畜牧兽医学报  2021, Vol. 52 Issue (5): 1218-1229. DOI: 10.11843/j.issn.0366-6964.2021.05.008    PDF    
中国H9N2亚型禽流感病毒的流行现状
孙华鹏, 崔新鑫, 潘亮奇, 许丰祥, 李硕, 吴梅花, 朱旭辉, 于亚南, 李明亮, 刘杨, 瞿孝云, 廖明, 孙海亮     
人兽共患病防控制剂国家地方联合工程实验室, 岭南现代农业科学与技术广东省实验室, 广东省动物源性人兽共患病预防与控制重点实验室, 广州 510642
摘要:H9N2亚型禽流感病毒(AIVs)持续暴发和流行,不但给养禽业造成了重大损失,而且给公共卫生安全带来了潜在威胁。为了解中国H9N2 AIVs的流行现状,作者对H9N2亚型AIVs的抗原性、受体结合特性、致病性进行了总结,并且对2016—2020年的流行毒株进行了分析。结果显示,H9N2 AIVs在20多个省市地区流行,其中江西、广东、贵州、江苏等地区暴发次数较多。H9N2 AIVs主要感染鸡,少数感染水禽和小家禽,零星感染人。H9N2 AIVs主要位于h9.4.2.5分支,极少数毒株隶属h9.4.2.1分支。当前H9N2 AIVs受体的结合特性呈现双嗜性或优先结合α-2,6 SA受体。抗原相关位点处的氨基酸呈现出多态性,抗原性正在发生着改变。PB2、PA和HA蛋白获得了一些适应性突变,增强了其在哺乳动物细胞上的复制能力以及对小鼠的致病性,增加了其跨宿主传播感染哺乳动物甚者人的风险。综上所述,人们要加强对H9N2 AIVs流行情况的监测,密切关注其抗原特性及致病性的变化。
关键词H9N2亚型禽流感病毒    遗传演化    受体结合特性    致病性    抗原性    
The Epidemiology of H9N2 Avian Influenza Virus in China
SUN Huapeng, CUI Xinxin, PAN Liangqi, XU Fengxiang, LI Shuo, WU Meihua, ZHU Xuhui, YU Yanan, LI Mingliang, LIU Yang, QU Xiaoyun, LIAO Ming, SUN Hailiang     
National Local Joint Engineering Laboratory of Zoonosis Prevention and Control Agents, Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, Guangdong Key Laboratory for Prevention and Control of Zoonotic Diseases, Guangzhou 510642, China
Abstract: Outbreaks and circulation of H9N2 avian influenza viruses (AIVs) not only cause huge economic losses to poultry industry but also pose a potential threat to public health. In order to illustrate the current epidemiology of H9N2 AIVs in China, their antigenicity, receptor-binding feature and pathogenicity were summarized and viruses that circulated in 2016-2020 were analyzed. The results showed that H9N2 AIVs circulated in more than 20 provinces or cities of China, of which outbreaks occurred more in Jiangxi, Guangdong, Guizhou and Jiangsu. H9N2 AIVs were mainly isolated from chickens, and a few were isolated form waterfowl or small poultry. H9N2 AIVs were sporadically isolated from humans. Most of H9N2 AIVs fell into the clade of h9.4.2.5, and a few isolates belonged to the clade of h9.4.2.1. Current H9N2 AIVs exhibit dual receptor-binding tropism or preferentially binding to α-2-6 SA receptors. The amino acids at the antigen-related sites are polymorphic and the antigenicity is undergoing changes. Some adaptation mutations in PB2, PA and HA protein which enhancing viruses' replication in mammalian cells and their pathogenicity to mice, were acquired, and those increased the risk of viruses to break through species-barriers to infect other mammals including human. Taken together, the surveillance of H9N2 AIVs and monitoring their variation of antigenicity and pathogenicity should be strengthened.
Key words: H9N2 AIV    evolution    receptor    pathogenicity    antigenicity    

1992年, H9N2禽流感病毒(AIV)在广东地区首次暴发,随后向其他地区蔓延[1],1998年,迅速扩散到中国大部分省份[2],已成为鸡群中流行的禽流感病毒的主要亚型[3]。H9N2 AIV不但给养禽业造成了巨大的经济损失,而且跨宿主传播感染哺乳动物和人,给公共卫生安全构成严重威胁。1998年,从香港地区猪身上分离到H9N2 AIV,随之陆续有猪感染H9N2 AIV的报道[4-7]。1998年,首次出现人感染H9N2 AIV的病例[8],近年来不断有人感染H9N2 AIV的报道[9-12],血清学研究结果表明从事家禽行业的人群H9N2 AIV抗体率高达15%[13-15]。据WHO统计,2015年12月—2020年8月28日,中国已经累计33人感染H9N2 AIV。另外,新型H7N9和H10N8 AIV的内部基因均来自H9N2 AIV[16-17],导致人员感染并引起死亡,给公共卫生安全造成严重威胁。因此,加强对H9N2 AIV的监测,解析病毒致病性和跨宿主传播能力的变化,对于流感病毒的综合防控具有重要意义。

1 当前中国H9N2 AIV的流行分布

为了解中国H9N2 AIV的流行分布情况,作者对NCBI上2016—2020年,3 014株H9N2 AIV的分离时间、地域和宿主进行了分析。结果显示,2016—2020年,中国H9N2 AIV分布在山东、广东、安徽、广西、湖南、湖北、福建、江西、云南、江苏、浙江、重庆、黑龙江、山西、西藏、青海、宁夏、四川、北京、天津、上海、贵州等地。其中,H9N2 AIV分布较为密集地区为江西、广东、贵州、江苏,其次为云南、上海等(表 1)。从病毒的分离来源来看,2016—2020年,中国流行的H9N2 AIV主要来自鸡,少数来自鹌鹑、鸭、鹅,极少数分离自人。

表 1 2016—2020年中国H9N2禽流感病毒流行分布 Table 1 Distribution of H9N2 avian influenza virus in China in 2016-2020
2 当前中国H9N2 AIV HA和NA遗传演化分析

H9N2 AIV全球广泛分布,主要分为北美、欧亚两个分支,其中欧亚分支进一步分为BJ/94-like(或Y280-like)、G1-like、Y439-like、F/98-like等[18-19]。在中国,早期H9N2禽流感主要发生在香港和广东地区,1995—2000年传播到内陆地区[20]。参考HA进化分支方法[21],中国H9N2 AIV主要分布在h9.4.2分支。2007年之前,中国主要流行h9.4.2.1-h9.4.2.4分支的H9N2 AIV,2007年之后,h9.4.2.5分支的H9N2 AIV逐渐成为主流,大约在2010年,h9.4.2.6分支的H9N2 AIV也扩展到全国各地,但是h9.4.2.5分支的H9N2 AIV比h9.4.2.6分支更加普遍[19]。先前H9N2 AIV NA分为BJ/94-like、G1-like和Korea-like 3个分支[22-23]。现在中国流行的H9N2 AIV NA演化为4个分支(Clade 0~3),并且Clade 2分支的病毒在2010年后占据了主导地位[24]

为了解中国当前流行的H9N2 AIV的遗传演化情况,对NCBI上2016—2020年中国H9N2 AIV的HA、NA序列进行遗传演化分析,HA系统发育树结果表明,当前中国流行的H9N2 AIV绝大部分毒株隶属于h9.4.2.5分支,极少部分毒株隶属于h9.4.2.1分支,h9.4.2.6分支的病毒已经不再流行(图 1)。NA系统发育树结果表明,当前中国流行的H9N2 AIV绝大部分毒株隶属于BJ/94分支中的Clade 2亚分支(图 2)。综上所述,当前中国流行的H9N2 AIV主要为h9.4.2.5分支的病毒。

图 1 2016—2020年中国H9N2 AIV HA遗传演化 Fig. 1 Genetic evolution of H9N2 AIV HA in China from 2016 to 2020
图 2 2016—2020年中国H9N2 AIV NA遗传演化 Fig. 2 Genetic evolution of H9N2 AIV NA in China from 2016 to 2020
3 H9N2禽流感病毒受体结合特性分析

当前H9N2禽流感病毒受体结合特性主要表现为双嗜性和优先结合α-2, 6 SA受体,增强了病毒跨宿主传播感染哺乳动物的能力。中国早期的H9N2 AIV优先结合α-2, 3 SA受体[25-26],伴随着病毒的持续流行,病毒的受体结合特性也发生了变化,近些年流行的H9N2 AIV表现出双嗜性,并且结合α-2, 6 SA受体的能力高于结合α-2, 3 SA受体的能力,或者优先结合α-2, 6 SA受体的特性[26-32] (表 2)。

表 2 H9N2 AIV受体嗜性演化情况 Table 2 Phylogenetic evolution of H9N2 AIV receptor

HA蛋白的突变会改变病毒与受体的结合嗜性和结合强度。据报道,N313D、N496S、A180T/V、HA2-D46E突变增强病毒与α-2, 6 SA和α-2, 3 SA受体的能力[26, 33-34]。220-loop缺失以及Q226L突变增强病毒与α-2, 6 SA受体结合的能力[35-36],而Q227P突变增强病毒与α-2, 3 SA受体结合的能力。Q226L突变可以增强绝大多数H9N2 AIV结合α-2, 6 SA受体的能力,也有一些病毒虽然拥有226L,但是与α-2, 6 SA受体的结合能力较差[37-38]。中国2016—2020年流行的H9N2 AIV中,99.5% (2 998/ 3 014) 毒株的HA蛋白第226位为L,这表明当前中国流行的H9N2 AIV普遍增强与α-2, 6 SA受体结合的能力,增加病毒跨宿主感染哺乳动物的风险。

4 当前H9N2禽流感病毒抗原性分析

H9N2 AIV持续暴发给养禽业造成了巨大损失,为进一步防控H9N2 AIV,中国自1998年开始使用疫苗[39]。伴随H9N2 AIV持续流行,病毒的抗原也发生了一定的变化。1998—2007年, 全国分离的20株H9N2 AIV中,有18株病毒与A/CK/SD/6/96疫苗株的抗血清反应不佳(HI≤640),有4株2007年的病毒与A/CK/SH/F/98疫苗株抗血清反应较差(HI≤80)[40]。2012—2013年,山东分离的6株H9N2 AIV与A/CK/GD/SS/94疫苗株抗血清反应较差(HI≤320),与它们本血清反应良好(HI≥1 280)[41]。2002年和2006—2014年,上海分离的14株H9N2 AIV,虽然起源于A/CK/SH/F/98,但是与其存在抗原距离[42]。对2011—2014年分离的28株H9N2 AIV和疫苗株SH/F/98和GD/SS/94进行分析,结果显示,其中,4株病毒的抗血清与疫苗株H9N2 AIV及大多数分离株的反应较差[43]。对2013—2016年西南地区分离的12株H9N2 AIV与A/CK/GD/SS/94和A/CK/SD/6/96疫苗株进行分析,结果显示,2014—2016年,分离毒株比2013年分离毒株与疫苗株的抗原性差异更显著[44],2017—2018年,山东地区分离的H9N2 AIV与A/CK/SH/F/98和A/CK/GD/SS/94疫苗株抗血清反应中等或者较差[45]。综上所述,与早期病毒相比,近些年流行的H9N2 AIV已经出现了抗原变异的现象。

HA蛋白是诱导产生中和抗体的主要抗原。H9N2 AIV HA蛋白的一些位点也陆续被揭示与抗原变异相关。Kaverin定义了两个抗原位点,位点Ⅰ(147、165、170),位点Ⅱ(145、197、206),以及重叠位点(153、201、234)[46]。Wan等[47]揭示了两个独立的抗原位点“H9-1”(147、164、167、168)和“H9-2”(153、196、200、201、207)。HA蛋白218位糖基化位点缺失,同时,313位糖基化位点的出现增加了病毒与抗体的结合,中度阻止了病毒对同源抗血清中和作用的逃逸[48]。HA蛋白N166D突变降低了病毒对鸡的免疫原性[49],而D200N突变提高了病毒与单克隆抗体的反应滴度[50],N166D突变降低病毒鸡的弱抗体反应。另外,92、90、166、133、138、141、143、149、157、180、230、234、252等位点也被证实与抗原相关[46, 51-54](表 3)。

表 3 2016—2020年中国H9N2 AIV HA蛋白关键位点氨基酸的自然突变 Table 3 Natural mutations of amino acids at key sites of H9N2 AIV HA protein in China from 2016 to 2020

为了解中国当前H9N2 AIV抗原变异情况,对NCBI上2016—2020年中国H9N2 AIV序列进行分析,结果显示,在已经报道的抗原位点中,除了165和170位点的氨基酸比较保守外[46, 52],其他位点的氨基酸都出现了多态性,其中,90、141、143、147、163、234、235位点的氨基酸呈现双态性,剩余位点的氨基酸为3态及以上。218和313糖基化位点的缺失也改变病毒的抗原。综上所述,当前中国H9N2 AIV的抗原正在发生着改变。

5 H9N2禽流感病毒的致病性

当前,H9N2 AIV持续在鸡群暴发, 给养禽业造成了巨大损失。H9N2为低致病性AIV,但近年来,致病性和跨宿主传播能力呈现出增强的趋势,出现了感染猪和人的案例,给公共卫生安全带来一定的挑战。早期的H9N2 AIV毒株感染鸡,主要在呼吸道复制,偶尔可以从泄殖腔拭子中检测到病毒,只具有通过直接接触方式在鸡群中传播的能力,1998年的毒株具备了通过气溶胶在鸡群中传播的能力[55]。2013—2015年的H9N2 AIV,泄殖腔排毒的能力增强,通过泄殖腔的排毒量明显高于通过口咽,感染鸡群表现临床症状,随之出现死亡现象。病毒除了在呼吸道复制以外,还可以在脾、肝、肾和脑中复制[31, 56]。2017年的毒株可导致小家禽(鹌鹑)的喉头、气管、肺和心出现较为严重的病理损伤[57](表 4)。

表 4 H9N2 AIV的致病性变化 Table 4 Pathogenicity changes of H9N2 AIV

H9N2 AIV对哺乳动物的致病性也在发生变化。H9N2 AIV感染小鼠后,主要在肺进行复制,引起肺的病理变化,并引起小鼠体重的减轻,有些病毒还可以在鼻甲中进行复制[28, 31, 58-60]。H9N2 AIV感染豚鼠后,可以通过鼻腔向外排毒,但不具备通过直接接触方式进行传播的能力[26, 31]。H9N2 AIV感染雪貂,主要在鼻甲、气管和肺等呼吸道复制,有的病毒还可以在脾中复制[28](表 4)。H9N2 AIV的某些蛋白发生突变,增强了病毒在哺乳动物细胞上的复制能力,增强病毒对哺乳动物的致病性。PB2蛋白E627K突变增强病毒对小鼠的致病性,Q591K突变增强病毒对小鼠的致病性,增强病毒在人气管上皮细胞的复制能力,D195N、I292V、D253N突变增强病毒在人胚胎肾细胞(293T)或者人肺癌细胞(A549) 上的复制能力[26, 61-64]。PB1蛋白K577E突变增强病毒对小鼠的毒力以及在293T细胞上的聚合酶活性。PA蛋白K356R突变增强病毒对小鼠的致病性以及在A549和MDCK细胞上的复制能力[67]。HA蛋白N132D、N198S、T190V突变增强病毒对小鼠的毒力[27, 61]。HA2蛋白D46E增强病毒的热稳定性,致使病毒具备了通过直接接触方式在豚鼠间进行传播的能力。HA1蛋白Q227P和NP蛋白E434K突变,增强了病毒在293T细胞上的聚合酶活性,促使病毒可以通过直接接触方式在豚鼠间传播[26](表 5)。

表 5 突变对H9N2 AIV复制及致病性的影响 Table 5 Effects of mutation on replication and pathogenicity of H9N2 AIV

作者对NCBI上2016—2020年中国H9N2 AIV序列进行分析,结果显示,PB2蛋白第292位氨基酸为V的比例为87%(34/154),第195位氨基酸为N和第627位氨基酸为K的比例均为1.3%(2/154);PA蛋白第356位氨基酸为R的比例为94.2%(47/154);HA蛋白第190位氨基酸为V的比例为2.8%(85/3 014)。这表明,当前中国流行的H9N2 AIV PB2、PA和HA蛋白获得了一定的适应性突变,增强了在哺乳动物细胞上的复制能力,增强对小鼠的致病性,增加了跨宿主传播甚至感染人的风险。

6 小结与展望

H9N2 AIVs不断发生变异和重组,受体结合特性趋于双嗜性或者优先结合人类受体,致病性有增强的趋势,抗原特性也在发生着改变,增加了跨宿主传播甚者感染人的风险。目前,疫苗接种仍然是防控AIVs的主要手段。但是近年来出现了H9N2疫苗免疫后仍然排毒的情况,这使得H9N2 AIVs的防控变得更为棘手。一方面,可以通过遴选新抗原毒株、研制新型疫苗,开发新型佐剂等,提高H9N2疫苗的免疫效果。另一方面,应该强化生物安全防控理念,提高生物安全防控技术,采用生物安全防控手段控制疾病的发生。切实做好H9N2等低致病性AIVs的防控,保障养禽业的健康发展和公共卫生的安全。

参考文献
[1] 陈伯伦, 张泽纪, 陈伟斌. 禽流感研究I. 鸡A型禽流感病毒的分离与血清学初步鉴定[J]. 中国兽医杂志, 1994, 20(10): 3–5.
CHEN B L, ZHANG Z J, CHEN W B. Avian influenza research I. Isolation and serological preliminary identification of avian influenza A virus[J]. Chinese Journal of Veterinary Medicine, 1994, 20(10): 3–5. (in Chinese)
[2] SUN Y P, LIU J H. H9N2 influenza virus in China: a cause of concern[J]. Protein Cell, 2015, 6(1): 18–25. DOI: 10.1007/s13238-014-0111-7
[3] PAN Q, LIU A J, ZHANG F M, et al. Co-infection of broilers with Ornithobacterium rhinotracheale and H9N2 avian influenza virus[J]. BMC Vet Res, 2012, 8: 104. DOI: 10.1186/1746-6148-8-104
[4] PEIRIS J S M, GUAN Y, MARKWELL D, et al. Cocirculation of avian H9N2 and contemporary "human" H3 N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment?[J]. J Virol, 2001, 75(20): 9679–9686. DOI: 10.1128/JVI.75.20.9679-9686.2001
[5] XU C T, FAN W X, WEI R, et al. Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus[J]. Microbes Infect, 2004, 6(10): 919–925. DOI: 10.1016/j.micinf.2004.04.015
[6] CONG Y L, WANG C F, YAN C M, et al. Swine infection with H9N2 influenza viruses in China in 2004[J]. Virus Genes, 2008, 36(3): 461–469. DOI: 10.1007/s11262-008-0227-z
[7] CONG Y L, PU J, LIU Q F, et al. Antigenic and genetic characterization of H9N2 swine influenza viruses in China[J]. J Gen Virol, 2007, 88(Pt 7): 2035–2041.
[8] PEIRIS M, YUEN K Y, LEUNG C W, et al. Human infection with influenza H9N2[J]. Lancet, 1999, 354(9182): 916–917. DOI: 10.1016/S0140-6736(99)03311-5
[9] PAN Y, CUI S, SUN Y, et al. Human infection with H9N2 avian influenza in northern China[J]. Clin Microbiol Infect, 2018, 24(3): 321–323. DOI: 10.1016/j.cmi.2017.10.026
[10] HE J, WU Q, YU J L, et al. Sporadic occurrence of H9N2 avian influenza infections in human in Anhui province, eastern China: A notable problem[J]. Microb Pathog, 2020, 140: 103940. DOI: 10.1016/j.micpath.2019.103940
[11] HUANG Y W, LI X D, ZHANG H, et al. Human infection with an avian influenza A (H9N2) virus in the middle region of China[J]. J Med Virol, 2015, 87(10): 1641–1648. DOI: 10.1002/jmv.24231
[12] ZHOU P, ZHU W J, GU H L, et al. Avian influenza H9N2 seroprevalence among swine farm residents in China[J]. J Med Virol, 2014, 86(4): 597–600. DOI: 10.1002/jmv.23869
[13] WANG Q, JU L, LIU P, et al. Serological and virological surveillance of avian influenza A virus H9N2 subtype in humans and poultry in Shanghai, China, between 2008 and 2010[J]. Zoonoses Public Health, 2015, 62(2): 131–140. DOI: 10.1111/zph.12133
[14] YU Q, LIU L Q, PU J, et al. Risk perceptions for avian influenza virus infection among poultry workers, China[J]. Emerg Infect Dis, 2013, 19(2): 313–316. DOI: 10.3201/eid1901.120251
[15] HUANG R, WANG A R, LIU Z H, et al. Seroprevalence of avian influenza H9N2 among poultry workers in Shandong Province, China[J]. Eur J Clin Microbiol Infect Dis, 2013, 32(10): 1347–1351. DOI: 10.1007/s10096-013-1888-7
[16] GAO R B, CAO B, HU Y W, et al. Human infection with a novel avian-origin influenza A (H7 N9) virus[J]. N Engl J Med, 2013, 368(20): 1888–1897. DOI: 10.1056/NEJMoa1304459
[17] CHEN H Y, YUAN H, GAO R B, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study[J]. Lancet, 2014, 383(9918): 714–721. DOI: 10.1016/S0140-6736(14)60111-2
[18] DALBY A R, IQBAL M. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin[J]. PeerJ, 2014, 2: e655. DOI: 10.7717/peerj.655
[19] GU M, XU L J, WANG X Q, et al. Current situation of H9N2 subtype avian influenza in China[J]. Vet Res, 2017, 48(1): 49. DOI: 10.1186/s13567-017-0453-2
[20] JIN Y, YU D, REN H G, et al. Phylogeography of Avian influenza A H9N2 in China[J]. BMC Genomics, 2014, 15(1): 1110. DOI: 10.1186/1471-2164-15-1110
[21] JIANG W M, LIU S, HOU G Y, et al. Chinese and global distribution of H9 subtype avian influenza viruses[J]. PLoS One, 2012, 7(12): e52671. DOI: 10.1371/journal.pone.0052671
[22] XU K M, LI K S, SMITH G J D, et al. Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005[J]. J Virol, 2007, 81(6): 2635–2645. DOI: 10.1128/JVI.02316-06
[23] SUN Y P, PU J, JIANG Z L, et al. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008[J]. Vet Microbiol, 2010, 146(3-4): 215–225. DOI: 10.1016/j.vetmic.2010.05.010
[24] LI C, WANG S G, BING G X, et al. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013[J]. Emerg Microbes Infect, 2017, 6(11): e106.
[25] 段旭彤. H9N2亚型禽流感病毒HA蛋白的抗原变异及受体结合特性分析[D]. 哈尔滨: 黑龙江大学, 2017.
DUAN X T. Analysis of antigenic variation and receptor binding characteristics of HA protein of H9N2 subtype avian influenza virus[D]. Harbin: Heilongjiang University, 2017. (in Chinese)
[26] SANG X Y, WANG A R, DING J, et al. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets[J]. Sci Rep, 2015, 5: 15928. DOI: 10.1038/srep15928
[27] TENG Q Y, XU D W, SHEN W X, et al. A single mutation at position 190 in hemagglutinin enhances binding affinity for human type sialic acid receptor and replication of H9N2 avian influenza virus in mice[J]. J Virol, 2016, 90(21): 9806–9825. DOI: 10.1128/JVI.01141-16
[28] LI X Y, SHI J Z, GUO J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses[J]. PLoS Pathog, 2014, 10(11): e1004508. DOI: 10.1371/journal.ppat.1004508
[29] YUAN J, XU L L, BAO L L, et al. Characterization of an H9N2 avian influenza virus from a Fringilla montifringilla brambling in northern China[J]. Virology, 2015, 476: 289–297. DOI: 10.1016/j.virol.2014.12.021
[30] ZOU S M, ZHANG Y, LI X Y, et al. Molecular characterization and receptor binding specificity of H9N2 avian influenza viruses based on poultry-related environmental surveillance in China between 2013 and 2016[J]. Virology, 2019, 529: 135–143. DOI: 10.1016/j.virol.2019.01.002
[31] WANG D D, WANG J J, BI Y H, et al. Characterization of avian influenza H9N2 viruses isolated from ostriches (Struthio camelus)[J]. Sci Rep, 2018, 8(1): 2273. DOI: 10.1038/s41598-018-20645-1
[32] SUN H L, LIN J T, LIU Z T, et al. Genetic, molecular, and pathogenic characterization of the H9N2 avian influenza viruses currently circulating in South China[J]. Viruses, 2019, 11(11): 1040. DOI: 10.3390/v11111040
[33] SANG X Y, WANG A R, CHAI T J, et al. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adaption in mice[J]. Arch Virol, 2015, 160(5): 1267–1277. DOI: 10.1007/s00705-015-2383-5
[34] SEALY J E, YAQUB T, PEACOCK T P, et al. Association of increased receptor-binding avidity of influenza A(H9N2) viruses with escape from antibody-based immunity and enhanced zoonotic potential[J]. Emerg Infect Dis, 2018, 25(1): 63–72. DOI: 10.3201/eid2501.180616
[35] PEACOCK T P, BENTON D J, JAMES J, et al. Immune escape variants of H9N2 influenza viruses containing deletions at the hemagglutinin receptor binding site retain fitness in vivo and display enhanced zoonotic characteristics[J]. J Virol, 2017, 91(14): e00218–17.
[36] WAN H Q, PEREZ D R. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells[J]. J Virol, 2007, 81(10): 5181–5191. DOI: 10.1128/JVI.02827-06
[37] PEACOCK T P, BENTON D J, SADEYEN J R, et al. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion[J]. Emerg Microbes Infect, 2017, 6(1): 1–7.
[38] XU Y, PENG R C, ZHANG W, et al. Avian-to-human receptor-binding adaptation of avian H7 N9 influenza virus hemagglutinin[J]. Cell Rep, 2019, 29(8): 2217–2228. DOI: 10.1016/j.celrep.2019.10.047
[39] LI C J, YU K Z, TIAN G B, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China[J]. Virology, 2005, 340(1): 70–83. DOI: 10.1016/j.virol.2005.06.025
[40] ZHANG Y, YIN Y B, BI Y H, et al. Molecular and antigenic characterization of H9N2 avian influenza virus isolates from chicken flocks between 1998 and 2007 in China[J]. Vet Microbiol, 2012, 156(3-4): 285–293. DOI: 10.1016/j.vetmic.2011.11.014
[41] ZHAO Y X, LI S, ZHOU Y F, et al. Phylogenetic analysis of hemagglutinin genes of H9N2 avian influenza viruses isolated from chickens in Shandong, China, between 1998 and 2013[J]. BioMed Res Int, 2015, 2015: 267520.
[42] GE F F, LI X, JU H B, et al. Genotypic evolution and antigenicity of H9N2 influenza viruses in Shanghai, China[J]. Arch Virol, 2016, 161(6): 1437–1445. DOI: 10.1007/s00705-016-2767-1
[43] ZHU R, XU D W, YANG X Q, et al. Genetic and biological characterization of H9N2 avian influenza viruses isolated in China from 2011 to 2014[J]. PLoS One, 2018, 13(7): e0199260. DOI: 10.1371/journal.pone.0199260
[44] XIA J, CUI J Q, HE X, et al. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016[J]. PLoS One, 2017, 12(2): e0171564. DOI: 10.1371/journal.pone.0171564
[45] LI Y, LIU M D, SUN Q Q, et al. Genotypic evolution and epidemiological characteristics of H9N2 influenza virus in Shandong Province, China[J]. Poult Sci, 2019, 98(9): 3488–3495. DOI: 10.3382/ps/pez151
[46] KAVERIN N V, RUDNEVA I A, ILYUSHINA N A, et al. Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: Analysis of H9 escape mutants[J]. J Virol, 2004, 78(1): 240–249. DOI: 10.1128/JVI.78.1.240-249.2004
[47] WAN Z M, YE J Q, XU L L, et al. Antigenic mapping of the hemagglutinin of an H9N2 avian influenza virus reveals novel critical amino acid positions in antigenic sites[J]. J Virol, 2014, 88(7): 3898–3901. DOI: 10.1128/JVI.03440-13
[48] PENG Q Q, ZHU R, WANG X B, et al. Impact of the variations in potential glycosylation sites of the hemagglutinin of H9N2 influenza virus[J]. Virus Genes, 2019, 55(2): 182–190. DOI: 10.1007/s11262-018-1623-7
[49] JIN F, DONG X M, WAN Z M, et al. A single mutation N166D in hemagglutinin affects antigenicity and pathogenesis of H9N2 avian influenza virus[J]. Viruses, 2019, 11(8): 709. DOI: 10.3390/v11080709
[50] SONG J W, WANG C X, GAO W H, et al. A D200 N hemagglutinin substitution contributes to antigenic changes and increased replication of avian H9N2 influenza virus[J]. Vet Microbiol, 2020, 245: 108669. DOI: 10.1016/j.vetmic.2020.108669
[51] ZHU Y B, YANG D, REN Q, et al. Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses[J]. Vet Microbiol, 2015, 178(1-2): 144–149. DOI: 10.1016/j.vetmic.2015.04.012
[52] IQBAL M, YAQUB T, REDDY K, et al. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses[J]. PLoS One, 2009, 4(6): e5788. DOI: 10.1371/journal.pone.0005788
[53] OKAMATSU M, SAKODA Y, KISHIDA N, et al. Antigenic structure of the hemagglutinin of H9N2 influenza viruses[J]. Arch Virol, 2008, 153(12): 2189–2195. DOI: 10.1007/s00705-008-0243-2
[54] PEACOCK T, REDDY K, JAMES J, et al. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape[J]. Sci Rep, 2016, 6: 18745. DOI: 10.1038/srep18745
[55] SHI H Y, ASHRAF S, GAO S, et al. Evaluation of transmission route and replication efficiency of H9N2 avian influenza virus[J]. Avian Dis, 2010, 54(1): 22–27. DOI: 10.1637/8937-052809-Reg.1
[56] 李凤艳. 4株H9N2亚型禽流感病毒分离株对SPF鸡致病性研究[J]. 现代畜牧兽医, 2017(9): 9–12.
LI F Y. Pathogenicity of 4 strains of H9N2 subtype avian influenza virus to SPF chickens[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2017(9): 9–12. (in Chinese)
[57] 冯贺龙, 任助, 焦哲, 等. 2株H9N2亚型禽流感病毒对鹌鹑的致病性[J]. 中国兽医学报, 2020, 40(3): 547–551.
FENG H L, REN Z, JIAO Z, et al. Pathogenicity study of 2 H9N2 avian influenza viruses for quails[J]. Chinese Journal of Veterinary Science, 2020, 40(3): 547–551. (in Chinese)
[58] SONG Y F, ZHANG Y, CHEN L, et al. Genetic characteristics and pathogenicity analysis in chickens and mice of three H9N2 avian influenza viruses[J]. Viruses, 2019, 11(12): 1127. DOI: 10.3390/v11121127
[59] YE G, LIANG C H, HUA D G, et al. Phylogenetic analysis and pathogenicity assessment of two strains of avian influenza virus subtype H9N2 isolated from migratory birds: high homology of internal genes with human H10N8 virus[J]. Front Microbiol, 2016, 7: 57.
[60] CHEN Z K, HUANG Q H, YANG S H, et al. A well-defined H9N2 avian influenza virus genotype with high adaption in mammals was prevalent in Chinese poultry between 2016 to 2019[J]. Viruses, 2020, 12(4): 432. DOI: 10.3390/v12040432
[61] KAMIKI H, MATSUGO H, KOBAYASHI T, et al. A PB1-K577E mutation in H9N2 influenza virus increases polymerase activity and pathogenicity in mice[J]. Viruses, 2018, 10(11): 653. DOI: 10.3390/v10110653
[62] GAO W H, ZU Z P, LIU J Y, et al. Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells[J]. J Gen Virol, 2019, 100(9): 1273–1281. DOI: 10.1099/jgv.0.001294
[63] ZHANG J F, SU R, JIAN X Y, et al. The D253 N mutation in the polymerase basic 2 gene in avian influenza (H9N2) virus contributes to the pathogenesis of the virus in mammalian hosts[J]. Virol Sin, 2018, 33(6): 531–537. DOI: 10.1007/s12250-018-0072-8
[64] WANG C R, LEE H H Y, YANG Z F, et al. PB2-Q591K mutation determines the pathogenicity of avian H9N2 influenza viruses for mammalian species[J]. PLoS One, 2016, 11(9): e0162163. DOI: 10.1371/journal.pone.0162163
[65] WANG C X, WANG Z J, REN X L, et al. Infection of chicken H9N2 influenza viruses in different species of domestic ducks[J]. Vet Microbiol, 2019, 233: 1–4. DOI: 10.1016/j.vetmic.2019.04.018
[66] 钟芝兰, 张增峰. 鸭源H9N2 AIV在人肺组织的复制研究[J]. 畜牧兽医科学(电子版), 2020(10): 7–9.
ZHONG Z L, ZHANG Z F. Replication of duck-derived H9N2 AIV in human lung tissue[J]. Graziery Veterinary Sciences (Electronic Version), 2020(10): 7–9. (in Chinese)
[67] XU G L, ZHANG X X, GAO W H, et al. Prevailing PA mutation K356R in avian influenza H9N2 virus increases mammalian replication and pathogenicity[J]. J Virol, 2016, 90(18): 8105–8114. DOI: 10.1128/JVI.00883-16
[68] WANG J J, SUN Y P, XU Q, et al. Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence[J]. PLoS One, 2012, 7(7): e40752. DOI: 10.1371/journal.pone.0040752