低氧适应性的研究在人类医学[1-4]、动植物生理[5-7]和航空航天[8-9]等方面都有着重要的意义。高原地区是天然的低氧环境,藏猪是典型的地方小型猪种,长期生存于低温、缺氧、强紫外线等恶劣环境条件的高原地区,已形成了能够稳定遗传的高原低氧适应机制[10-11],是研究高原低氧适应性的理想猪种。肾是人体的重要器官,随着对心肾综合征和肾移植等方面的研究,肾在低氧环境中的适应机制已成为研究者关注的焦点之一[12-15]。正常生理状态下,肾组织含氧量受到严格调控,持续暴露在低氧的环境中,氧化应激会引起肾损伤[16],血管内皮细胞肿胀,小动脉壁增厚,肾小管发生进行性间质损伤和炎症,引起机体高血压和红细胞增多[17]。缺氧会刺激肾持续分泌激素,刺激促红细胞生成素的表达,同时调节肾血流量和肾氧张力[18]。Yu等[19]研究发现,体外低氧诱导的肾小管,通过促进肾小管上皮细胞增殖和改善线粒体功能,在急性肾小管损伤中具有保护作用。Yan和Xu[20]研究表明,促红细胞生成素(EPO)主要由肾分泌,慢性肾疾病发生时常伴随EPO分泌不足,导致贫血。
本研究以高原地区藏猪和大约克猪的肾组织为研究对象,采用iTRAQ技术分析不同品种猪蛋白表达差异情况,从蛋白水平上对低氧适应机制进行研究。为进一步研究猪高原低氧适应机制提供理论基础。
1 材料与方法 1.1 试验材料试验动物选择藏猪与大约克猪,均饲养于西藏农牧学院实习牧场(海拔3 000 m),为无亲缘关系的健康去势公猪,按自由采食方式开展同期饲养,饲养至180日龄后每个品种随机挑选生长情况相近的试验动物各9头进行屠宰,藏猪(n=9)体重为(33.12±2.15) kg,大约克猪(n=9)体重为(77.49±1.40) kg,分别取其肾组织,液氮速冻后转入-80 ℃冰箱进行保存。
1.2 肾组织蛋白样品处理及质量检测两个品种猪的肾组织总蛋白提取使用哺乳动物组织总蛋白提取试剂盒(北京邦菲生物科技有限公司,AP0601-50)和Bradford蛋白浓度测定试剂盒(北京鼎国昌盛生物技术有限责任公司,KMS01)进行蛋白定量,利用SDS-PAGE电泳检测蛋白样品质量。
1.3 肾组织蛋白酶解及iTRAQ标记分级1.3.1 蛋白酶解 取已定量的蛋白200 μg溶液至离心管中,加入5 μL 1 mol·L-1二硫苏糖醇(DTT)溶液混匀,37 ℃放置1 h,之后室温条件下加入20 μL 1 mol·L-1碘代乙酰胺(IAA)溶液并放置1 h,随后移入超滤管中离心弃收集液,在超滤管中按照蛋白和酶100∶1的比例加入Trypsin,37 ℃酶解不超过12 h。
1.3.2 iTRAQ标记分级 各组样品肽段取100 μg,使用iTRAQ Reagent-8plex Multiplex Kit(AB SCIEX, 美国)进行标记。在高pH条件下进行C18色谱柱的HPLC分级,5 min开始收集洗脱物至离心管中,真空冷冻离心干燥,样品使用5 μL的甲酸(FA)重溶。分离梯度见表 1。
![]() |
表 1 高pH反相色谱分离梯度 Table 1 High pH reversed phase chromatographic separation gradient |
样品使用纳升流速HPLC液相系统分离,以95%的A液(0.1%FA,H2O)平衡,样品上样至质谱颈柱,经分析柱分离,液相色谱洗脱梯度见表 2。
![]() |
表 2 液相色谱洗脱梯度参数 Table 2 Liquid chromatographic elution gradient parameters |
经毛细管高效液相色谱分离后用质谱仪Orbitrap Fusion Lumos(Thermo Scientific)进行质谱分析。
1.5 数据库与数据分析使用搜库软件Proteome Discoverer对所得数据在数据库Uniprot_Sus_scrofa(下载于2019年1月2日,共49 003条序列)中进行搜索,对所得肽段数据以错误发生率(FDR)≤0.01进行过滤后,进行肽段的识别鉴定以及对肽段报告离子峰强度值进行定量分析。
1.6 差异蛋白的GO和KEGG富集分析鉴定出的全部蛋白以FC>1.2或 < 0.833且P < 0.05的条件进行筛选。使用网站Metascape(http://metascape.org/gp/index.html#/main/step1)对所获得的DEPs进行GO和KEGG分析。此时筛选P < 0.05即差异显著的通路以待后续分析。
2 结果 2.1 肾组织蛋白定量标准曲线对藏猪与大约克猪肾组织总蛋白进行定量分析,标准曲线绘制结果中计算出标准曲线相关系数R2>0.9(图 1),即相关性良好,符合下一步试验要求。
![]() |
图 1 蛋白定量标准曲线 Fig. 1 Protein quantitative standard curve |
根据标准曲线计算各蛋白样品的浓度和电泳体积进行SDS-PAGE电泳,结果显示,电泳条带清晰,无降解(图 2),所提取总蛋白质可以满足后续的试验。
![]() |
T1、T2、T3.藏猪样品;Y1、Y2、Y3.大约克猪样品 T1, T2, T3.The samples of Tibetan pig; Y1, Y2, Y3. The samples of Yorkshire pig 图 2 SDS-PAGE电泳图 Fig. 2 SDS-PAGE electrophoresis diagram |
在iTRAQ项目中匹配到肽段的二级谱图数目总数为81 060个,共计获得22 706个肽段,对其进行过滤后,在FDR≤0.01的条件下,共计获得4 370个蛋白。在蛋白质质量分布上,60.89%的蛋白质分布在10~60 ku之间(图 3);肽段序列覆盖率的分布中,肽段序列覆盖率超过10%的蛋白占比为51.78%,超过20%的蛋白质比例为26.06%(图 4),表明在所有的鉴定蛋白中,该数据中肽段覆盖率较高且所鉴定蛋白的序列覆盖情况较好。
![]() |
底部数字为蛋白质相对分子质量(ku),百分比数字为肾组织中蛋白质分子质量的分布 The bottom numbers are the relative molecular weight of protein(ku), and the percentage numbers are the distribution of molecular weight of protein in kidney tissue 图 3 蛋白质相对分子质量分布 Fig. 3 Relative molecular weight distribution of proteins |
![]() |
图 4 蛋白质序列覆盖度分布图 Fig. 4 The distribution of protein sequence coverage |
以差异倍数FC>1.2或<0.833,P<0.05为条件对藏猪与大约克猪的肾组织差异蛋白进行筛选,得到181个DEPs,其中上调138个,下调43个。差异表达蛋白的聚类图(图 5)显示,两品种内的生物学重复性较好,藏猪作为典型的高原适应性动物与大约克猪有着明显的差异。
![]() |
图 5 181个DEPs聚类图 Fig. 5 The clustering map of 181 DEPs |
使用Metascape对藏猪与大约克猪肾组织的DEPs进行GO功能注释。在181个DEPs中,有152个在Metascape数据库中被注释,GO条目被分为生物过程(BP)、分子功能(MF)和细胞组成(CC)3个部分(图 6)。进一步KEGG pathway富集分析得到DEPs功能分布在13个通路中(图 7)。其中,62个DEPs富集在小分子分解代谢过程(small molecule catabolic process),氨基酸代谢过程(alpha-amino acid meta bolic process),辅因子代谢过程(cofactor metabolic process)、药物分解过程(drug catabolic process),缬氨酸、亮氨酸和异亮氨酸降解(valine, leucine and isoleucine degradation),碳代谢(carbon metabolism),乙醛酸和二羧酸代谢(glyoxylate and dicarboxylate metabolism),氨基糖和核苷酸糖代谢(amino sugar and nucleotide sugar metabolism)等代谢相关的条目与通路中。46个DEPs富集在氧化还原酶活性(oxidoreductase activity)、C-酰基转移酶活性(C-acyltransferase activity)、3-羟基酰基-CoA脱氢酶活性(3-hydroxyacyl-CoA dehydrogenase activity)、裂合酶活性(lyase activity)等与酶活性相关的条目。51个DEPs富集在伤口愈合(wound healing)、血压调节(regulation of blood pressure)、线粒体基质(mitochondrial matrix)、PPAR信号通路(PPAR signaling pathway)、补体和凝血级联信号通路(complement and coagulation cascades)、HIF-1信号通路(HIF-1 signaling pathway)等与低氧适应相关的条目与通路中。
![]() |
BP.生物过程;MF.分子功能;CC.细胞组分 BP. Biological process; MF. Molecular function; CC. Cellular component 图 6 藏猪与大约克猪肾组织中差异表达蛋白GO分析 Fig. 6 GO analysis of differentially expressed proteins in kidney tissues of Tibetan pigs and Yorkshire pigs |
![]() |
图 7 藏猪与大约克猪肾组织差异表达蛋白通路分析 Fig. 7 Pathway analysis of differentially expressed proteins in kidney tissues of Tibetan pigs and Yorkshire pigs |
通过对DEPs功能分析,在补体和凝血级联信号通路、HIF-1信号通路中筛选出5个与低氧适应相关的DEPs,见表 3。
![]() |
表 3 重要DEPs分析 Table 3 The important DEPs analysis |
本试验以具有稳定遗传低氧适应特征的藏猪和通过应激性调节适应高原低氧环境的大约克猪为研究对象,利用iTRAQ技术对高原饲养的两个品种猪的肾组织进行差异表达蛋白筛选,筛选得到181个DEPs,其中在藏猪中上调的蛋白质有138个,下调的蛋白质有43个。筛选出的181个DEPs分别富集在与代谢、酶活性、低氧适应等相关的条目与通路中,推测这些蛋白在维持机体低氧环境下的供氧与供能起到重要调节作用。Navarro-Yepes等[21]研究发现,当机体持续暴露在低氧环境中,组织细胞因长时间的供氧缺乏导致氧化应激,诱导细胞凋亡,为维持各组织器官的生理稳态,机体会发生一系列氧化应激和自噬调节来维持组织细胞生存。持续低氧环境下,诱导激活HIF-1信号通路,可提高糖酵解的效率,降低线粒体损伤和凋亡[22-24],同时可增强细胞增殖活力、促进血管生成[25],以保障机体氧气和能量的供应与代谢,维持组织稳态。
在缺氧条件下,呼吸、循环、代谢等系统的组织器官对机体氧化应激进行调节[26-27],激活补体和凝血级联、HIF-1等信号通路,诱导多种蛋白参与机体调节[28-30]。本研究通过GO与KEGG对DEPs进行功能富集和分析,发现其中有5个重要的DEPs在激活补体和凝血级联信号通路、HIF-1信号通路上富集,分别为:CD59、A2M、eNOS、CDKN1B、PGK1。CD59作为膜攻击复合物形成的抑制剂来调节补体激活,在低氧条件下内皮细胞CD59表达的剂量呈现依赖性增加[31],CD59通过补体的活化在保护红细胞中起重要作用[32]。A2M在血管外膜成纤维细胞和内皮细胞中表达,在血管平滑肌中起调控作用,血管重塑的过程中起到重要作用[33]。eNOS是钙依赖性一氧化氮合酶,与肺和血管中碱性一氧化氮的合成有关,在调控血管张力、血压和血流中起着重要作用[34]。张博等[35]研究发现,高原猪的eNOS基因表达量极显著高于低地猪,低地猪引进高原后心肌组织中eNOS基因表达增加,舒张血管,提高血流量,维持机体供氧[36-37]。CDKN1B控制细胞G1期,CDKN1B由缺氧诱导,引起机体细胞周期停滞,成为G1晚期的氧依赖性限制点[38-39],当心肌微血管内皮细胞受到缺血再灌注损伤,上调表达CDKN1B蛋白,起到参与保护血管内皮的作用[40]。PGK1是调节糖酵解的蛋白激酶,在糖酵解的第二阶段起限速作用,调节能量产生和氧化还原平衡[41]。缺氧条件下PGK1表达上升,促进糖酵解,并协调糖酵解和线粒体代谢,为细胞代谢提供ATP[42]。
4 结论综上所述,通过对两个猪种肾组织DEPs进行筛选与功能分析,发现它们分别富集在代谢、酶活性、低氧适应性等相关条目与通路中。这些DEPs在血管内皮保护,维持血管张力和血压,维持低氧环境中机体能量代谢等生理调节中起到重要作用,维持机体组织在低氧环境下的机体血液动力学和组织稳态,保障机体氧气与能量的供应。同时,在激活补体和凝血级联信号通路和HIF-1信号通路中筛选出与低氧适应相关的5个重要DEPs(CD59、A2M、eNOS、CDKN1B、PGK1),为进一步研究猪低氧适应性提供理论依据。
[1] | COLOMBO J S, JIA S H, D'SOUZA R N. Modeling hypoxia induced factors to treat pulpal inflammation and drive regeneration[J]. J Endod, 2020, 46(S9): S19–S25. |
[2] | JIN J, CHEN L, LIU G Q, et al. Proteomic analysis of anti-angiogenic effects by conbercept in the mice with oxygen induced retinopathy[J]. Int J Ophthalmol, 2020, 13(12): 1844–1853. DOI: 10.18240/ijo.2020.12.02 |
[3] | HU M M, ZHANG T M, GU M, et al. Pretreatment to posttreatment hypoxia inducible factor-1α ratios as a potentially predictive marker for first-line treatment in nonsmall cell lung cancer patients without known driver mutations[J]. Genet Test Mol Bioma, 2020, 24(12): 798–803. DOI: 10.1089/gtmb.2020.0173 |
[4] | SHI Y, LIU Z, ZHANG Q, et al. Phosphorylation of seryl-tRNA synthetase by ATM/ATR is essential for hypoxia-induced angiogenesis[J]. PLoS Biol, 2020, 18(12): e3000991. DOI: 10.1371/journal.pbio.3000991 |
[5] | BARCLAY H, MUKERJI S, KAYSER B, et al. Respiratory alkalinization and posterior cerebral artery dilatation predict acute mountain sickness severity during 10 h normobaric hypoxia[J]. Exp Physiol, 2021, 106(1): 175–190. DOI: 10.1113/EP088938 |
[6] | NORTON C E, JEMIGAN N L, WALKER B R, et al. Membrane depolarization is required for pressure-dependent pulmonary arterial tone but not enhanced vasoconstriction to endothelin-1 following chronic hypoxia[J]. Pulm Circ, 2020, 10(4): 1–10. |
[7] | GAMBOA M. Hemocyanin and hexamerins expression in response to hypoxia in stoneflies (Plecoptera, Insecta)[J]. Arch Insect Biochem Physiol, 2020, 105(3): e21743. |
[8] | WILKES M, LONG G, MASSEY H, et al. Cognitive function in simulated paragliding flight[J]. Aerosp Med Hum Perform, 2019, 90(10): 851–859. DOI: 10.3357/AMHP.5428.2019 |
[9] | VARIS N, PARKKOLA K I, LEINO T K. Hypoxia hangover and flight performance after normobaric hypoxia exposure in a hawk simulator[J]. Aerosp Med Hum Perform, 2019, 90(8): 720–724. DOI: 10.3357/AMHP.5289.2019 |
[10] | STORZ J F, SCOTT G R. Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates[J]. Comp Biochem Physiol A Mol Integr Physiol, 2020, 253: 110865. |
[11] | ZHANG B, CHAMBA Y, SHANG P, et al. Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in high-altitude adaptation in the Tibetan pig[J]. Sci Rep, 2017, 71(1): 3654. |
[12] | BARRETT H L, DONAGHUE K C, FORBES J M. Going in early: hypoxia as a target for kidney disease prevention in diabetes?[J]. Diabetes, 2020, 69(12): 2578–2580. DOI: 10.2337/dbi20-0037 |
[13] | KIM D J K, DREW R C, SICA C T, et al. Renal medullary oxygenation decreases with lower body negative pressure in healthy young adults[J]. J Appl Physiol, 2021, 130(1): 48–56. DOI: 10.1152/japplphysiol.00739.2019 |
[14] | YAP D Y H, MCMAHON L P, HAO C M, et al. Recommendations by the Asian Pacific society of nephrology (APSN) on the appropriate use of HIF-PH inhibitors[J]. Nephrology (Carlton), 2021, 26(2): 105–118. DOI: 10.1111/nep.13835 |
[15] | LI X L, CHEN W H, FENG J F, et al. The effects of HIF-1α overexpression on renal injury, immune disorders and mitochondrial apoptotic pathways in renal ischemia/reperfusion rats[J]. Transl Androl Urol, 2020, 9(5): 2157–2165. DOI: 10.21037/tau-20-918 |
[16] | HONG S E, AN J H, YU S L, et al. Ceria-zirconia antioxidant nanoparticles attenuate hypoxia-induced acute kidney injury by restoring autophagy flux and alleviating mitochondrial damage[J]. J Biomed Nanotechnol, 2020, 16(7): 1144–1159. DOI: 10.1166/jbn.2020.2948 |
[17] | MAZZALI M, JEFFERSON J A, NI Z, et al. Microvascular and tubulointerstitial injury associated with chronic hypoxia-induced hypertension[J]. Kidney Int, 2003, 636(6): 2088–2093. |
[18] | PALUBISKI L M, O'HALLORAN K D, O'NEILL J. Renal physiological adaptation to high altitude: a systematic review[J]. Front Physiol, 2020, 11: 756. DOI: 10.3389/fphys.2020.00756 |
[19] | YU W J, ZENG H H, CHEN J Z, et al. miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury[J]. Clin Sci (Lond), 2020, 134(16): 2223–2234. DOI: 10.1042/CS20200288 |
[20] | YAN Z P, XU G S. A novel choice to correct inflammation-induced anemia in CKD: oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat[J]. Front Med (Lausanne), 2020, 7: 393. |
[21] | NAVARRO-YEPES J, BURNS M, ANANDHAN A, et al. Oxidative stress, redox signaling, and autophagy: cell death versus survival[J]. Antioxid Redox Signal, 2014, 21(1): 66–85. DOI: 10.1089/ars.2014.5837 |
[22] | GOURIOU Y, ALAM M R, HARHOUS Z, et al. ANT2-mediated ATP import into mitochondria protects against hypoxia lethal injury[J]. Cells, 2020, 9(12): 2542. DOI: 10.3390/cells9122542 |
[23] |
左清清, 姚娜, 董坤哲, 等. 低氧适应的线粒体调控机制研究进展[J]. 畜牧兽医学报, 2013, 44(7): 993–999.
ZUO Q Q, YAO N, DONG K Z, et al. How mitochondria play a role in hypoxic adaptation[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(7): 993–999. (in Chinese) |
[24] | ZHUANG Z N, GUO S, JI Z P, et al. Hypoxia preconditioning induced HIF-1α promotes glucose metabolism and protects mitochondria in liver I/R injury[J]. Clin Res Hepatol Gastroenterol, 2015, 39(5): 610–619. DOI: 10.1016/j.clinre.2014.12.012 |
[25] | MOOG P, SCHAMS R, SCHNEIDINGER A, et al. Effect of hypoxia preconditioned secretomes on lymphangiogenic and angiogenic sprouting: an in vitro analysis[J]. Biomedicines, 2020, 8(9): 365. DOI: 10.3390/biomedicines8090365 |
[26] | DUAN M Q, WANG Z M, GUO X Y, et al. Integrated analysis of transcriptomic and proteomic analyses reveals different metabolic patterns in the livers of Tibetan and Yorkshire pigs[J]. Asian-Australas J Anim Sci, 2020. DOI: 10.5713/ajas.20.0342 |
[27] | BALOGLU E, NONNENMACHER G, SELENINOVA A, et al. The role of hypoxia-induced modulation of alveolar epithelial Na+- transport in hypoxemia at high altitude[J]. Pulm Circ, 2020, 10(S1): 50–58. |
[28] | DU X, ZHANG R, YE S L, et al. Alterations of human plasma proteome profile on adaptation to high-altitude hypobaric hypoxia[J]. J Proteome Res, 2019, 18(5): 2021–2031. DOI: 10.1021/acs.jproteome.8b00911 |
[29] | ZHANG Y, ZHENG X T, ZHANG Y W, et al. Comparative transcriptomic and proteomic analyses provide insights into functional genes for hypoxic adaptation in embryos of Tibetan chickens[J]. Sci Rep, 2020, 10(1): 11213. DOI: 10.1038/s41598-020-68178-w |
[30] | FAN N, LIU C, REN M. Effect of different high altitudes on vascular endothelial function in healthy people[J]. Medicine (Baltimore), 2020, 99(11): e19292. DOI: 10.1097/MD.0000000000019292 |
[31] | KINDERLERER A R, STEINBERG R, JOHNS M, et al. Statin-induced expression of CD59 on vascular endothelium in hypoxia: a potential mechanism for the anti-inflammatory actions of statins in rheumatoid arthritis[J]. Arthritis Res Ther, 2006, 8(4): R130. DOI: 10.1186/ar2019 |
[32] | MEVORACH D. Paroxysmal nocturnal hemoglobinuria (PNH) and primary p.Cys89Tyr mutation in CD59: differences and similarities[J]. Mol Immunol, 2015, 67(1): 51–55. DOI: 10.1016/j.molimm.2015.03.005 |
[33] | RODRÍGUEZ-CALVO R, FERRÁN B, ALONSO J, et al. NR4A receptors up-regulate the antiproteinase alpha-2 macroglobulin (A2M) and modulate MMP-2 and MMP-9 in vascular smooth muscle cells[J]. Thromb Haemost, 2015, 113(6): 1323–1334. DOI: 10.1160/TH14-07-0645 |
[34] | LEÓN-VELARDE F, MEJÍA O. Gene expression in chronic high altitude diseases[J]. High Alt Med Biol, 2008, 9(2): 130–139. DOI: 10.1089/ham.2007.1077 |
[35] |
张博, 强巴央宗, 李庆岗, 等. 藏猪内皮型一氧化氮合酶(eNOS)基因的表达与低氧适应分析[J]. 中国农业大学学报, 2013, 18(5): 104–108.
ZHANG B, CHAMBA Y Z, LI Q G, et al. Endothelial nitric oxide synthase (eNOS) gene expression and hypoxic adaptation analysis in Tibetan pig[J]. Journal of China Agricultural University, 2013, 18(5): 104–108. (in Chinese) |
[36] |
张寿, 靳国恩, 常兰, 等. 牦牛和柴达木黄牛低氧通气反应及颈动脉体NO、NOS的比较研究[J]. 畜牧兽医学报, 2018, 49(10): 2276–2282.
ZHANG S, JIN G E, CHANG L, et al. Comparison on hypoxic ventilatory response and NO, NOS of carotid body between yaks and qaidam yellow cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(10): 2276–2282. DOI: 10.11843/j.issn.0366-6964.2018.10.024 (in Chinese) |
[37] |
王慧, 解卫平, 左祥荣, 等. 埃他卡林对长期低氧大鼠肺组织eNOS mRNA和蛋白表达的影响[J]. 中国药理学通报, 2009, 25(12): 1594–1598.
WANG H, XIE W P, ZUO X R, et al. Effects of iptakalim on the mRNA and protein expression of eNOS in pulmonary tissue of chronic hypoxic rats[J]. Chinese Pharmacological Bulletin, 2009, 25(12): 1594–1598. DOI: 10.3321/j.issn:1001-1978.2009.12.014 (in Chinese) |
[38] | GARDNER L B, LI Q, PARK M S, et al. Hypoxia inhibits G1/S transition through regulation of p27 expression[J]. J Biol Chem, 2001, 276(11): 7919–7926. DOI: 10.1074/jbc.M010189200 |
[39] | KRTOLICA A, KRUCHER N A, LUDLOW J W. Hypoxia-induced pRB hypophosphorylation results from downregulation of CDK and upregulation of PP1 activities[J]. Oncogene, 1998, 17(18): 2295–2304. DOI: 10.1038/sj.onc.1202159 |
[40] | LI Q, CUI H H, YANG Y J, et al. Quantitative proteomics analysis of ischemia/reperfusion injury-modulated proteins in cardiac microvascular endothelial cells and the protective role of tongxinluo[J]. Cell Physiol Biochem, 2017, 41(4): 1503–1518. DOI: 10.1159/000470806 |
[41] | BEUTLER E. PGK deficiency[J]. Br J Haematol, 2007, 136(1): 3–11. DOI: 10.1111/j.1365-2141.2006.06351.x |
[42] | SHAO F, YANG X Y, WANG W, et al. Associations of PGK1 promoter hypomethylation and PGK1-mediated PDHK1 phosphorylation with cancer stage and prognosis: a TCGA pan-cancer analysis[J]. Cancer Commun (Lond), 2019, 39(1): 54. DOI: 10.1186/s40880-019-0401-9 |