畜牧兽医学报  2021, Vol. 52 Issue (5): 1396-1406. DOI: 10.11843/j.issn.0366-6964.2021.05.025    PDF    
氧化应激状态下仔猪海马差异表达miRNAs与转录组的关联分析
张晨1, 冯露秋1, 林海烂1, 黄子晴1, 王乃秀1, 甘玲1,2     
1. 西南大学动物医学院, 重庆 402460;
2. 重庆市兽医科学工程研究中心, 重庆 402460
摘要:旨在解析仔猪脑海马背、腹侧区域参与氧化应激反应的小RNA(miRNA)靶基因及可能的调节机制。本研究基于前期投放到基因表达数据库(GEO)中的miRNAs和转录组数据包,采用生物信息学分析方法,对氧化应激荣昌仔猪脑海马背、腹侧区域差异表达的miRNA进行靶基因预测,并将预测的结果和转录组数据进行重叠筛选,将筛选得到的miRNA-mRNA构建互作网络图,并对靶基因进行GO分类和KEGG分析,以期探索仔猪脑海马背、腹侧区域中参与氧化应激调控的分子机制。结果表明,氧化应激分别引起了仔猪脑海马背侧309对和腹侧247对负向调控的miRNA-mRNA差异表达,其中,已知的差异表达miRNAs(DE miRNAs)负向调控差异表达mRNA(DE mRNAs)的互作网络背侧有67对(2对上调miRNA-下调mRNA,65对下调miRNA-上调mRNA),腹侧有41对(3对上调miRNA-下调mRNA,38对下调miRNA-上调mRNA)。GO分类和KEGG分析结果显示,miRNA靶向上调的基因主要调节氧化应激损伤和维持机体稳态;而靶向下调的基因,背侧主要调节细胞凋亡,腹侧主要调节细胞增殖、迁移等。并且部分DE miRNAs能够通过对基因的靶向调节协同或发散地参与对氧化应激相关神经系统疾病的调控。本研究首次描述了仔猪脑海马中与氧化应激相关的miRNA-mRNA的相互作用网络和信号通路,剖析了仔猪海马背、腹侧对氧化应激调节的差异性和一致性,为氧化应激介导的神经性疾病病理机制的研究奠定了基础。
关键词氧化应激    海马    miRNA-mRNA    关联分析    
Association Analysis of Differentially Expressed miRNAs and Transcriptomics in Piglet Hippocampus under Oxidative Stress
ZHANG Chen1, FENG Luqiu1, LIN Hailan1, HUANG Ziqing1, WANG Naixiu1, GAN Ling1,2     
1. College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
2. Veterinary Engineering Research Center of Chongqing, Chongqing 402460, China
Abstract: This study aims to elucidate the target genes of microRNA (miRNA) involved in the oxidative stress reaction in the dorsal and ventral hippocampus of piglets and its possible regulatory mechanism. In the study, based on the data of miRNAs and transcriptome packets previously put into the gene expression database (GEO), the target genes of differentially expressed miRNAs in the dorsal and ventral regions of the hippocampus of Rongchang piglets under oxidative stress were predicted by bioinformatics analysis. The predicted results and transcriptome data were overlapped and screened to get the target pairs, which were used to construct a network map of miRNA-mRNA interaction. GO classification and KEGG analysis were performed to explore the molecular mechanisms involved in the regulation of oxidative stress in the dorsal and ventral regions of the hippocampus of piglets. The results showed that the oxidative stress-induced differential expression of 309 pairs of miRNAs-mRNAs in the dorsal hippocampus and 247 pairs in the ventral hippocampus of piglets. Among those, there were 67 pairs of negatively regulated miRNA-mRNAs in the dorsal hippocampus (2 pairs of up-regulated miRNA-down-regulated mRNAs, 65 pairs of down-regulated miRNA-up-regulated mRNAs), and 41 pairs in the ventral hippocampus (3 pairs of up-regulated miRNA-down-regulated mRNAs, 38 pairs of down-regulated miRNA-up-regulated mRNAs). GO classification and KEGG analysis results displayed that targeted up-regulated genes played a major role in regulating oxidative stress damage and maintaining body homeostasis, while targeted down-regulated genes in the dorsal hippocampus mainly regulated cell apoptosis and those in the ventral hippocampus mainly regulated cell proliferation and migration. And some differentially expressed miRNAs participated in the regulation of oxidative stress-related neurological diseases in a coordinated or divergent manner through targeting regulating genes. In conclusion, the study firstly described the interaction network and signaling pathway of oxidative stress-related miRNA-mRNAs in the hippocampus of piglets, and analyzed the differences and consistency in the regulation of oxidative stress in the dorsal and ventral hippocampus, which laid a foundation for the study of the pathological mechanism of oxidative stress-mediated neurological diseases.
Key words: oxidative stress    hippocampus    miRNA-mRNA    correlation analysis    

在动物养殖过程中,因营养、环境及管理不当等因素引起的氧化应激与仔猪疾病的发生发展密切相关[1-2],极大地限制了畜牧业的发展。哺乳动物脑组织海马体是参与应激调控的重要区域[3],在应激条件下,脑海马的背、腹侧区域展示了不同的基因表达谱和功能特征[4],对生命过程的参与及对外界的刺激有不同的响应和调节。如磷酸二酯酶11A4在啮齿动物腹侧海马中的表达量为背侧的3~10倍[5];空间学习障碍与海马背侧病变呈正相关,却与腹侧的病变无显著相关性[6]

miRNA是哺乳动物脑组织中大量表达的内源性非编码单链小RNA,主要通过和靶基因3′非翻译区(3′UTR) 结合,负向调节基因的表达[7],参与生长、凋亡和应激等生物学过程,是生物基因网络调控中的重要组成成分[8]。迄今,已从各种生物中鉴定出数百种不同的miRNA,开发了如Miranda、TargetScan等靶点预测软件,以搜索miRNA潜在的靶基因[9]。研究发现,miRNA的表达与神经性疾病的发病机制密切相关[10]。如miR-9通过下调轴突指导基因轴突导向因子(NTN1)和结直肠癌缺失基因(DCC)参与周围神经再生过程[11];抑制miR-21可以调节Müller细胞胶质增生促进神经节细胞存活和功能的恢复[12]。然而,当前在仔猪海马背、腹侧区域中参与氧化应激反应的miRNA靶向调节机制尚不清楚,一定程度地阻碍了对氧化应激介导的神经性疾病病理机制的探索。因此,本研究基于前期投放到GEO中的氧化应激仔猪海马背、腹侧miRNA表达数据集和海马转录组数据集,开展miRNA-mRNA表达关联分析,以解析氧化应激状态下,仔猪脑海马中参与调控的靶标分子及相关的信号通路,为仔猪氧化应激相关的神经性疾病病理机制的研究奠定基础。

1 材料与方法 1.1 数据材料的来源与说明

本研究使用的数据材料来自团队前期自身投放于基因表达数据库(GEO)中登录号为GSE76007、GSE76941的数据集。采用的动物为7日龄荣昌仔猪。其中,氧化应激组仔猪(4头)在出生后的第3和4天被肌内注射右旋糖酐铁,成功诱发了氧化应激,而对照组仔猪(4头)在相同时间同一部位被注射相同剂量的灭菌生理盐水。麻醉7日龄仔猪,分别采集脑组织背、腹侧海马,于液氮中速冻后,保存于-80 ℃,用于文库的构建及测序[13]。GSE76007为采用RNA-seq技术(Hiseq 2500)获取的对照组和氧化应激仔猪海马转录组数据,含有11.5 Gb测序原始数据和经加工处理过的基因转录表达水平列表。GSE76941为通过RNA-seq技术(Hiseq 2500)获取的对照组和氧化应激组仔猪背、腹侧海马的miRNA表达谱,其中,有4个读取长度为50的对照组仔猪脑背侧海马miRNA、腹侧海马miRNA和氧化应激组仔猪脑背侧海马miRNA、腹侧海马miRNA样品的原始数据文件以及在所有样品中表达保守的、已知的和新的miRNA 3个加工数据。团队前期还基于GSE76941数据集,采用Edger软件包的qCML方法进行精确检验,筛选了DE miRNA。筛选的条件是miRNA的P值< 0.05,并去除log2FC为NA的miRNA。并进一步采用Miranda软件预测DE miRNAs的靶基因序列,其中,腹侧海马DE miRNAs靶向了38 805条基因序列,背侧海马DE miRNAs靶向了64 276条基因序列[13]

1.2 数据分析方法

1.2.1 miRNA靶基因的预测和筛选   本研究基于GSE76941数据集,采用TargetScan软件预测海马背、腹侧差异miRNA的靶基因。并基于GSE76007数据集,将DE mRNAs (P < 0.05)与上述预测的靶基因进行重叠筛选,交集即为DE miRNAs潜在的靶基因。

1.2.2 DE miRNA与DE mRNA的作用关系分析   由于miRNA靶基因的表达模式通常与miRNA呈负相关,因此,为解析氧化应激状态下,仔猪背、腹侧海马DE miRNA参与调节的靶mRNA,本研究从“1.2.1”的结果中筛选出与miRNA表达趋势相反的mRNAs,然后根据其作用关系构建互作网络,并使用Cytoscape[14]软件进行可视化作图。

1.2.3 DE miRNA靶向mRNA的GO分类和KEGG信号途径富集分析   GO是国际标准化的基因功能分类系统,常用来描述生物体中基因和基因产物的属性。KEGG是信号通路的主要公共数据库,对差异表达基因的KEGG富集分析可进一步揭示参与氧化应激调节的分子机制。因此,为了评估氧化应激状态下DE miRNA-mRNA靶基因对发挥的生物学功能和参与的信号途径,本研究采用pathview package, Category package, org.Ss.eg.db package, GO stats package, KEGG.db package, GO.db package, RSQLite package[15-16]软件对筛选到受DE miRNAs负调控的DE mRNAs进行GO和KEGG分析。

1.2.4 DE miRNA靶向mRNA的功能逻辑推演   为深入挖掘仔猪脑海马背、腹侧区域参与氧化应激调节的miRNA潜在靶基因,本研究基于“1.2.2”和“1.2.3”的结果,将miRNA-mRNA调控网络、GO和KEGG功能结果进行进一步功能逻辑推演。

2 结果 2.1 数据筛选

本研究采用的GSE76941数据集,共含有3 818个DE miRNAs。作者将预测的DE miRNAs靶基因与GSE76007数据集DE mRNA进行重叠筛选,筛选结果见表 1

表 1 氧化应激状态下仔猪海马各部位差异表达的miRNAs和mRNAs数量 Table 1 The number of miRNAs and mRNAs differentially expressed in various parts of the hippocampus of piglets under oxidative stress
2.2 miRNA-mRNA互作网络图的构建

为了直观地展示在氧化应激状态下大鼠脑海马组织中miRNAs和mRNAs之间的互作关系,基于“2.1”重叠筛选的结果,作者构建了miRNA-mRNA互作网络图(图 1~4)。其中,背侧有110对上调DE miRNA-下调DE mRNA,129对上调DE miRNA-上调DE mRNA(包括15个新的miRNAs);92对下调DE miRNA- 下调DE mRNA,199对下调DE miRNA-上调DE mRNA(包括14个新的miRNAs)。腹侧有93对上调DE miRNA-下调DE mRNA,146对上调DE miRNA-上调DE mRNA(包括12个新的miRNAs);82对下调DE miRNA-下调DE mRNA,154对下调DE miRNA-上调DE mRNA(包括11个新的miRNAs)。由此可见,在负向调控的DE miRNA-DE mRNA靶基因对中,背侧有309对,腹侧有247对,其中,在已知的DE miRNAs靶标对中,背侧有2对上调DE miRNA-下调DE mRNA,65对下调DE miRNA-上调DE mRNA;腹侧有3对上调DE miRNA-下调DE mRNA,38对下调DE miRNA-上调DE mRNA(图 12)。

A.氧化应激状态下,上调的miRNA负向调控的mRNA;B.氧化应激状态下,下调的miRNA负向调控的mRNA A. Upregulated miRNA negatively regulates mRNA under oxidative stress; B. Downregulated miRNA negatively regulates mRNA under oxidative stress 图 1 仔猪背侧海马miRNA靶向mRNA的局部关联网络 Fig. 1 Local association network map of miRNA-targeted mRNA in dorsal hippocampus of piglets
A.氧化应激状态下,上调的miRNA负向调控的miRNA-mRNA;B.氧化应激状态下,下调的miRNA负向调控的miRNA-mRNA A. Upregulated miRNA negatively regulates miRNA-mRNA under oxidative stress; B. Downregulated miRNA negatively regulates miRNA-mRNA under oxidative stress 图 2 仔猪腹侧海马miRNA靶向mRNA的局部关联网络 Fig. 2 Local association network map of miRNA-targeted mRNA in ventral hippocampus of piglets

2.2.1 氧化应激状态下仔猪脑海马背侧区域差异表达的miRNAs靶向mRNAs的关联分析   根据miRNA-mRNA关联分析结果,在海马背侧区域负向调节网络互作图中,仅有miR-452为背侧上调的已知miRNAs(图 1A);背侧下调的miR-676-5p靶向上调了JAK2等基因。此外,背侧下调的多个miRNAs共同靶向1个或多个基因,如下调的miR-205、miR-216同时靶向上调了DDX58等基因,下调的miR-490-5p和miR-7138-5p靶向上调了PPP3CA等基因。下调的miR-490-5p和miR-96-5p共同靶向上调了整合素亚基α3(ITGA3),下调的miR-96-5p和miR-205共同靶向上调了金属蛋白酶-1(MMP1)(图 1B)。

2.2.2 氧化应激状态下,仔猪脑海马腹侧区域差异表达的miRNAs靶向mRNAs的关联分析   在海马腹侧区域负向调节网络互作图中,腹侧上调的miR-133a-5p靶向下调了TFRCSCUBE1与ATP9B基因(图 2A),腹侧下调的miR-429靶向上调了RELNDDX58等基因;腹侧下调的miR-183和背侧下调的miR-216均靶向上调骨膜素(POSTN)。miR-183家族成员miR-183和miR-96-5p有两个共同的调控基因MMP1和ITGA3(图 2B)。由此可见,仔猪海马背、腹侧miRNA在氧化应激下对靶基因的调节中具有协同性和发散性。

2.3 功能与途径富集分析

分别对筛选到的海马背腹侧靶向DE mRNAs进行的GO分类和KEGG分析,发现海马背侧靶向上调的DE mRNAs在300条GO terms中富集(P < 0.05),靶向下调的DE mRNAs在237条GO terms中富集(P < 0.05);海马腹侧靶向上调的DE mRNAs在359条GO terms中富集(P < 0.05),靶向下调的DE mRNAs在214条GO terms中富集(P < 0.05)(表 2)。其中,主要功能及富集的信号通路如表 2所示。

表 2 氧化应激状态下仔猪海马各部位靶向DE mRNAs的GO和KEGG分析 Table 2 GO and KEGG analysis of targeted DE mRNAs in the hippocampus of piglets under oxidative stress
2.4 氧化应激状态下仔猪脑海马背、腹侧区域DE miRNAs靶向DE mRNAs的功能推演

GO分类比较分析发现,在miRNA靶向上调的基因中,背、腹侧有247条共同功能,主要体现在对细胞因子等刺激的反应调控方面(如miR-183/POSTN、miR-216/POSTN)(图 3A)。POSTN在胶质瘤侵袭和抗血管生成治疗的抵抗中起着重要作用[17],因此,miR-183/POSTN、miR-216/POSTN可能参与了仔猪海马对应激的抵抗。

A.氧化应激状态下背腹侧差异表达的miRNAs靶向上调的mRNAs的GO注释;B.氧化应激状态下背腹侧差异表达的miRNAs靶向下调的mRNAs的GO注释。A图左圆为背侧上调的mRNAs注释条数、A图右圆为腹侧上调的mRNAs注释条数,B图左圆为背侧下调的mRNAs注释条数、B图右圆为腹侧下调的mRNAs注释条数 A. GO annotation of differentially expressed miRNA targeting up-regulated mRNA in the dorsal ventral side under oxidative stress; B. GO annotation of differentially expressed miRNA targeting down-regulated mRNA in the dorsal ventral side under oxidative stress; The left circle of Fig.A is the number of up-regulated mRNA annotation bars in the dorsal side; The right circle of Fig.A is the number of up-regulated mRNA annotation bars in the ventral side; The left circle of Fig.B is the number of down-regulated mRNA annotation bars in the dorsal side; The right circle of Fig.B is the number of down-regulated mRNA annotation bars 图 3 仔猪脑海马背、腹侧差异表达mRNA的GO注释比较分析 Fig. 3 Comparison of GO annotation of differentially expressed mRNA in dorsal and ventral hippocampus of piglets

背侧上调的靶基因特定地参与了对机械、生物刺激的反应和免疫过程等(如miR-676-5p/JAK2)(图 3A)。JAK2/STAT3通路广泛参与细胞增殖、分化等生物学效应;抑制JAK2/STAT3通路减少了白质损伤导致的大鼠神经元的凋亡[18],而激活JAK2能调节T细胞分化[19],因此,miR-676-5p/JAK2可能介导了神经细胞的存活及免疫调节作用。腹侧上调的靶基因则特异地参与生物合成过程等(如miR-183/IRF1) (图 3A)。在急性应激下,哺乳动物海马中miR-183的表达显著升高[20]。而miR-183、miR-182和miR-96-5p作为同一家族成员均可靶向神经肽基因,从而调节神经元生理活性和氧化应激等[19]。充分体现了基因调节系统中的协同性。此外,本研究发现海马腹侧下调miR-183的10个下游靶点(图 2B)。其中,IFR1可以调节多种免疫相关基因的表达[21]MMP1是加重视神经头部损害的危险因素[22]ITGA3是突触前膜上的黏附受体,调节突触神经肌肉接头的完整性[23]。由此推测,表达下调的miRNA-183,可以促进与神经及免疫调节有关基因的表达,从而抵抗氧化应激带来的神经损伤。此外,腹侧下调的miR-183、miR-96-5p和背侧下调的miR-96-5p、miR-205的共同靶点均为MMP1,提示仔猪海马背、腹侧通过调节不同的miRNAs靶向相关基因共同参与对氧化应激相关神经性疾病的调控。

miRNA靶向下调的基因中,主要具有对细胞凋亡、信号传导等方面的调控作用。其中,离子运输、稳态调节等是背侧下调靶基因的特有功能,而腹侧下调的靶基因则特定地参与对细胞增殖、免疫反应、蛋白转运等生理过程的调控(如miR-133-5p/TFRC) (图 3B)。在敲除肝素诱导的神经疾病模型中,TFRC表达增加[24],而TFRC可以促进细胞增殖转移[25]。因此,海马腹侧上调miR-133a-5p靶向下调TFRC可能通过减少肿瘤细胞的增殖转移对神经疾病进行调控。

为深入挖掘仔猪海马中参与氧化应激调节的主要靶基因,将表达最多的20条功能注释中|log2FC|>1,P < 0.05的DE mRNAs与miRNA-mRNA网络进行匹配,发现了背侧3个差异表达的靶基因(表 3)。其中,MX1是一种抗病毒基因,可以抵抗猪瘟病毒等[26]PDK4的激活可以促进小鼠肝的再生[27]IFIT2可以抵抗小鼠肝炎病毒诱发的脑炎[28]。由此推测,miR-676-5p和miR-216很可能在氧化应激状态下通过降低自身的表达量,诱发对抗外界刺激作用的靶基因表达,直接或间接地发挥抗病毒、抗刺激作用,从而减轻机体细胞的损伤。但它们是否参与了对海马神经元凋亡及免疫信号通路的调节有待进一步研究。

表 3 氧化应激状态下,仔猪脑海马背侧差异极显著的DE mRNAs Table 3 Under oxidative stress, the DE mRNAs in the dorsal hippocampus of piglets are significantly different

综上可见,在氧化应激状态下,仔猪海马背、腹侧区域均发挥了调控细胞凋亡、稳态平衡和对外界的应激反应等方面的功能,同时,也具有区域特异性反应。背侧脑海马大量miRNAs表达下降,增加了抗应激靶基因的表达,以达到抵抗外界刺激、提高生物活性、维持机体稳态的作用。而腹侧脑海马区下调的miRNAs大多增加了与神经相关疾病基因的表达,暗示其对神经性疾病的调节。

2.5 氧化应激状态下,海马背、腹侧区域DE miRNAs靶向DE mRNAs的通路推演

本研究发现,miR-216、miR-205和miR-429靶向上调的DDX58富集于丙型肝炎感染信号通路和RIG-I样受体信号通路;miR-7138-5p和miR-490-5p靶向上调的PPP3CA富集于钙信号通路。有研究显示,丙型肝炎病毒感染可引发中枢和周围神经系统异常[29];RIG-I样受体信号通路的破坏,会抑制抗病毒反应,诱发神经症状,促进猪繁殖与呼吸综合征和猪瘟的感染[30-31];激活的钙信号通路可预防镉诱导的神经退行性疾病[32]。这表明在氧化应激状态下,miR-216、miR-205和miR-429均可能靶向上调DDX58,促进RIG-I样受体信号通路的激活;miR-7138-5p和miR-490-5p则可以上调PPP3CA,激活钙信号通路,以此来消除由病毒等其他刺激引起的氧化应激,发挥神经保护作用。

此外,本研究还发现海马背、腹侧少量上调的miRNA靶向下调的mRNA均主要富集在ECM受体相互作用、阿米巴病等通路中。ECM受体不仅影响细胞信号传导,还有助于维持神经突触结构,具有介导学习和记忆能力[33];阿米巴病信号通路则直接与中枢神经系统疾病相关[34]。因此,ECM受体相互作用和阿米巴病信号通路很可能在氧化应激诱导的脑神经疾病中起重要作用。以上分析显示,仔猪海马背、腹侧的miRNA-mRNA对氧化应激反应表现共性调节功能的同时,也发挥了独特的与神经系统相关的调控作用。

3 讨论

机体氧化和抗氧化系统失衡将导致氧化应激。氧化应激造成的机体损伤是动物防御机能下降和疾病发生与发展的重要因素。miRNA是新兴ROS化学分子介体[35],具有高保守性,是生物基因调控网络中的重要组成成分。它们广泛参与胚胎早期发育、细胞增殖分化等生理过程[36]。由此推测,miRNA很可能通过调节靶基因参与氧化应激及抗氧化过程。

本研究通过系统开展氧化应激仔猪脑海马背、腹侧差异表达miRNA和mRNA的关联分析,发现海马背侧7个已知miRNAs和54个基因之间存在66个互作(图 1),腹侧7个已知miRNAs和37个基因之间存在41个互作(图 2)。氧化应激导致仔猪脑海马背、腹侧区域均有大量的miRNA下调,这与前人报道的在慢性应激状态下,大鼠海马中表达下调的miRNA多于表达增加的miRNA[20]相似。miRNA靶向的11个基因(POSTNJAK2、TFRCIFR1、MMP1、ITGA3、MX1、IFIT2、PDK4、DDX58和PPP3CA)均直接或间接地参与了氧化应激或抗应激损伤的相关路径[35, 37-38]

结合GO分类和KEGG分析进行功能推演,本研究发现,7对在氧化应激状态下差异表达的miRNA-mRNA(海马背侧的miR-676-5p/JAK2、miR-205/MMP1和海马腹侧的miR-133a-5p/TFRC、miR-183/MMP1、miR-183/ITGA3、miR-96-5p/ITGA3及miR-96-5p/MMP1)很可能是神经性疾病调节的潜在靶点。此外,miR-452被发现在海马背侧区域上调,在腹侧区域下调。下调的miR-452可以增强神经胶质瘤细胞的侵袭能力[39];而miR-452的过表达能作用不同的靶点抑制肺癌、胰腺癌[39-40]等癌细胞的迁移和侵袭,由此提示,海马不同区域的相同miRNA可能采用不同的表达模式参与对氧化应激的调节。与此同时,本研究发现海马背侧下调的miR-216与miR-205,miR-490-5p与miR-7138-5p,miR-490-5p与miR-96-5p,miR-96-5p与miR-205均有共同靶向上调的基因,这极大地丰富了氧化应激相关的神经性疾病的调节信息。

4 结论

通过对氧化应激仔猪海马背、腹侧差异表达miRNA-mRNA的关联分析,表明在氧化应激状态下,海马背、腹侧能通过差异表达miRNAs以协同或发散的方式对mRNAs进行负向调节,并体现了海马背、腹侧参与氧化应激调节的共性与特性。GO和KEGG的分析进一步揭示miR-676-5p/JAK2、miR-205/MMP1、miR-133a-5p/TFRC、miR-183/MMP1、miR-183/ITGA3、miR-96-5p/ITGA3及miR-96-5p/MMP1可能是参与氧化应激调节的重要靶标,从而为氧化应激相关的神经性疾病临床防控和治疗提供了参考。

参考文献
[1] MOU D, WANG J, LIU H, et al. Maternal methyl donor supplementation during gestation counteracts bisphenol A-induced oxidative stress in sows and offspring[J]. Nutrition, 2018, 45: 76–84. DOI: 10.1016/j.nut.2017.03.012
[2] BARATA L, ARRUZA L, RODRÍGUEZ M J, et al. Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage[J]. Neuropharmacology, 2019, 146: 1–11. DOI: 10.1016/j.neuropharm.2018.11.020
[3] MÜLLER M, KUIPERIJ H B, CLAASSEN J A, et al. microRNAs in Alzheimer's disease: differential expression in hippocampus and cell-free cerebrospinal fluid[J]. Neurobiol Aging, 2014, 35(1): 152–158. DOI: 10.1016/j.neurobiolaging.2013.07.005
[4] FANSELOW M S, DONG H W. Are the dorsal and ventral hippocampus functionally distinct structures?[J]. Neuron, 2010, 65(1): 7–19. DOI: 10.1016/j.neuron.2009.11.031
[5] KELLY M P. A role for phosphodiesterase 11A (PDE11A) in the formation of social memories and the stabilization of mood[J]. Adv Neurobiol, 2017, 17: 201–230.
[6] PONTES A H, DE SOUSA M V. Mass spectrometry-based approaches to understand the molecular basis of memory[J]. Front Chem, 2016, 4: 40.
[7] LIU K K L, BARTSCH R P, MA Q D Y, et al. Major component analysis of dynamic networks of physiologic organ interactions[J]. J Phys: Conf Ser, 2015, 640: 012013. DOI: 10.1088/1742-6596/640/1/012013
[8] IVANOV P C, LIU K K L, BARTSCH R P. Focus on the emerging new fields of network physiology and network medicine[J]. New J Phys, 2016, 18: 100201. DOI: 10.1088/1367-2630/18/10/100201
[9] WANG Y P, LI K B. Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data[J]. BMC Genomics, 2009, 10: 218. DOI: 10.1186/1471-2164-10-218
[10] RAMAMOORTHY M, SYKORA P, SCHEIBYE-KNUDSEN M, et al. Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype[J]. Free Radic Biol Med, 2012, 53(6): 1371–1380. DOI: 10.1016/j.freeradbiomed.2012.07.018
[11] WANG X H, CHEN Q Q, YI S, et al. The microRNAs let-7 and miR-9 down-regulate the axon-guidance genes Ntn1 and Dcc during peripheral nerve regeneration[J]. J Biol Chem, 2019, 294(17): 6695. DOI: 10.1074/jbc.AAC119.008724
[12] LI H J, SUN Z L, PAN Y B, et al. Inhibition of miRNA-21 promotes retinal ganglion cell survival and visual function by modulating Müller cell gliosis after optic nerve crush[J]. Exp Cell Res, 2019, 375(2): 10–19. DOI: 10.1016/j.yexcr.2019.01.009
[13] YANG B Y, MEI H Y, ZUO F Y, et al. Expression of microRNAs associated with oxidative stress in the hippocampus of piglets[J]. Genes Genom, 2017, 39(7): 701–712. DOI: 10.1007/s13258-017-0537-4
[14] WU L, LI M, WANG J X, et al. CytoCtrlAnalyser: a Cytoscape app for biomolecular network controllability analysis[J]. Bioinformatics, 2018, 34(8): 1428–1430. DOI: 10.1093/bioinformatics/btx764
[15] LUO W J, BROUWER C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization[J]. Bioinformatics, 2013, 29(14): 1830–1831. DOI: 10.1093/bioinformatics/btt285
[16] CHEN J, LI C, ZHU Y C, et al. Integrating GO and KEGG terms to characterize and predict acute myeloid leukemia-related genes[J]. Hematology, 2015, 20(6): 336–342. DOI: 10.1179/1607845414Y.0000000209
[17] PARK S Y, PIAO Y J, JEONG K J, et al. Periostin (POSTN) regulates tumor resistance to antiangiogenic therapy in Glioma models[J]. Mol Cancer Ther, 2016, 15(9): 2187–2197. DOI: 10.1158/1535-7163.MCT-15-0427
[18] XUAN Y H, LIU S S, LI Y, et al. Short-term vagus nerve stimulation reduces myocardial apoptosis by downregulating microRNA-205 in rats with chronic heart failure[J]. Mol Med Rep, 2017, 16(5): 5847–5854. DOI: 10.3892/mmr.2017.7344
[19] REGLODI D, RENAUD J, TAMAS A, et al. Novel tactics for neuroprotection in Parkinson's disease: role of antibiotics, polyphenols and neuropeptides[J]. Prog Neurobiol, 2017, 155: 120–148. DOI: 10.1016/j.pneurobio.2015.10.004
[20] MEERSON A, CACHEAUX L, GOOSENS K A, et al. Changes in brain microRNAs contribute to cholinergic stress reactions[J]. J Mol Neurosci, 2010, 40(1-2): 47–55. DOI: 10.1007/s12031-009-9252-1
[21] ZENKE K, MUROI M, TANAMOTO K I. IRF1 supports DNA binding of STAT1 by promoting its phosphorylation[J]. Immunol Cell Biol, 2018, 96(10): 1095–1103. DOI: 10.1111/imcb.12185
[22] MARKIEWICZ L, PYTEL D, MUCHA B, et al. Altered expression levels of MMP1, MMP9, MMP12, TIMP1, and IL-1β as a risk factor for the elevated IOP and optic nerve head damage in the primary open-angle glaucoma patients[J]. Biomed Res Int, 2015, 2015: 812503.
[23] ROSS J A, WEBSTER R G, LECHERTIER T, et al. Multiple roles of integrin-α3 at the neuromuscular junction[J]. J Cell Sci, 2017, 130(10): 1772–1784.
[24] JIANG R W, HUA C, WAN Y K, et al. Hephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain[J]. J Nutr, 2015, 145(5): 1003–1009. DOI: 10.3945/jn.114.207316
[25] HUANG Y K, HUANG J N, HUANG Y, et al. TFRC promotes epithelial ovarian cancer cell proliferation and metastasis via up-regulation of AXIN2 expression[J]. Am J Cancer Res, 2020, 10(1): 131–147.
[26] ZHOU J, CHEN J, ZHANG X M, et al. Porcine mx1 protein inhibits classical swine fever virus replication by targeting nonstructural protein NS5B[J]. J Virol, 2018, 92(7): e02147–17.
[27] ZHAO Y L, TRAN M, WANG L, et al. PDK4-deficiency reprograms intrahepatic glucose and lipid metabolism to facilitate liver regeneration in mice[J]. Hepatol Commun, 2020, 4(4): 504–517. DOI: 10.1002/hep4.1484
[28] BUTCHI N B, HINTON D R, STOHLMAN S A, et al. Ifit2 deficiency results in uncontrolled neurotropic coronavirus replication and enhanced encephalitis via impaired alpha/beta interferon induction in macrophages[J]. J Virol, 2014, 88(2): 1051–1064. DOI: 10.1128/JVI.02272-13
[29] KÖŞKDERELIOĞLU A, ORTAN P, ARI A, et al. Screening for electrophysiological abnormalities in chronic hepatitis C infection: peripheral neuropathy and optic neuropathy[J]. Noro Psikiyatr Ars, 2016, 53(1): 23–27. DOI: 10.5152/npa.2015.10218
[30] HUANG C, DU Y P, YU Z B, et al. Highly pathogenic porcine reproductive and respiratory syndrome virus Nsp4 cleaves VISA to impair antiviral responses mediated by RIG-I-like receptors[J]. Sci Rep, 2016, 6: 28497. DOI: 10.1038/srep28497
[31] PEI J J, DENG J R, YE Z D, et al. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells[J]. Autophagy, 2016, 12(10): 1738–1758. DOI: 10.1080/15548627.2016.1196318
[32] YUAN Y, JIANG C Y, XU H, et al. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway[J]. PLoS One, 2013, 8(5): e64330. DOI: 10.1371/journal.pone.0064330
[33] WRIGHT J W, HARDING J W. Contributions of matrix metalloproteinases to neural plasticity, habituation, associative learning and drug addiction[J]. Neural Plast, 2009, 2009: 579382.
[34] PITTELLA J E H. Pathology of CNS parasitic infections[J]. Handb Clin Neurol, 2013, 114: 65–88.
[35] PETTERSEN I K N, TUSUBIRA D, ASHRAFI H, et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation[J]. Mitochondrion, 2019, 49: 97–110. DOI: 10.1016/j.mito.2019.07.009
[36] STITTRICH A B, HAFTMANN C, SGOUROUDIS E, et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes[J]. Nat Immunol, 2010, 11(11): 1057–1062. DOI: 10.1038/ni.1945
[37] LI G, LI M, HU J, et al. The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis[J]. Oncogene, 2017, 36(7): 989–998. DOI: 10.1038/onc.2016.265
[38] MIZUGUCHI T, NAKASHIMA M, KATO M, et al. Loss-of-function and gain-of-function mutations in PPP3CA cause two distinct disorders[J]. Hum Mol Genet, 2018, 27(8): 1421–1433. DOI: 10.1093/hmg/ddy052
[39] HE Z, XIA Y, PAN C, et al. Up-Regulation of MiR-452 inhibits metastasis of non-small cell lung cancer by regulating BMI1[J]. Cell Physiol Biochem, 2015, 37(1): 387–398. DOI: 10.1159/000430362
[40] LI H Y, WU Y, LI P X. microRNA-452 suppresses pancreatic cancer migration and invasion by directly targeting B-cell-specific Moloney murine leukemia virus insertion site 1[J]. Oncol Lett, 2017, 14(3): 3235–3242. DOI: 10.3892/ol.2017.6566