products for the prevention and treatment of oral mucositis induced by cancer treatment[J]. Molecules, 2019, 24(17): 3023. DOI: 10.3390/molecules24173023
[39] SOFIABADI M, SAMIEE-RAD F. Royal jelly accelerates healing of acetate induced gastric ulcers in male rats[J]. Gastroenterol Hepatol Bed Bench, 2020, 13(1): 14–22.
[40] EL-GAYAR M H, ABOSHANAB K M, ABOULWAFA M M, et al. Antivirulence and wound healing effects of royal jelly and garlic extract for the control of MRSA skin infections[J]. Wound Med, 2016, 13: 18–27. DOI: 10.1016/j.wndm.2016.05.004
[41] YAKOOT M, ABDELATIF M, HELMY S. Efficacy of a new local limb salvage treatment for limb-threatening diabetic foot wounds-a randomized controlled study[J]. Diabetes Metab Syndr Obes, 2019, 12: 1659–1665. DOI: 10.2147/DMSO.S210680
[42] GUO H, KOUZUMA Y, YONEKURA M. Isolation and properties of antioxidative peptides from water-soluble royal jelly protein hydrolysate[J]. Food Sci Technol Res, 2005, 11(2): 222–230. DOI: 10.3136/fstr.11.222
[43] GUO H, KOUZUMA Y, YONEKURA M. Structures and properties of antioxidative peptides derived from royal jelly protein[J]. Food Chem, 2009, 113(1): 238–245. DOI: 10.1016/j.foodchem.2008.06.081
[44] GU H, SONG I B, HAN H J, et al. Antioxidant activity of royal jelly hydrolysates obtained by enzymatic treatment[J]. Korean J Food Sci Anim Resour, 2018, 38(1): 135–142.
[45] POURMORADIAN S, MAHDAVI R, MOBASSERI M, et al. Effects of royal jelly supplementation on glycemic control and oxidative stress factors in type 2 diabetic female: A randomized clinical trial[J]. Chin J Integr Med, 2014, 20(5): 347–352. DOI: 10.1007/s11655-014-1804-8
[46] 何雨轩, 喻凯, 马珂, 等. 蜂王浆对H2O2所致NIH-3T3细胞损伤的修复作用及机理[J]. 华西药学杂志, 2020, 35(2): 158–162.
HE Y X, YU K, MA K, et al. Repair effects and mechanism of royal jelly on NIH-3T3 cellular damage caused by H2O2[J]. West China Journal of Pharmaceutical Sciences, 2020, 35(2): 158–162. (in Chinese)
[47] INOUE Y, HARA H, MITSUGI Y, et al. 4-hydroperoxy-2-decenoic acid ethyl ester protects against 6-hydroxydopamine-induced cell death via activation of Nrf2-ARE and eIF2α-ATF4 pathways[J]. Neurochem Int, 2018, 112: 288–296. DOI: 10.1016/j.neuint.2017.08.011
[48] SILICI S, EKMEKCIOGLU O, KANBUR M, et al. The protective effect of royal jelly against cisplatin-induced renal oxidative stress in rats[J]. World J Urol, 2011, 29(1): 127–132. DOI: 10.1007/s00345-010-0543-5
[49] WAYKAR B B, ALQADHI Y A. Protective role of honey and royal jelly on cisplatin induced oxidative stress in liver of rat[J]. J Appl Pharm Sci, 2019, 10(8): 3898–3904.
[50] FAN P, HAN B, HU H, et al. Proteome of thymus and spleen reveals that 10-hydroxydec-2-enoic acid could enhance immunity in mice[J]. Expert Opin Ther Targets, 2020, 24(3): 267–279. DOI: 10.1080/14728222.2020.1733529
[51] DZOPALIC T, VUCEVIC D, TOMIC S, et al. 3, 10-dihydroxy-decanoic acid, isolated from royal jelly, stimulates Th1 polarising capability of human monocyte-derived dendritic cells[J]. Food Chem, 2011, 126(3): 1211–1217. DOI: 10.1016/j.foodchem.2010.12.004
[52] MIHAJLOVIC D, RAJKOVIC I, CHINOU I, et al. Dose-dependent immunomodulatory effects of 10-hydroxy-2-decenoic acid on human monocyte-derived dendritic cells[J]. J Funct Foods, 2013, 5(2): 838–846. DOI: 10.1016/j.jff.2013.01.031
[53] MIHAJLOVIC D, VUCEVIC D, CHINOU I, et al. Royal jelly fatty acids modulate proliferation and cytokine production by human peripheral blood mononuclear cells[J]. Eur Food Res Technol, 2014, 238(5): 881–887. DOI: 10.1007/s00217-014-2154-7
[54] YANG X Y, YANG D S, WEI Z, et al. 10-hydroxy-2-decenoic acid from royal jelly: A potential medicine for RA[J]. J Ethnopharmacol, 2010, 128(2): 314–321. DOI: 10.1016/j.jep.2010.01.055
[55] EREM C, DEGER O, OVALI E, et al. The effects of royal jelly on autoimmunity in Graves' disease[J]. Endocrine, 2006, 30(2): 175–183. DOI: 10.1385/ENDO:30:2:175
[56] ZAHRAN A M, ELSAYH K I, SAAD K, et al. Effects of royal jelly supplementation on regulatory T cells in children with SLE[J]. Food Nutr Res, 2016, 60: 32963. DOI: 10.3402/fnr.v60.32963
[57] MIYATA Y, SAKAI H. Anti-cancer and protective effects of royal jelly for therapy-induced toxicities in malignancies[J]. Int J Mol Sci, 2018, 19(10): 3270. DOI: 10.3390/ijms19103270
[58] ORŠOLIĆ N, TERZIĆ S, ŠVER L, et al. Honey-bee products in prevention and/or therapy of murine transplantable tumours[J]. J Sci Food Agric, 2005, 85(3): 363–370. DOI: 10.1002/jsfa.2041
[59] FILIPIČ B, GRADIŠNIK L, RIHAR K, et al. Royal jelly and human interferon-alpha (HuIFN-αN3) affect proliferation, glutathione level, and lipid peroxidation in human colorectal adenocarcinoma cells in vitro[M]// Mansour M A. Lipid Peroxidation Research. London: IntechOpen, 2019.
[60] HONDA Y, ARAKI Y, HATA T, et al. 10-Hydroxy-2-decenoic acid, the major lipid component of royal jelly, extends the lifespan of Caenorhabditis elegans through dietary restriction and target of rapamycin signaling[J]. J Aging Res, 2015, 2015: 425261.
[61] CAO Y H, ARBISER J, D'AMATO R J, et al. Forty-year journey of angiogenesis translational research[J]. Sci Transl Med, 2011, 3(114): 114r.
[62] ABU-SERIE M M, HABASHY N H. Two purified proteins from royal jelly with in vitro dual anti-hepatic damage potency: Major royal jelly protein 2 and its novel isoform X1[J]. Int J Biol Macromol, 2019, 128: 782–795. DOI: 10.1016/j.ijbiomac.2019.01.210
[63] GISMONDI A, TRIONFERA E, CANUTI L, et al. Royal jelly lipophilic fraction induces antiproliferative effects on SH-SY5Y human neuroblastoma cells[J]. Oncol Rep, 2017, 38(3): 1833–1844. DOI: 10.3892/or.2017.5851
[64] 王天石, 王馨梦, 付莉. 蜂王浆蛋白体外消化产物对胃癌细胞SGC-7901增殖和凋亡的影响及其可能机制[J]. 浙江大学学报: 农业与生命科学版, 2019, 45(5): 533–541.
WANG T S, WANG X M, FU L. Effects of royal jelly protein in vitro digestion products on proliferation and apoptosis of gastric cancer cell SGC-7901 and its possible mechanism[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2019, 45(5): 533–541. (in Chinese)
[65] ZHANG S, SHAO Q Q, GENG H Y, et al. The effect of royal jelly on the growth of breast cancer in mice[J]. Oncol Lett, 2017, 14(6): 7615–7621.
[66] ABANDANSARI R M, PARSIAN H, KAZEROUNI F, et al. Effect of simultaneous treatment with royal jelly and doxorubicin on the survival of the prostate cancer cell line (PC3): An in vitro study[J]. Int J Cancer Manag, 2018, 11(4): e13780.
[67] POULTER N R, PRABHAKARAN D, CAULFIELD M. Hypertension[J]. Lancet, 2015, 386(9995): 801–812. DOI: 10.1016/S0140-6736(14)61468-9
[68] MATSUI T, YUKIYOSHI A, DOI S, et al. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR[J]. J Nutr Biochem, 2002, 13(2): 80–86. DOI: 10.1016/S0955-2863(01)00198-X
[69] FAN P, HAN B, FENG M, et al. Functional and proteomic investigations reveal major royal jelly protein 1 associated with anti-hypertension activity in mouse vascular smooth muscle cells[J]. Sci Rep, 2016, 6(1): 30230. DOI: 10.1038/srep30230
[70] 刘奕辰, 陈伊凡, 胡福良. 蜂王浆治疗更年期综合征及其相关机制的研究进展[J]. 天然产物研究与开发, 2019, 31(3): 538–544.
LIU Y C, CHEN Y F, HU F L. Review on the treatment of menopausal syndrome with royal jelly and its mechanisms[J]. Natural Product Research and Development, 2019, 31(3): 538–544. (in Chinese)
[71] KASHIMA Y, KANEMATSU S, ASAI S, et al. Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly[J]. PLoS One, 2014, 9(8): e105073. DOI: 10.1371/journal.pone.0105073
[72] CHIU H F, CHEN B K, LU Y Y, et al. Hypocholesterolemic efficacy of royal jelly in healthy mild hypercholesterolemic adults[J]. Pharmaceut Biol, 2017, 55(1): 497–502. DOI: 10.1080/13880209.2016.1253110
[73] GUO H, SAIGA A, SATO M, et al. Royal jelly supplementation improves lipoprotein metabolism in humans[J]. J Nutr Sci Vitaminol, 2007, 53(4): 345–348. DOI: 10.3177/jnsv.53.345
[74] 黄俊杰, 刘军平, 陈民利, 等. 自主神经功能在兔动脉粥样硬化中的作用及蜂王浆的干预[J]. 中国实验动物学报, 2018, 26(4): 467–473.
HUANG J J, LIU J P, CHEN M L, et al. Role of autonomic nervous function in and the effect of royal jelly intervention on rabbit atherosclerosis[J]. Acta Laboratorium Animalis Scientia Sinica, 2018, 26(4): 467–473. DOI: 10.3969/j.issn.1005-4847.2018.04.010 (in Chinese)
[75] 潘永明. 蜂王浆对高胆固醇饮食致兔动脉粥样硬化和阿尔茨海默病的影响及其机制[D]. 杭州: 浙江大学, 2019.
PAN Y M. Effects and mechanisms of royal jelly on atherosclerosis and alzheimer's diseases in rabbits induced by high cholesterol diet[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
[76] SHIDFAR F, JAZAYERI S, MOUSAVI S N, et al. Does supplementation with royal jelly improve oxidative stress and insulin resistance in type 2 diabetic patients?[J]. Iran J Public Health, 2015, 44(6): 797–803.
[77] MALEKI V, JAFARI-VAYGHAN H, SALEH-GHADIMI S, et al. Effects of royal jelly on metabolic variables in diabetes mellitus: A systematic review[J]. Complement Ther Med, 2019, 43: 20–27. DOI: 10.1016/j.ctim.2018.12.022
[78] KHOSHPEY B, DJAZAYERI S, AMIRI F, et al. Effect of royal jelly intake on serum glucose, Apolipoprotein A-I (ApoA-I), Apolipoprotein B (ApoB) and ApoB/ApoA-I ratios in patients with Type 2 diabetes: A randomized, double-blind clinical trial study[J]. Can J Diabetes, 2016, 40(4): 324–328. DOI: 10.1016/j.jcjd.2016.01.003
[79] SHIDFAR F, FROGHIFAR N, VAFA M, et al. The effects of tomato consumption on serum glucose, apolipoprotein B, apolipoprotein A-I, homocysteine and blood pressure in type 2 diabetic patients[J]. Int J Food Sci Nutr, 2011, 62(3): 289–294. DOI: 10.3109/09637486.2010.529072
[80] CHERAGHI O, ABDOLLAHPOURASL M, REZABAKHSH A, et al. Distinct effects of royal jelly on human endothelial cells under high glucose condition[J]. Iran J Pharm Res, 2018, 17(4): 1361–1370.
[81] AL-KUSHI A G, HEADER E A, ELSAWY N A, et al. Antioxidant effect of royal jelly on immune status of hyperglycemic rats[J]. Pharmacogn Mag, 2018, 14(58): 528–533. DOI: 10.4103/pm.pm_87_18
[82] GHANBARI E, NEJATI V, KHAZAEI M. Improvement in serum biochemical alterations and oxidative stress of liver and pancreas following use of royal jelly in streptozotocin-induced diabetic rats[J]. Cell J, 2016, 18(3): 362–370.
[83] GHANBARI E, NEJATI V, AZADBAKHT M. Protective effect of royal jelly against renal damage in streptozotocin induced diabetic rats[J]. Iran J Toxicol, 2015, 9(28): 1258–1263.
[84] MAHBOOBI S, JAFARNEJAD S, EFTEKHARI M H. Royal jelly does not improve markers of glycemia: A systematic review and meta-analysis of randomized clinical trials[J]. Complement Ther Med, 2019, 44: 235–241. DOI: 10.1016/j.ctim.2019.04.017
[85] HATTORI N, NOMOTO H, FUKUMITSU H, et al. AMP N1-oxide potentiates astrogenesis by cultured neural stem/progenitor cells through STAT3 activation[J]. Biomed Res, 2007, 28(6): 295–299. DOI: 10.2220/biomedres.28.295
[86] HATTORI N, NOMOTO H, FUKUMITSU H, et al. Royal jelly and its unique fatty acid, 10-hydroxy-trans-2-decenoic acid, promote neurogenesis by neural stem/progenitor cells in vitro[J]. Biomed Res, 2007, 28(5): 261–266. DOI: 10.2220/biomedres.28.261
[87] HATTORI N, NOMOTO H, FUKUMITSU H, et al. Royal jelly-induced neurite outgrowth from rat pheochromocytoma PC12 cells requires integrin signal independent of activation of extracellular signalregulated kinases[J]. Biomed Res, 2007, 28(3): 139–146. DOI: 10.2220/biomedres.28.139
[88] HATTORI N, NOMOTO H, FUKUMITSU H, et al. AMP N1-oxide, a unique compound of royal jelly, induces neurite outgrowth from PC12 vells via signaling by protein kinase A independent of that by mitogen-activated protein kinase[J]. Evid Based Complement Alternat Med, 2010, 7: 970174.
[89] HATTORI N, OHTA S, SAKAMOTO T, et al. Royal jelly facilitates restoration of the cognitive ability in trimethyltin-intoxicated mice[J]. Evid Based Complement Alternat Med, 2011, 2011: 165968.
[90] YOU M M, PAN Y M, LIU Y C, et al. Royal jelly alleviates cognitive deficits and β-amyloid accumulation in APP/PS1 mouse model via activation of the cAMP/PKA/CREB/BDNF pathway and inhibition of neuronal apoptosis[J]. Front Aging Neurosci, 2019, 10: 428. DOI: 10.3389/fnagi.2018.00428
[91] SEYMEN C M, GÜNDOǦDU A Ç, BULUT D İ, et al. Royal jelly increased map-2 expression in hippocampal neurons of hypothyroid rats: an immunohistochemical study[J]. Biotech Histochem, 2020, 95(1): 46–54. DOI: 10.1080/10520295.2019.1632486
[92] ZHANG Z X, LI Y B, ZHAO R P. Epigallocatechin gallate attenuates β-amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 cells[J]. Neurochem Res, 2017, 42(2): 468–480. DOI: 10.1007/s11064-016-2093-8
[93] ZHANG X Q, YU Y, SUN P, et al. Royal jelly peptides: potential inhibitors of β-secretase in N2a/APP695 swe cells[J]. Sci Rep, 2019, 9(1): 168. DOI: 10.1038/s41598-018-35801-w
[94] VAN DE HAAR H J, BURGMANS S, JANSEN J F A, et al. Blood-brain barrier leakage in patients with early alzheimer disease[J]. Radiology, 2016, 281(2): 527–535. DOI: 10.1148/radiol.2016152244
[95] YOU M M, MIAO Z N, TIAN J, et al. Trans-10-hydroxy-2-decenoic acid protects against LPS-induced neuroinflammation through FOXO1-mediated activation of autophagy[J]. Eur J Nutr, 2020, 59(7): 2875–2892. DOI: 10.1007/s00394-019-02128-9
[96] YOU M M, MIAO Z N, PAN Y M, et al. Trans-10-hydroxy-2-decenoic acid alleviates LPS-induced blood-brain barrier dysfunction by activating the AMPK/PI3K/AKT pathway[J]. Eur J Pharmacol, 2019, 865: 172736. DOI: 10.1016/j.ejphar.2019.172736
[97] YOU M M, MIAO Z N, SIENKIEWICZ O, et al. 10-Hydroxydecanoic acid inhibits LPS-induced inflammation by targeting p53 in microglial cells[J]. Int Immunopharmacol, 2020, 84: 106501. DOI: 10.1016/j.intimp.2020.106501
[98] WAN D C, MORGAN S L, SPENCLEY A L, et al. Honey bee Royalactin unlocks conserved pluripotency pathway in mammals[J]. Nat Commun, 2018, 9(1): 5078. DOI: 10.1038/s41467-018-06256-4
[99] MAORI E, NAVARRO I C, BONCRISTIANI H, et al. A secreted RNA binding protein forms RNA-stabilizing granules in the honeybee royal jelly[J]. Mol Cell, 2019, 74(3): 598–608. DOI: 10.1016/j.molcel.2019.03.010
[100] MORITA H, IKEDA T, KAJITA K, et al. Effect of royal jelly ingestion for six months on healthy volunteers[J]. Nutr J, 2012, 11(1): 77. DOI: 10.1186/1475-2891-11-77
[101] 游蒙蒙, 胡福良. 蜂王浆在防治衰老相关性疾病中的研究进展[J]. 蜜蜂杂志, 2018, 38(6): 5–10.
YOU M M, HU F L. Research progress on royal jelly in the treatment of age-related diseases[J]. Journal of Bee, 2018, 38(6): 5–10. DOI: 10.3969/j.issn.1003-9139.2018.06.003 (in Chinese)
[102] JEON S, CHO Y. Epidermal hydration is improved by enhanced ceramide metabolism in aged C57BL/6 J mice after dietary supplementation of royal jelly[J]. J Med Food, 2015, 18(9): 999–1006. DOI: 10.1089/jmf.2014.3304
[103] PARK H M, CHO M H, CHO Y, et al. Royal jelly increases collagen production in rat skin after ovariectomy[J]. J Med Food, 2012, 15(6): 568–575. DOI: 10.1089/jmf.2011.1888
[104] KAWANO Y, MAKINO K, JINNIN M, et al. Royal jelly regulates the proliferation of human dermal microvascular endothelial cells through the down-regulation of a photoaging-related microRNA[J]. Drug Discov Ther, 2019, 13(5): 268–273. DOI: 10.5582/ddt.2019.01070
[105] 孟超, 肖凯文, 郑双艳, 等. 蜂王浆主蛋白对小鼠的抗疲劳作用[J]. 中国食品学报, 2017, 17(10): 23–29.
MENG C, XIAO K W, ZHENG S Y, et al. Anti-fatigue activity of MRJPs from fresh royal jelly in mice[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(10): 23–29. (in Chinese)
[106] KAKU M, ROCABADO J M R, KITAMI M, et al. Royal jelly affects collagen crosslinking in bone of ovariectomized rats[J]. J Funct Foods, 2014, 7: 398–406. DOI: 10.1016/j.jff.2014.01.019
[107] SHIMIZU S, MATSUSHITA H, MINAMI A, et al. Royal jelly does not prevent bone loss but improves bone strength in ovariectomized rats[J]. Climacteric, 2018, 21(6): 601–606. DOI: 10.1080/13697137.2018.1517739
[108] IEGAKI N, NARITA Y, HATTORI N, et al. Royal jelly reduces depression-like behavior through possible effects on adrenal steroidogenesis in a murine model of unpredictable chronic mild stress[J]. Biosci Biotechnol Biochem, 2020, 84(3): 606–612. DOI: 10.1080/09168451.2019.1691496
[109] YONESHIRO T, KAEDE R, NAGAYA K, et al. Royal jelly ameliorates diet-induced obesity and glucose intolerance by promoting brown adipose tissue thermogenesis in mice[J]. Obes Res Clin Pract, 2018, 12(Suppl 1): 127–137.
[110] HABASHY N H, ABU-SERIE M M. Major royal-jelly protein 2 and its isoform X1 are two novel safe inhibitors for hepatitis C and B viral entry and replication[J]. Int J Biol Macromol, 2019, 141: 1072–1087. DOI: 10.1016/j.ijbiomac.2019.09.080
[111] INOUE S, KAWASHIMA M, HISAMURA R, et al. Clinical evaluation of a royal jelly supplementation for the restoration of dry eye: A prospective randomized double blind placebo controlled study and an experimental mouse model[J]. PLoS One, 2017, 12(1): e0169069. DOI: 10.1371/journal.pone.0169069
[112] GHANBARI E, KHAZAEI M R, KHAZAEI M, et al. Royal jelly promotes ovarian follicles growth and increases steroid hormones in immature rats[J]. Int J Fertil Steril, 2018, 11(4): 263–269.
[113] TAAVONI S, BARKHORDARI F, GOUSHEGIR A, et al. Effect of royal jelly on premenstrual syndrome among Iranian medical sciences students: A randomized, triple-blind, placebo-controlled study[J]. Complement Ther Med, 2014, 22(4): 601–606. DOI: 10.1016/j.ctim.2014.05.004
[114] HATA T, FURUSAWA-HORIE T, ARAI Y, et al. Studies of royal jelly and associated cross-reactive allergens in atopic dermatitis patients[J]. PLoS One, 2020, 15(6): e0233707. DOI: 10.1371/journal.pone.0233707
[115] KATAYAMA M, AOKI M, KAWANA S. Case of anaphylaxis caused by ingestion of royal jelly[J]. J Dermatol, 2008, 35(4): 222–224. DOI: 10.1111/j.1346-8138.2008.00448.x