1992年, H9N2禽流感病毒(AIV)在广东地区首次暴发,随后向其他地区蔓延[1],1998年,迅速扩散到中国大部分省份[2],已成为鸡群中流行的禽流感病毒的主要亚型[3]。H9N2 AIV不但给养禽业造成了巨大的经济损失,而且跨宿主传播感染哺乳动物和人,给公共卫生安全构成严重威胁。1998年,从香港地区猪身上分离到H9N2 AIV,随之陆续有猪感染H9N2 AIV的报道[4-7]。1998年,首次出现人感染H9N2 AIV的病例[8],近年来不断有人感染H9N2 AIV的报道[9-12],血清学研究结果表明从事家禽行业的人群H9N2 AIV抗体率高达15%[13-15]。据WHO统计,2015年12月—2020年8月28日,中国已经累计33人感染H9N2 AIV。另外,新型H7N9和H10N8 AIV的内部基因均来自H9N2 AIV[16-17],导致人员感染并引起死亡,给公共卫生安全造成严重威胁。因此,加强对H9N2 AIV的监测,解析病毒致病性和跨宿主传播能力的变化,对于流感病毒的综合防控具有重要意义。
1 当前中国H9N2 AIV的流行分布为了解中国H9N2 AIV的流行分布情况,作者对NCBI上2016—2020年,3 014株H9N2 AIV的分离时间、地域和宿主进行了分析。结果显示,2016—2020年,中国H9N2 AIV分布在山东、广东、安徽、广西、湖南、湖北、福建、江西、云南、江苏、浙江、重庆、黑龙江、山西、西藏、青海、宁夏、四川、北京、天津、上海、贵州等地。其中,H9N2 AIV分布较为密集地区为江西、广东、贵州、江苏,其次为云南、上海等(表 1)。从病毒的分离来源来看,2016—2020年,中国流行的H9N2 AIV主要来自鸡,少数来自鹌鹑、鸭、鹅,极少数分离自人。
H9N2 AIV全球广泛分布,主要分为北美、欧亚两个分支,其中欧亚分支进一步分为BJ/94-like(或Y280-like)、G1-like、Y439-like、F/98-like等[18-19]。在中国,早期H9N2禽流感主要发生在香港和广东地区,1995—2000年传播到内陆地区[20]。参考HA进化分支方法[21],中国H9N2 AIV主要分布在h9.4.2分支。2007年之前,中国主要流行h9.4.2.1-h9.4.2.4分支的H9N2 AIV,2007年之后,h9.4.2.5分支的H9N2 AIV逐渐成为主流,大约在2010年,h9.4.2.6分支的H9N2 AIV也扩展到全国各地,但是h9.4.2.5分支的H9N2 AIV比h9.4.2.6分支更加普遍[19]。先前H9N2 AIV NA分为BJ/94-like、G1-like和Korea-like 3个分支[22-23]。现在中国流行的H9N2 AIV NA演化为4个分支(Clade 0~3),并且Clade 2分支的病毒在2010年后占据了主导地位[24]。
为了解中国当前流行的H9N2 AIV的遗传演化情况,对NCBI上2016—2020年中国H9N2 AIV的HA、NA序列进行遗传演化分析,HA系统发育树结果表明,当前中国流行的H9N2 AIV绝大部分毒株隶属于h9.4.2.5分支,极少部分毒株隶属于h9.4.2.1分支,h9.4.2.6分支的病毒已经不再流行(图 1)。NA系统发育树结果表明,当前中国流行的H9N2 AIV绝大部分毒株隶属于BJ/94分支中的Clade 2亚分支(图 2)。综上所述,当前中国流行的H9N2 AIV主要为h9.4.2.5分支的病毒。
当前H9N2禽流感病毒受体结合特性主要表现为双嗜性和优先结合α-2, 6 SA受体,增强了病毒跨宿主传播感染哺乳动物的能力。中国早期的H9N2 AIV优先结合α-2, 3 SA受体[25-26],伴随着病毒的持续流行,病毒的受体结合特性也发生了变化,近些年流行的H9N2 AIV表现出双嗜性,并且结合α-2, 6 SA受体的能力高于结合α-2, 3 SA受体的能力,或者优先结合α-2, 6 SA受体的特性[26-32] (表 2)。
HA蛋白的突变会改变病毒与受体的结合嗜性和结合强度。据报道,N313D、N496S、A180T/V、HA2-D46E突变增强病毒与α-2, 6 SA和α-2, 3 SA受体的能力[26, 33-34]。220-loop缺失以及Q226L突变增强病毒与α-2, 6 SA受体结合的能力[35-36],而Q227P突变增强病毒与α-2, 3 SA受体结合的能力。Q226L突变可以增强绝大多数H9N2 AIV结合α-2, 6 SA受体的能力,也有一些病毒虽然拥有226L,但是与α-2, 6 SA受体的结合能力较差[37-38]。中国2016—2020年流行的H9N2 AIV中,99.5% (2 998/ 3 014) 毒株的HA蛋白第226位为L,这表明当前中国流行的H9N2 AIV普遍增强与α-2, 6 SA受体结合的能力,增加病毒跨宿主感染哺乳动物的风险。
4 当前H9N2禽流感病毒抗原性分析H9N2 AIV持续暴发给养禽业造成了巨大损失,为进一步防控H9N2 AIV,中国自1998年开始使用疫苗[39]。伴随H9N2 AIV持续流行,病毒的抗原也发生了一定的变化。1998—2007年, 全国分离的20株H9N2 AIV中,有18株病毒与A/CK/SD/6/96疫苗株的抗血清反应不佳(HI≤640),有4株2007年的病毒与A/CK/SH/F/98疫苗株抗血清反应较差(HI≤80)[40]。2012—2013年,山东分离的6株H9N2 AIV与A/CK/GD/SS/94疫苗株抗血清反应较差(HI≤320),与它们本血清反应良好(HI≥1 280)[41]。2002年和2006—2014年,上海分离的14株H9N2 AIV,虽然起源于A/CK/SH/F/98,但是与其存在抗原距离[42]。对2011—2014年分离的28株H9N2 AIV和疫苗株SH/F/98和GD/SS/94进行分析,结果显示,其中,4株病毒的抗血清与疫苗株H9N2 AIV及大多数分离株的反应较差[43]。对2013—2016年西南地区分离的12株H9N2 AIV与A/CK/GD/SS/94和A/CK/SD/6/96疫苗株进行分析,结果显示,2014—2016年,分离毒株比2013年分离毒株与疫苗株的抗原性差异更显著[44],2017—2018年,山东地区分离的H9N2 AIV与A/CK/SH/F/98和A/CK/GD/SS/94疫苗株抗血清反应中等或者较差[45]。综上所述,与早期病毒相比,近些年流行的H9N2 AIV已经出现了抗原变异的现象。
HA蛋白是诱导产生中和抗体的主要抗原。H9N2 AIV HA蛋白的一些位点也陆续被揭示与抗原变异相关。Kaverin定义了两个抗原位点,位点Ⅰ(147、165、170),位点Ⅱ(145、197、206),以及重叠位点(153、201、234)[46]。Wan等[47]揭示了两个独立的抗原位点“H9-1”(147、164、167、168)和“H9-2”(153、196、200、201、207)。HA蛋白218位糖基化位点缺失,同时,313位糖基化位点的出现增加了病毒与抗体的结合,中度阻止了病毒对同源抗血清中和作用的逃逸[48]。HA蛋白N166D突变降低了病毒对鸡的免疫原性[49],而D200N突变提高了病毒与单克隆抗体的反应滴度[50],N166D突变降低病毒鸡的弱抗体反应。另外,92、90、166、133、138、141、143、149、157、180、230、234、252等位点也被证实与抗原相关[46, 51-54](表 3)。
为了解中国当前H9N2 AIV抗原变异情况,对NCBI上2016—2020年中国H9N2 AIV序列进行分析,结果显示,在已经报道的抗原位点中,除了165和170位点的氨基酸比较保守外[46, 52],其他位点的氨基酸都出现了多态性,其中,90、141、143、147、163、234、235位点的氨基酸呈现双态性,剩余位点的氨基酸为3态及以上。218和313糖基化位点的缺失也改变病毒的抗原。综上所述,当前中国H9N2 AIV的抗原正在发生着改变。
5 H9N2禽流感病毒的致病性当前,H9N2 AIV持续在鸡群暴发, 给养禽业造成了巨大损失。H9N2为低致病性AIV,但近年来,致病性和跨宿主传播能力呈现出增强的趋势,出现了感染猪和人的案例,给公共卫生安全带来一定的挑战。早期的H9N2 AIV毒株感染鸡,主要在呼吸道复制,偶尔可以从泄殖腔拭子中检测到病毒,只具有通过直接接触方式在鸡群中传播的能力,1998年的毒株具备了通过气溶胶在鸡群中传播的能力[55]。2013—2015年的H9N2 AIV,泄殖腔排毒的能力增强,通过泄殖腔的排毒量明显高于通过口咽,感染鸡群表现临床症状,随之出现死亡现象。病毒除了在呼吸道复制以外,还可以在脾、肝、肾和脑中复制[31, 56]。2017年的毒株可导致小家禽(鹌鹑)的喉头、气管、肺和心出现较为严重的病理损伤[57](表 4)。
H9N2 AIV对哺乳动物的致病性也在发生变化。H9N2 AIV感染小鼠后,主要在肺进行复制,引起肺的病理变化,并引起小鼠体重的减轻,有些病毒还可以在鼻甲中进行复制[28, 31, 58-60]。H9N2 AIV感染豚鼠后,可以通过鼻腔向外排毒,但不具备通过直接接触方式进行传播的能力[26, 31]。H9N2 AIV感染雪貂,主要在鼻甲、气管和肺等呼吸道复制,有的病毒还可以在脾中复制[28](表 4)。H9N2 AIV的某些蛋白发生突变,增强了病毒在哺乳动物细胞上的复制能力,增强病毒对哺乳动物的致病性。PB2蛋白E627K突变增强病毒对小鼠的致病性,Q591K突变增强病毒对小鼠的致病性,增强病毒在人气管上皮细胞的复制能力,D195N、I292V、D253N突变增强病毒在人胚胎肾细胞(293T)或者人肺癌细胞(A549) 上的复制能力[26, 61-64]。PB1蛋白K577E突变增强病毒对小鼠的毒力以及在293T细胞上的聚合酶活性。PA蛋白K356R突变增强病毒对小鼠的致病性以及在A549和MDCK细胞上的复制能力[67]。HA蛋白N132D、N198S、T190V突变增强病毒对小鼠的毒力[27, 61]。HA2蛋白D46E增强病毒的热稳定性,致使病毒具备了通过直接接触方式在豚鼠间进行传播的能力。HA1蛋白Q227P和NP蛋白E434K突变,增强了病毒在293T细胞上的聚合酶活性,促使病毒可以通过直接接触方式在豚鼠间传播[26](表 5)。
作者对NCBI上2016—2020年中国H9N2 AIV序列进行分析,结果显示,PB2蛋白第292位氨基酸为V的比例为87%(34/154),第195位氨基酸为N和第627位氨基酸为K的比例均为1.3%(2/154);PA蛋白第356位氨基酸为R的比例为94.2%(47/154);HA蛋白第190位氨基酸为V的比例为2.8%(85/3 014)。这表明,当前中国流行的H9N2 AIV PB2、PA和HA蛋白获得了一定的适应性突变,增强了在哺乳动物细胞上的复制能力,增强对小鼠的致病性,增加了跨宿主传播甚至感染人的风险。
6 小结与展望H9N2 AIVs不断发生变异和重组,受体结合特性趋于双嗜性或者优先结合人类受体,致病性有增强的趋势,抗原特性也在发生着改变,增加了跨宿主传播甚者感染人的风险。目前,疫苗接种仍然是防控AIVs的主要手段。但是近年来出现了H9N2疫苗免疫后仍然排毒的情况,这使得H9N2 AIVs的防控变得更为棘手。一方面,可以通过遴选新抗原毒株、研制新型疫苗,开发新型佐剂等,提高H9N2疫苗的免疫效果。另一方面,应该强化生物安全防控理念,提高生物安全防控技术,采用生物安全防控手段控制疾病的发生。切实做好H9N2等低致病性AIVs的防控,保障养禽业的健康发展和公共卫生的安全。
[1] |
陈伯伦, 张泽纪, 陈伟斌. 禽流感研究I. 鸡A型禽流感病毒的分离与血清学初步鉴定[J]. 中国兽医杂志, 1994, 20(10): 3–5.
CHEN B L, ZHANG Z J, CHEN W B. Avian influenza research I. Isolation and serological preliminary identification of avian influenza A virus[J]. Chinese Journal of Veterinary Medicine, 1994, 20(10): 3–5. (in Chinese) |
[2] | SUN Y P, LIU J H. H9N2 influenza virus in China: a cause of concern[J]. Protein Cell, 2015, 6(1): 18–25. DOI: 10.1007/s13238-014-0111-7 |
[3] | PAN Q, LIU A J, ZHANG F M, et al. Co-infection of broilers with Ornithobacterium rhinotracheale and H9N2 avian influenza virus[J]. BMC Vet Res, 2012, 8: 104. DOI: 10.1186/1746-6148-8-104 |
[4] | PEIRIS J S M, GUAN Y, MARKWELL D, et al. Cocirculation of avian H9N2 and contemporary "human" H3 N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment?[J]. J Virol, 2001, 75(20): 9679–9686. DOI: 10.1128/JVI.75.20.9679-9686.2001 |
[5] | XU C T, FAN W X, WEI R, et al. Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus[J]. Microbes Infect, 2004, 6(10): 919–925. DOI: 10.1016/j.micinf.2004.04.015 |
[6] | CONG Y L, WANG C F, YAN C M, et al. Swine infection with H9N2 influenza viruses in China in 2004[J]. Virus Genes, 2008, 36(3): 461–469. DOI: 10.1007/s11262-008-0227-z |
[7] | CONG Y L, PU J, LIU Q F, et al. Antigenic and genetic characterization of H9N2 swine influenza viruses in China[J]. J Gen Virol, 2007, 88(Pt 7): 2035–2041. |
[8] | PEIRIS M, YUEN K Y, LEUNG C W, et al. Human infection with influenza H9N2[J]. Lancet, 1999, 354(9182): 916–917. DOI: 10.1016/S0140-6736(99)03311-5 |
[9] | PAN Y, CUI S, SUN Y, et al. Human infection with H9N2 avian influenza in northern China[J]. Clin Microbiol Infect, 2018, 24(3): 321–323. DOI: 10.1016/j.cmi.2017.10.026 |
[10] | HE J, WU Q, YU J L, et al. Sporadic occurrence of H9N2 avian influenza infections in human in Anhui province, eastern China: A notable problem[J]. Microb Pathog, 2020, 140: 103940. DOI: 10.1016/j.micpath.2019.103940 |
[11] | HUANG Y W, LI X D, ZHANG H, et al. Human infection with an avian influenza A (H9N2) virus in the middle region of China[J]. J Med Virol, 2015, 87(10): 1641–1648. DOI: 10.1002/jmv.24231 |
[12] | ZHOU P, ZHU W J, GU H L, et al. Avian influenza H9N2 seroprevalence among swine farm residents in China[J]. J Med Virol, 2014, 86(4): 597–600. DOI: 10.1002/jmv.23869 |
[13] | WANG Q, JU L, LIU P, et al. Serological and virological surveillance of avian influenza A virus H9N2 subtype in humans and poultry in Shanghai, China, between 2008 and 2010[J]. Zoonoses Public Health, 2015, 62(2): 131–140. DOI: 10.1111/zph.12133 |
[14] | YU Q, LIU L Q, PU J, et al. Risk perceptions for avian influenza virus infection among poultry workers, China[J]. Emerg Infect Dis, 2013, 19(2): 313–316. DOI: 10.3201/eid1901.120251 |
[15] | HUANG R, WANG A R, LIU Z H, et al. Seroprevalence of avian influenza H9N2 among poultry workers in Shandong Province, China[J]. Eur J Clin Microbiol Infect Dis, 2013, 32(10): 1347–1351. DOI: 10.1007/s10096-013-1888-7 |
[16] | GAO R B, CAO B, HU Y W, et al. Human infection with a novel avian-origin influenza A (H7 N9) virus[J]. N Engl J Med, 2013, 368(20): 1888–1897. DOI: 10.1056/NEJMoa1304459 |
[17] | CHEN H Y, YUAN H, GAO R B, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study[J]. Lancet, 2014, 383(9918): 714–721. DOI: 10.1016/S0140-6736(14)60111-2 |
[18] | DALBY A R, IQBAL M. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin[J]. PeerJ, 2014, 2: e655. DOI: 10.7717/peerj.655 |
[19] | GU M, XU L J, WANG X Q, et al. Current situation of H9N2 subtype avian influenza in China[J]. Vet Res, 2017, 48(1): 49. DOI: 10.1186/s13567-017-0453-2 |
[20] | JIN Y, YU D, REN H G, et al. Phylogeography of Avian influenza A H9N2 in China[J]. BMC Genomics, 2014, 15(1): 1110. DOI: 10.1186/1471-2164-15-1110 |
[21] | JIANG W M, LIU S, HOU G Y, et al. Chinese and global distribution of H9 subtype avian influenza viruses[J]. PLoS One, 2012, 7(12): e52671. DOI: 10.1371/journal.pone.0052671 |
[22] | XU K M, LI K S, SMITH G J D, et al. Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005[J]. J Virol, 2007, 81(6): 2635–2645. DOI: 10.1128/JVI.02316-06 |
[23] | SUN Y P, PU J, JIANG Z L, et al. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008[J]. Vet Microbiol, 2010, 146(3-4): 215–225. DOI: 10.1016/j.vetmic.2010.05.010 |
[24] | LI C, WANG S G, BING G X, et al. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013[J]. Emerg Microbes Infect, 2017, 6(11): e106. |
[25] |
段旭彤. H9N2亚型禽流感病毒HA蛋白的抗原变异及受体结合特性分析[D]. 哈尔滨: 黑龙江大学, 2017.
DUAN X T. Analysis of antigenic variation and receptor binding characteristics of HA protein of H9N2 subtype avian influenza virus[D]. Harbin: Heilongjiang University, 2017. (in Chinese) |
[26] | SANG X Y, WANG A R, DING J, et al. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets[J]. Sci Rep, 2015, 5: 15928. DOI: 10.1038/srep15928 |
[27] | TENG Q Y, XU D W, SHEN W X, et al. A single mutation at position 190 in hemagglutinin enhances binding affinity for human type sialic acid receptor and replication of H9N2 avian influenza virus in mice[J]. J Virol, 2016, 90(21): 9806–9825. DOI: 10.1128/JVI.01141-16 |
[28] | LI X Y, SHI J Z, GUO J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses[J]. PLoS Pathog, 2014, 10(11): e1004508. DOI: 10.1371/journal.ppat.1004508 |
[29] | YUAN J, XU L L, BAO L L, et al. Characterization of an H9N2 avian influenza virus from a Fringilla montifringilla brambling in northern China[J]. Virology, 2015, 476: 289–297. DOI: 10.1016/j.virol.2014.12.021 |
[30] | ZOU S M, ZHANG Y, LI X Y, et al. Molecular characterization and receptor binding specificity of H9N2 avian influenza viruses based on poultry-related environmental surveillance in China between 2013 and 2016[J]. Virology, 2019, 529: 135–143. DOI: 10.1016/j.virol.2019.01.002 |
[31] | WANG D D, WANG J J, BI Y H, et al. Characterization of avian influenza H9N2 viruses isolated from ostriches (Struthio camelus)[J]. Sci Rep, 2018, 8(1): 2273. DOI: 10.1038/s41598-018-20645-1 |
[32] | SUN H L, LIN J T, LIU Z T, et al. Genetic, molecular, and pathogenic characterization of the H9N2 avian influenza viruses currently circulating in South China[J]. Viruses, 2019, 11(11): 1040. DOI: 10.3390/v11111040 |
[33] | SANG X Y, WANG A R, CHAI T J, et al. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adaption in mice[J]. Arch Virol, 2015, 160(5): 1267–1277. DOI: 10.1007/s00705-015-2383-5 |
[34] | SEALY J E, YAQUB T, PEACOCK T P, et al. Association of increased receptor-binding avidity of influenza A(H9N2) viruses with escape from antibody-based immunity and enhanced zoonotic potential[J]. Emerg Infect Dis, 2018, 25(1): 63–72. DOI: 10.3201/eid2501.180616 |
[35] | PEACOCK T P, BENTON D J, JAMES J, et al. Immune escape variants of H9N2 influenza viruses containing deletions at the hemagglutinin receptor binding site retain fitness in vivo and display enhanced zoonotic characteristics[J]. J Virol, 2017, 91(14): e00218–17. |
[36] | WAN H Q, PEREZ D R. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells[J]. J Virol, 2007, 81(10): 5181–5191. DOI: 10.1128/JVI.02827-06 |
[37] | PEACOCK T P, BENTON D J, SADEYEN J R, et al. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion[J]. Emerg Microbes Infect, 2017, 6(1): 1–7. |
[38] | XU Y, PENG R C, ZHANG W, et al. Avian-to-human receptor-binding adaptation of avian H7 N9 influenza virus hemagglutinin[J]. Cell Rep, 2019, 29(8): 2217–2228. DOI: 10.1016/j.celrep.2019.10.047 |
[39] | LI C J, YU K Z, TIAN G B, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China[J]. Virology, 2005, 340(1): 70–83. DOI: 10.1016/j.virol.2005.06.025 |
[40] | ZHANG Y, YIN Y B, BI Y H, et al. Molecular and antigenic characterization of H9N2 avian influenza virus isolates from chicken flocks between 1998 and 2007 in China[J]. Vet Microbiol, 2012, 156(3-4): 285–293. DOI: 10.1016/j.vetmic.2011.11.014 |
[41] | ZHAO Y X, LI S, ZHOU Y F, et al. Phylogenetic analysis of hemagglutinin genes of H9N2 avian influenza viruses isolated from chickens in Shandong, China, between 1998 and 2013[J]. BioMed Res Int, 2015, 2015: 267520. |
[42] | GE F F, LI X, JU H B, et al. Genotypic evolution and antigenicity of H9N2 influenza viruses in Shanghai, China[J]. Arch Virol, 2016, 161(6): 1437–1445. DOI: 10.1007/s00705-016-2767-1 |
[43] | ZHU R, XU D W, YANG X Q, et al. Genetic and biological characterization of H9N2 avian influenza viruses isolated in China from 2011 to 2014[J]. PLoS One, 2018, 13(7): e0199260. DOI: 10.1371/journal.pone.0199260 |
[44] | XIA J, CUI J Q, HE X, et al. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016[J]. PLoS One, 2017, 12(2): e0171564. DOI: 10.1371/journal.pone.0171564 |
[45] | LI Y, LIU M D, SUN Q Q, et al. Genotypic evolution and epidemiological characteristics of H9N2 influenza virus in Shandong Province, China[J]. Poult Sci, 2019, 98(9): 3488–3495. DOI: 10.3382/ps/pez151 |
[46] | KAVERIN N V, RUDNEVA I A, ILYUSHINA N A, et al. Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: Analysis of H9 escape mutants[J]. J Virol, 2004, 78(1): 240–249. DOI: 10.1128/JVI.78.1.240-249.2004 |
[47] | WAN Z M, YE J Q, XU L L, et al. Antigenic mapping of the hemagglutinin of an H9N2 avian influenza virus reveals novel critical amino acid positions in antigenic sites[J]. J Virol, 2014, 88(7): 3898–3901. DOI: 10.1128/JVI.03440-13 |
[48] | PENG Q Q, ZHU R, WANG X B, et al. Impact of the variations in potential glycosylation sites of the hemagglutinin of H9N2 influenza virus[J]. Virus Genes, 2019, 55(2): 182–190. DOI: 10.1007/s11262-018-1623-7 |
[49] | JIN F, DONG X M, WAN Z M, et al. A single mutation N166D in hemagglutinin affects antigenicity and pathogenesis of H9N2 avian influenza virus[J]. Viruses, 2019, 11(8): 709. DOI: 10.3390/v11080709 |
[50] | SONG J W, WANG C X, GAO W H, et al. A D200 N hemagglutinin substitution contributes to antigenic changes and increased replication of avian H9N2 influenza virus[J]. Vet Microbiol, 2020, 245: 108669. DOI: 10.1016/j.vetmic.2020.108669 |
[51] | ZHU Y B, YANG D, REN Q, et al. Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses[J]. Vet Microbiol, 2015, 178(1-2): 144–149. DOI: 10.1016/j.vetmic.2015.04.012 |
[52] | IQBAL M, YAQUB T, REDDY K, et al. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses[J]. PLoS One, 2009, 4(6): e5788. DOI: 10.1371/journal.pone.0005788 |
[53] | OKAMATSU M, SAKODA Y, KISHIDA N, et al. Antigenic structure of the hemagglutinin of H9N2 influenza viruses[J]. Arch Virol, 2008, 153(12): 2189–2195. DOI: 10.1007/s00705-008-0243-2 |
[54] | PEACOCK T, REDDY K, JAMES J, et al. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape[J]. Sci Rep, 2016, 6: 18745. DOI: 10.1038/srep18745 |
[55] | SHI H Y, ASHRAF S, GAO S, et al. Evaluation of transmission route and replication efficiency of H9N2 avian influenza virus[J]. Avian Dis, 2010, 54(1): 22–27. DOI: 10.1637/8937-052809-Reg.1 |
[56] |
李凤艳. 4株H9N2亚型禽流感病毒分离株对SPF鸡致病性研究[J]. 现代畜牧兽医, 2017(9): 9–12.
LI F Y. Pathogenicity of 4 strains of H9N2 subtype avian influenza virus to SPF chickens[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2017(9): 9–12. (in Chinese) |
[57] |
冯贺龙, 任助, 焦哲, 等. 2株H9N2亚型禽流感病毒对鹌鹑的致病性[J]. 中国兽医学报, 2020, 40(3): 547–551.
FENG H L, REN Z, JIAO Z, et al. Pathogenicity study of 2 H9N2 avian influenza viruses for quails[J]. Chinese Journal of Veterinary Science, 2020, 40(3): 547–551. (in Chinese) |
[58] | SONG Y F, ZHANG Y, CHEN L, et al. Genetic characteristics and pathogenicity analysis in chickens and mice of three H9N2 avian influenza viruses[J]. Viruses, 2019, 11(12): 1127. DOI: 10.3390/v11121127 |
[59] | YE G, LIANG C H, HUA D G, et al. Phylogenetic analysis and pathogenicity assessment of two strains of avian influenza virus subtype H9N2 isolated from migratory birds: high homology of internal genes with human H10N8 virus[J]. Front Microbiol, 2016, 7: 57. |
[60] | CHEN Z K, HUANG Q H, YANG S H, et al. A well-defined H9N2 avian influenza virus genotype with high adaption in mammals was prevalent in Chinese poultry between 2016 to 2019[J]. Viruses, 2020, 12(4): 432. DOI: 10.3390/v12040432 |
[61] | KAMIKI H, MATSUGO H, KOBAYASHI T, et al. A PB1-K577E mutation in H9N2 influenza virus increases polymerase activity and pathogenicity in mice[J]. Viruses, 2018, 10(11): 653. DOI: 10.3390/v10110653 |
[62] | GAO W H, ZU Z P, LIU J Y, et al. Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells[J]. J Gen Virol, 2019, 100(9): 1273–1281. DOI: 10.1099/jgv.0.001294 |
[63] | ZHANG J F, SU R, JIAN X Y, et al. The D253 N mutation in the polymerase basic 2 gene in avian influenza (H9N2) virus contributes to the pathogenesis of the virus in mammalian hosts[J]. Virol Sin, 2018, 33(6): 531–537. DOI: 10.1007/s12250-018-0072-8 |
[64] | WANG C R, LEE H H Y, YANG Z F, et al. PB2-Q591K mutation determines the pathogenicity of avian H9N2 influenza viruses for mammalian species[J]. PLoS One, 2016, 11(9): e0162163. DOI: 10.1371/journal.pone.0162163 |
[65] | WANG C X, WANG Z J, REN X L, et al. Infection of chicken H9N2 influenza viruses in different species of domestic ducks[J]. Vet Microbiol, 2019, 233: 1–4. DOI: 10.1016/j.vetmic.2019.04.018 |
[66] |
钟芝兰, 张增峰. 鸭源H9N2 AIV在人肺组织的复制研究[J]. 畜牧兽医科学(电子版), 2020(10): 7–9.
ZHONG Z L, ZHANG Z F. Replication of duck-derived H9N2 AIV in human lung tissue[J]. Graziery Veterinary Sciences (Electronic Version), 2020(10): 7–9. (in Chinese) |
[67] | XU G L, ZHANG X X, GAO W H, et al. Prevailing PA mutation K356R in avian influenza H9N2 virus increases mammalian replication and pathogenicity[J]. J Virol, 2016, 90(18): 8105–8114. DOI: 10.1128/JVI.00883-16 |
[68] | WANG J J, SUN Y P, XU Q, et al. Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence[J]. PLoS One, 2012, 7(7): e40752. DOI: 10.1371/journal.pone.0040752 |