畜牧兽医学报  2021, Vol. 52 Issue (5): 1195-1207. DOI: 10.11843/j.issn.0366-6964.2021.05.006    PDF    
粪便微生物移植对仔猪肠道屏障功能的影响及作用机制进展
陈佳琦1,2, 张晓迪2, 顾招兵1, 吕龙宝2, 吴东旺1, 王荣蛟1, 毛华明1     
1. 云南农业大学动物营养与饲料科学重点实验室, 昆明 650201;
2. 中国科学院昆明动物研究所, 昆明 650223
摘要:肠道屏障是抵御感染的重要防线。由肠道内微生物失调,屏障功能受损引起的仔猪腹泻给养猪业带来巨大损失。粪便微生物群移植在多种与肠道菌群相关的肠道疾病中显示出独特优势,被引入到操控仔猪肠道微生物以改善屏障功能的探索性研究中。本文介绍了肠道屏障的结构和功能,归纳了粪便微生物移植对仔猪肠道屏障的作用,并就可能的机制进行了探讨,以期为本领域的研究提供参考。
关键词粪便微生物移植    仔猪    肠道屏障功能    机制    微生物群落    
Effects and Mechanism of Faecal Microbiota Transplantation on Intestinal Barrier Function in Piglets
CHEN Jiaqi1,2, ZHANG Xiaodi2, GU Zhaobing1, LÜ Longbao2, WU Dongwang1, WANG Rongjiao1, MAO Huaming1     
1. Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kumming 650201, China;
2. Kunming Institute of Zoology, Chinese Academy of Sciences, Kumming 650223, China
Abstract: The intestinal barrier is an important defense against infection. Diarrhea in piglets, mainly caused by intestinal biological imbalance and damage of barrier function, has brought extreme losses to the porcine industry. Due to the unique advantages in various intestinal diseases related to intestinal microbiota, faecal microbiota transplantation has been introduced into exploratory researches on the improvement of the intestinal barrier function in piglets as a new microbiota manipulation strategy. This article reviews the structures and functions of the intestinal barrier and the effects of faecal microbiota transplantation on it in piglets, then discusses the possible inner mechanisms, with the expectation to provide some references in this field.
Key words: faecal microbiota transplantation    piglet    intestinal barrier function    mechanism    microbiota    

仔猪腹泻是养猪场的常见病,导致仔猪生产性能降低,成活率降低[1],严重影响养猪业的健康发展。仔猪腹泻的原因较多,但多数研究表明,肠道微生物群紊乱导致肠道屏障功能损伤是仔猪易发生腹泻的主要内因。因此,恢复正常的肠道微生物群,改善肠道屏障功能是控制仔猪腹泻的关键。

粪便微生物群移植(faecal microbiota transplantation,FMT)是指通过筛选供体、制备粪菌、科学选择菌群移植途径,将健康供体粪便中的功能菌群移植到患病受体的肠道内,以治疗与肠道微生物群改变的特定疾病[2-3],尤其是使用FMT治疗复发性难辨梭状芽胞杆菌感染(recurrent Clostridium difficile infection,rCDI),治愈率高达90%左右,效果优于万古霉素和甲硝唑等抗生素[4-5],是一种历史悠久[6]且可以重建肠道菌群的治疗策略。目前,FMT在人类医学中已有应用,但将FMT作为操纵肠道微生物群以改善仔猪屏障功能的一种可能工具的研究是非常新的,可用的数据有限。本文拟就FMT对仔猪肠道屏障功能的调节作用及其机制作一综述,以期为本领域的后续研究提供新思路。

1 肠道屏障的结构和功能

肠道是动物体特殊的功能性屏障,既要选择性吸收水、电解质和营养物质,又要限制肠腔内有害物质、致病性抗原和致病性微生物的进入[7-8],以维持机体内环境稳定和健康。屏障功能受损与肠道和全身疾病都相关[9]。肠道屏障(图 1)主要包括生物屏障、化学屏障、机械屏障和免疫屏障。

图 1 肠道屏障功能示意图[8] Fig. 1 Schematic view of the intestinal barrier[8]
1.1 生物屏障

大量的微生物栖息在动物肠道中,构成了一个复杂的生态系统。据报道,人体含有与体细胞数量相当的细菌[10],而这些微生物中的大部分分布在肠道内。随着近年来对机体微生物的深入研究,人们逐渐认识到微生物与机体更多的是一种共生关系。正常生理状态下,肠道中微生物群保持相对稳定,黏附于外黏液层[11-12]形成肠道生物屏障,主要通过以下几个方面发挥直接保护作用:1)杀灭致病菌。正常仔猪肠道菌群中占优势的严格厌氧菌,通过分泌细菌素、乳酸、乙酸、丙酸和丁酸等有机酸,抑制兼性厌氧菌和外来菌的繁殖和黏附。2)定植拮抗。乳酸菌是猪肠道内的优势菌群[13],通过生物拮抗作用抑制有害微生物的定植和生长。3)争夺氧和营养物质。益生菌在与致病菌争夺氧和养料时通常占据上风,从而抑制其过度增长[11]

1.2 化学屏障

肠道化学屏障由多种化学组分构成,包括胃酸、胆汁、溶菌酶、抗菌肽、黏多糖、糖蛋白和糖脂等化学物[14]。胃酸可以灭杀大部分随食物进入消化道的细菌。胆汁可减少内毒素对机体的伤害,如胆盐可与内毒素结合而阻止其被肠道吸收,胆盐和胆酸可将内毒素分解为无毒性的亚单位或形成微聚物。黏液是化学屏障中最有效的部分[15],肠道黏液的主要成分是凝胶形成的黏蛋白(mucoprotein,MUC),主要是MUC2,对消化酶和消化液的侵袭性损伤有一定缓冲作用。肠上皮细胞顶端还有另一种类型的黏蛋白——跨膜黏蛋白,包括MUC1、MUC3、MUC4、MUC13等,有保护、感觉和信号传导功能。除此之外,黏蛋白分子上包含特定的蛋白结合结构域,可以结合和稳定肠上皮营养和修缮的关键因子,有助于肠上皮细胞的修复[16-17]

1.3 机械屏障

机械屏障,即物理屏障,由黏液层、肠上皮细胞及其紧密连接、黏膜下固有层等组成。小肠中较薄的黏液层可自由移动并将结合的细菌输送到远端,结肠通过两层黏液系统处理大量细菌[12, 18],防止大颗粒(包括细菌)直接接触上皮细胞[19]。单层柱状排列的肠上皮细胞将肠腔和胃肠组织分开,包括不断更新的肠细胞[20]、杯状细胞、潘氏细胞等[21]。相邻细胞之间有紧密连接(tight junction,TJ)、黏附连接(adherens junction,AJ)和桥粒构成顶端连接复合体[7, 22],封闭细胞间的旁细胞通路。TJ又被称为闭锁带(zonula occludens,ZO),是由跨膜蛋白、外周膜蛋白以及包括激酶在内的调节因子组成的多蛋白复合体。TJ可以封闭细胞之间的间隙,防止肠腔内有害物质通过细胞旁路渗透到上皮组织中,是肠黏膜通透性的主要决定性因素[7, 19]。AJ主要由跨膜蛋白——钙黏蛋白组成,可与相邻细胞的同类分子相互作用。桥粒是角蛋白丝附着在相邻细胞膜上而形成的“黏合点”。AJ和桥粒提供了维持细胞间相互作用所需的黏附力。黏膜上皮下方是黏膜下固有层,包含结缔组织和支持组织。

1.4 免疫屏障

肠道免疫屏障分为先天性和获得性免疫系统,各部分并不是孤立存在的,而是通过互相作用构成了复杂而精密的调控网络,调节宿主的免疫反应以及抵御病原体的入侵。

1.4.1 先天性免疫系统   生理性屏障、先天免疫细胞与分子等构成先天性免疫系统。其中,肠上皮细胞和潘氏细胞可分泌多种抗菌肽[18, 23],通过破坏细胞膜来发挥抑菌或杀菌作用[24-25]。树突细胞(dendritic cells,DCs)是派尔集合淋巴结(Peyer’ s patches,PPs)圆顶区主要的抗原呈递细胞,也能活化T细胞。巨噬细胞负责吞噬病原体,被激活后可分泌TNF-α、IL-6、IL-10、转化生长因子β在内的促炎因子和活性氧,或抗炎因子。

1.4.2 获得性免疫系统   肠道获得性免疫系统主要由PPs、孤立淋巴滤泡(isolated lymphoid follicles,ILFs)以及肠系膜淋巴结(mesenteric lymphoid nodes,MLNs)组成的肠相关淋巴组织(gut-associated lymphoid tissues,GALTs)和弥散分布于黏膜固有层及上皮细胞层内的免疫细胞构成[26-27]。PPs是M细胞穹窿下所形成的淋巴滤泡,包括B细胞滤泡和T细胞区域以及树突细胞和巨噬细胞,主要分布于回肠远端,是免疫反应的主要诱导部位[27]。ILFs是广泛分布于肠道中的成熟淋巴聚集体,上覆毛囊相关上皮,在启动局部IgA反应中起作用[28-29]。MLNs是一群位于肠系膜内的大淋巴结,包含大量淋巴细胞、巨噬细胞和杀伤细胞,主要功能是过滤肠道淋巴,并启动肠道免疫反应。MLNs可分为两类:上皮内淋巴细胞(intraepithelial lymphocytes,IELs)位于肠上皮细胞之间,参与免疫监视和防御活动;固有层淋巴细胞(propria lymphocytes,PL)位于肠道固有层,以CD4+T细胞、CD8+T细胞和浆细胞为代表,主要产生IgA等抗体。肠道免疫的主要因子是分泌型IgA(secretory IgA,sIgA),占肠黏膜免疫球蛋白的70%以上[30],主要功能是阻碍微生物黏附上皮细胞。

2 FMT对仔猪肠道屏障功能的作用

FMT作为提高仔猪肠道屏障功能的一种工具,目前,研究还非常少,可用的数据有限,因此,暂无法得出肯定的结论。然而,大部分试验都显示出一些积极的效果。现将目前相关研究中粪便移植对仔猪肠道屏障功能的作用[31-39]进行总结,详见表 1图 2

表 1 FMT对仔猪肠道屏障功能的影响 Table 1 Effects of faecal microbiota transplantation on intestinal barrier function in piglets
1.FMT后,仔猪肠道中微生物的多样性和结构发生了改变,可通过生物拮抗作用拮抗其他微生物;微生物也可产生抗菌肽、有机酸等抗微生物物质,进而杀灭致病菌。2.FMT诱导的微生物变化可调节肠道菌群的代谢产物,可直接作用于肠上皮细胞,改善肠道屏障功能。如膳食纤维的微生物代谢产物短链脂肪酸,可为肠细胞提能,抑制细胞的自噬,增加黏蛋白的生成,改善紧密连接的完整,激活炎性小体分泌细胞因子;色氨酸的微生物代谢产物吲哚-3-乙酸可作为芳香烃受体的配体,促进胃肠黏膜上皮细胞之间的多种固有淋巴细胞产生IL-22。3.肠道微生物群及其代谢产物均可影响免疫细胞的分化与功能,促进多种免疫因子的合成和分泌,进而对仔猪的肠道免疫进行调控。如肠道微生物群和代谢产物短链脂肪酸可促进B细胞分泌抗体sIgA,诱导调节性T细胞分化,通过刺激细胞信号转导途径引起调节性T细胞和树突细胞增殖 1. After FMT, the diversity and structure of the microbes in the piglet's intestines have changed, which can antagonize other microbes through biological antagonism. And microbes can also produce antimicrobial substances, such as antimicrobial peptides and organic acids to kill pathogenic bacteria. 2. The microbial changes induced by FMT can regulate the metabolites of the intestinal flora, which can directly act on the intestinal epithelial cells and improve the intestinal barrier function. For example, short-chain fatty acids, the microbial metabolites of dietary fiber, can boost intestinal cells, inhibit cell autophagy, increase mucin production, improve the integrity of tight junctions, and activate inflammasome to secrete cytokines; Indole-3-acetic acid, a microbial metabolite of tryptophan, can be used as a ligand for aromatic hydrocarbon receptors to promote the production of IL-22 by a variety of innate lymphocytes among gastrointestinal mucosal epithelial cells. 3. The intestinal microbiota and its metabolites can affect the differentiation and function of immune cells, promote the synthesis and secretion of a variety of immune factors, and then regulate the intestinal immunity of piglets. For example, the intestinal microbiota and its metabolite short-chain fatty acids can promote the secretion of antibody sIgA by B cells, induce the differentiation of regulatory T cells, and induce the proliferation of regulatory T cells and dendritic cells by stimulating cell signal transduction pathways 图 2 粪便微生物移植对仔猪肠道屏障功能的作用和可能机理示意图 Fig. 2 Schematic view of effects and mechanism of faecal microbiota transplantation on intestinal barrier function in piglets
2.1 FMT对生物屏障的作用

肠道微生物群在免疫系统的发展和仔猪的整体健康中起着重要作用[1, 40]。因此,尽早建立稳定的微生物群对于维护仔猪肠道健康是有利的。粪便移植利用微生物群落直接干预仔猪肠道微生物区系,有助于微生物的快速定植[41]。给1~5日龄的仔猪每天灌注母源粪菌接种液,能在一定程度上增加仔猪肠道菌群的多样性[36]。Geng等[33]将成年金华猪的粪便悬浮液给新生仔猪移植14 d后,发现仔猪结肠内细菌在门水平上,厚壁菌门增加而拟杆菌门减少;属水平上,有21个属增加,18个属减少。FMT不但可以增加仔猪肠道微生物多样性,也可以影响仔猪肠道微生物群落的结构。与成年猪相比,仔猪肠道微生物区系的可塑性更高[39],是微生物调控的黄金时期。Hu等[42]研究发现,移植了长江小型猪粪便的10日龄LY仔猪在断奶后肠道微生物(尤其是细菌)的结构仍与供体相似。虽然粪便移植对仔猪肠道微生物结构的改变能否持续较长时间尚无定论[36, 39, 43],但这种改变与施用抗生素后的效果明显不同[35]

2.2 FMT对化学屏障的作用

与Hu等[32]的研究结果相似,岳晓敬等[37]也发现了成年金华猪的粪便悬浮液能增加仔猪小肠和大肠黏膜中杯状细胞的数量和MUC2的表达。Diao等[38]观察到来自约克夏猪粪便使商品仔猪回肠和结肠内杯状细胞增加,结肠MUC1表达上调。此外,仔猪胃肠道内的有机酸浓度和pH也发生了不同程度的变化。通过调查移植不同猪种的粪便对哺乳仔猪肠道微生物的影响,发现接受约克夏猪粪便的仔猪结肠中丙酸、丁酸和总挥发性脂肪酸浓度降低,接受荣昌猪粪便的仔猪丁酸和总挥发性脂肪酸浓度降低。

粪便悬浮液经口和直肠移植后,剖腹产仔猪胃内乳酸盐、乙酸盐、丁酸盐、总的有机酸含量和pH,以及结肠内丙酸盐的含量和pH升高,而结肠内乳酸盐和总有机酸的含量降低;粪便悬浮液仅经直肠移植,剖腹产仔猪胃内pH降低,结肠内丙酸盐含量和pH升高[31]

2.3 FMT对机械屏障的作用

小肠的绒毛高度、隐窝深度是衡量小肠消化吸收能力的重要指标。绒毛高度/隐窝深度可综合反映小肠的功能状态,其比值的下降表明黏膜受损,消化吸收能力下降。FMT可以增加仔猪结肠绒毛的高度和数量,增加隐窝深度/组织厚度的比值[33]。Hu等[32]的试验中,仔猪小肠隐窝深度在粪便移植后降低了。岳晓敬等[37]的研究也显示粪便移植提高了空回肠绒毛高度/隐窝深度。这几个试验粪便的来源均为成年金华猪,而Diao等[38]试验中来自荣昌猪的粪便得到了相反的移植效果,仔猪回肠隐窝深度增加了。肠道通透性是反映肠道黏膜屏障的重要指标,其功能与上皮细胞和连接蛋白的完整性密切相关。Hu等[32]发现粪便移植能增强回肠和结肠中ZO-1和Occludin的表达。粪便移植后仔猪感染大肠杆菌内毒素的试验提示粪便移植上调转化生长因子-β1 (TGF-β1)的表达,促进受损上皮的恢复;增强黏附连接蛋白E-钙黏蛋白表达,抵抗脂多糖诱导的结肠黏膜上皮细胞连接的丢失[33]

2.4 FMT对免疫屏障的作用

肠道黏膜的免疫系统是机体免疫系统内最大也是最复杂的部分。粪便移植可引起肠道黏膜中多种微生物受体、免疫细胞、细胞因子等的变化,从而影响肠道免疫屏障的功能。接种了金华猪粪便悬液的新生仔猪回肠β-防御素2、TLR2和TLR4表达增加,结肠中sIgA阳性细胞数量增多[32]。3日龄仔猪移植藏猪的粪便后结肠中有抑制过度的炎症反应功能的细胞因子IL-10表达增加[38]。疾病模型和感染模型中,粪便移植的效果更加明显。在人类早产儿小肠性坏死性结肠炎(necrotizing enterocolitis,NEC)的剖腹产仔猪模型中,经口和直肠联合的粪便移植似乎降低了小肠黏膜免疫反应,微生物抗原识别受体TLR2的表达水平增加,促炎性TLR4的表达降低[31]。大肠杆菌内毒素感染试验的结果显示,粪便移植降低了脂多糖攻击的仔猪中趋化因子单核细胞趋化蛋白1(Mcp-1)和典型炎症细胞因子IL-1β、IL-6、肿瘤坏死因子-α(TNF-α)和干扰素-γ(IFN-γ)的表达,暗示粪便移植的早期肠道微生物群干预可以帮助减轻脂多糖攻击引起的炎症反应[33]

综上所述,目前的多个试验都显示了FMT对仔猪肠道屏障功能的有益效果,但还需要更多的试验重复[44]和更好的试验设计以提供更可靠的结论。

3 FMT保护仔猪肠道屏障功能的机制探讨 3.1 建立仔猪正常的肠道微生物结构

3.1.1 提供仔猪肠道微生物的直接来源   胚胎肠道被普遍认为是无菌的,在分娩过程中接触到大量的抗原以及产道的微生物后,胎儿肠道才出现了微生物,但是母体产道的微生物通常不在胎儿肠道中定植。仔猪出生后微生物会不断进入动物体内,并逐渐在胃肠道内定植繁衍。随着时间的推移,仔猪肠道内微生物区系由简单逐渐复杂化,最终形成稳定的多样化微生物区系[45]。新鲜粪便中含有大量的肠道微生物,可通过FMT作为仔猪肠道微生物的直接来源。典型的例子是将人类粪便移植给无菌或SPF仔猪以建立疾病模型[46-47]。然而,大量微生物的定植同时也会给肠道带来炎症和感染的风险。

3.1.2 增加仔猪肠道微生物生物多样性,纠正微生物失调   猪胃肠道内微生物群建立后,正常情况下在体内外环境的影响下不断变化,维持一定的动态平衡,并在健康个体中产生终身的微生物组特征[48]。应激、致病菌[49]、抗生素的滥用[50]等因素会引起仔猪胃肠道内微生物菌群结构动态平衡被打破,肠道屏障功能受损,导致肠炎、腹泻等疾病的发生,即出现微生物失调。很多消化道疾病中微生物失调的典型特征是微生物多样性降低[50],因此,微生物多样性是FMT成功的可靠预测因素[51]。针对抗生素治疗后微生物失调,FMT可以提供快速的保护作用[52]。随着研究的深入,人们也发现了微生物群的不平衡在不同的疾病背景下可能有不同的组成和功能属性[53]。鉴于肠道菌群的高度复杂性,修复肠道菌群紊乱难以通过单一的菌群干预达到目的,FMT被认为不仅包含患者肠道中含量减少的有益微生物群,还含有微生物群的生存结构与空间[54],具有独特的优势[52]。显然,微生物之间的相互作用似乎在FMT移植中起着重要作用[55]。Li等[43]证实如果在受体中已有同类存在,则来自供体的新微生物菌株更容易植入。Smillie等[56]报道了不同的观点,他们观察到之前未被发现的菌株经常能在FMT供体肠道内定居,因为一个物种中的新菌株是以“有或无”的方式移植的。可见,被移植的微生物是如何与数量上远远超过自己的“土著居民”重组,然后又如何与新宿主的肠道黏膜在代谢与免疫等生理功能方面进行“交流”,进而修复失衡的微生态系统的,仍有许多问题需要仔细探究。再者,微生物失调有多种形式,其中,一些多样性没有变化,甚至反而增加,提示了微生物的多样性是健康宿主肠道微生态的特征而不是复原的原因[57]

3.1.3 促进有益微生物的定植或繁殖   益生菌对肠道屏障的益处已得到大量试验证实[58],因此,多数研究将FMT的效果归功于粪便中有益菌种的贡献[34, 38, 59-61]。有研究似乎印证了这种猜测。Hu等[42]证明了是长江小型猪粪便中的加氏乳杆菌LA39和弗鲁门蒂乳杆菌赋予了FMT受体屏障功能改善和腹泻率减少的功效。这两种菌分泌的加氏乳杆菌素A可直接与宿主的肠上皮细胞膜作用,调节肠上皮蛋白的表达,增加肠液吸收和减少肠液分泌。此外,大肠杆菌和埃希菌也可以利用肠道内食糜生产抗微生物物质,如乳酸、丁酸等,有利于肠黏膜屏障的维持[45]。黏膜乳杆菌最初从具有黏液结合活性的猪中分离出来[62],可降低上皮通透性并改善屏障功能。这种解释与很多学者的观点不谋而合,即粪便微生物对受体的影响可能只是由具有某些功能的细菌引起的,微生物的全部植入并不必要[63-67],这也是规避FMT不良事件[15]的有效途径。粪便微生物的功能组分移植是目前FMT研究的趋势之一。但是,最新的研究也显示,益生菌延缓了抗生素治疗后肠道菌群的恢复过程,停止益生菌干预后微生物失调仍持续了至少5个月[52]。这提示了粪便微生物功能组分移植的成功将建立在对微生物群相互之间以及微生物与宿主之间相互关系深刻理解的基础上。

3.2 调节肠道微生物的代谢功能

人类肠道内胆汁酸代谢异常与rCDI有关,恢复肠道微生物来源的胆盐水解酶的功能提高了FMT治疗rCDI的疗效[68],提示了肠道微生物的代谢功能改变可能是FMT治疗疾病的一个关键机制。目前,已经鉴定出一系列菌群代谢物,包括菌群降解膳食纤维产生的短链脂肪酸,结肠细菌转化初级胆汁酸生成的次级胆汁酸,磷脂酰胆碱、胆碱、左旋肉碱等营养素被菌群-宿主共代谢产生的三甲胺-N-氧化物等[69]。这些代谢物对宿主和肠道菌群之间的“对话”至关重要,并在维持肠道屏障功能中发挥重要作用。一个典型的例子是短链脂肪酸,由宿主不可消化的多糖发酵产生,是肠细胞的能量的主要来源[9],通过促进细胞增殖和分化来帮助肠修复[70]。特别是丁酸盐,可增加肠细胞线粒体依赖性氧的消耗,促进可增强屏障功能的缺氧诱导因子的稳定和其靶基因的表达[71]。FMT诱导的微生物变化可以调节肠道菌群的代谢功能。母源性粪便移植后,仔猪结肠能量和氨基酸的代谢发生了改变[35]。同样,Cheng等[34]发现FMT增强了与亚油酸代谢相关的肠道微生物功能,以有助于仔猪肠道屏障完整性的改善。Geng等[33]研究发现仔猪经历FMT后微生物群落的α多样性和结构发生了改变,肠道微生物群的色氨酸代谢功能增强,而色氨酸代谢分解代谢物吲哚-3-乙酸可作为AhR配体,促进胃肠道内IL-22的产生,进一步有助于改善肠道屏障功能。

3.3 调节肠道免疫功能

FMT可能通过改变肠道微生物的组成来调节肠道免疫功能,进而影响肠道屏障功能[34, 72]。肠道微生物是动物先天免疫和适应性免疫的重要启动和调节因子。动物的先天免疫系统可通过Toll样受体(toll-like receptors,TLRs)和NOD样受体(nucleotide binding oligomerization domain-like receptors,NLR)等模式识别受体(pattern recognition receptors,PRRs) 识别微生物来源的病原相关分子模式(pathogen-associated molecular patterns, PAMPs) 和损伤相关分子模式(damage-associated molecular patterns,DAMPs),通过信号转导通路分子启动髓样分化因子88(myeloid differentiationfactor 88, MyD88)产生级联反应来刺激不同效应分子的表达,以清除病原,保护肠道。肠道微生物可利用宿主的PAMPs促进黏液和抗菌肽的分泌[73],调节炎症反应相关基因的表达,增强肠道屏障功能。Karczewski等[74]研究发现植物乳杆菌(Lactobacillus plantarum)通过激活TLR-2依赖的信号通路以增强肠上皮ZO-1和occludin的表达。此外,肠道微生物也是肠相关淋巴组织(gut-associated lymphoid tissues, GALTs)的发育和适应性免疫反应的重要参与者。肠道菌群对B细胞分化以促进肠道IgA的产生方面有重要的调节作用[75-76]。一些肠道菌,比如分节丝状菌可诱导肠道中辅助性T细胞17(T helper cell 17,Th17)的分化[77],增强宿主对其他病原体的抵抗。

目前,人们对FMT调节仔猪肠道屏障功能的机制理解仍然有限。学者们试图从不同的角度进行解释,归纳起来主要是认为FMT可以建立胃肠道内正常的微生物生态,然后可能改变肠道内代谢环境,影响肠道免疫功能。除了Hu等[42]的研究外,以上所指的微生物多局限在细菌层面上。除了细菌,肠腔内的微生物还有丰富的真菌、病毒及原生动物等[3],也对宿主的肠道屏障功能有着极为重要的作用[64, 78-80]。病毒数量可能远多过细菌至少一个数量级[81-82],对细菌的群落结构也有深刻的影响[80, 82]。已有学者研究了一直被忽略的非细菌成分对FMT治疗不同消化道疾病的贡献。Ott等[83]使用无菌粪便滤液成功治愈了5名rCDI患者。Zuo等[84]的研究表明噬菌体转移可能在FMT治疗CDI中发挥作用。与此类似,Conceição-Neto等[85]发现真核病毒与FMT成功治疗溃疡性结肠炎有关。这些证据都提示了病毒等非活菌成分可能对FMT调节肠道微生物结构和肠道屏障功能有重要贡献,值得关注。

4 FMT可能带来的风险和局限

目前,FMT技术主要采用将供体粪便中所有的微生物群进行一刀切式的整体移植方式[86]。供体的肠道微生物是治愈受体疾病的关键,不合适的供体会损害受体肠道菌群的稳定性和耐受性,引起受体肠道的排斥反应[15, 87]。Diao等[38]将约克夏猪和荣昌猪的粪便微生物群移植到杜长大三元杂交仔猪中,破坏了仔猪肠道菌群平衡,损害了肠道健康。供体粪便还可能携带致病性微生物,若不谨慎选择供体,则会存在致病原感染传播的风险[88],最好选择没有使用过抗生素或无易残留药物历史的供体[89](如SPF猪)。此外,移植途径也会给受体带来致病原感染的风险。Hu等[32]研究表明,经上消化道途径移植会使仔猪近端肠道暴露于供体粪便中的潜在病原体,而增加患败血症的风险。粪便悬液中包括细菌、古生菌、真菌、原生生物、病毒、细胞因子及各种代谢产物[88],这些成分对仔猪生长及最终的猪肉产品是否存在安全隐患还鲜有研究。除谨慎选择供体和移植途径外,若能确定肠道微生物中是哪种微生物或哪种因子、产物在仔猪肠道中发挥作用,进而优选特定品种的微生物进行移植,会极大提高安全性和有效性[15]

5 小结

FMT对仔猪肠道屏障功能的维持和修复有一定的有益效果,但其中的机制仍不明确。对肠道微生物群和肠道屏障功能之间关系的精确理解,无疑有助于避免FMT治疗的局限性制约,开发出更安全有效的方法,以改善仔猪肠道屏障功能,促进养猪业的健康发展。

参考文献
[1] GUEVARRA R B, LEE J H, LEE S H, et al. Piglet gut microbial shifts early in life: causes and effects[J]. J Anim Sci Biotechnol, 2019, 10: 1. DOI: 10.1186/s40104-018-0308-3
[2] CAMMAROTA G, IANIRO G, TILG H, et al. European consensus conference on faecal microbiota transplantation in clinical practice[J]. Gut, 2017, 66(4): 569–580. DOI: 10.1136/gutjnl-2016-313017
[3] KHO Z Y, LAL S K. The human gut microbiome-A potential controller of wellness and disease[J]. Front Microbiol, 2018, 9: 1835. DOI: 10.3389/fmicb.2018.01835
[4] VAN NOOD E, VRIEZE A, NIEUWDORP M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile[J]. N Engl J Med, 2013, 368(5): 407–415. DOI: 10.1056/NEJMoa1205037
[5] HVAS C L, JØRGENSEN S M D, JØRGENSEN S P, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection[J]. Gastroenterology, 2019, 156(5): 1324–1332. DOI: 10.1053/j.gastro.2018.12.019
[6] DREW L. Microbiota: Reseeding the gut[J]. Nature, 2016, 540(7634): S109–S112. DOI: 10.1038/540S109a
[7] ODENWALD M A, TURNER J R. The intestinal epithelial barrier: a therapeutic target?[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 9–21. DOI: 10.1038/nrgastro.2016.169
[8] JULIO-PIEPER M, BRAVO J A. Intestinal barrier and behavior[J]. Int Rev Neurobiol, 2016, 131: 127–141.
[9] HⅡPPALA K, JOUHTEN H, RONKAINEN A, et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10(8): 988. DOI: 10.3390/nu10080988
[10] SENDER R, FUCHS S, MILO R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533.. DOI: 10.1371/journal.pbio.1002533
[11] HOOPER L V. Do symbiotic bacteria subvert host immunity?[J]. Nat Rev Microbiol, 2009, 7(5): 367–374. DOI: 10.1038/nrmicro2114
[12] JOHANSSON M E, SJÖVALL H, HANSSON G C. The gastrointestinal mucus system in health and disease[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(6): 352–361. DOI: 10.1038/nrgastro.2013.35
[13] WALTER J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research[J]. Appl Environ Microbiol, 2008, 74(16): 4985–4996. DOI: 10.1128/AEM.00753-08
[14] WANG K, WU L Y, DOU C Z, et al. Research advance in intestinal mucosal barrier and pathogenesis of Crohn's disease[J]. Gastroenterol Res Pract, 2016, 2016: 9686238.
[15] WANG S N, XU M Q, WANG W Q, et al. Systematic review: adverse events of fecal microbiota transplantation[J]. PLoS ONE, 2016, 11(8): e0161174. DOI: 10.1371/journal.pone.0161174
[16] LOUIS N A, HAMILTON K E, CANNY G, et al. Selective induction of mucin-3 by hypoxia in intestinal epithelia[J]. J Cell Biochem, 2006, 99(6): 1616–1627. DOI: 10.1002/jcb.20947
[17] HALPERN M D, DENNING P W. The role of intestinal epithelial barrier function in the development of NEC[J]. Tissue Barriers, 2015, 3(1-2): e1000707. DOI: 10.1080/21688370.2014.1000707
[18] MCGUCKIN M A, ERI R, SIMMS L A, et al. Intestinal barrier dysfunction in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2009, 15(1): 100–113. DOI: 10.1002/ibd.20539
[19] TURNER J R. Intestinal mucosal barrier function in health and disease[J]. Nat Rev Immunol, 2009, 9(11): 799–809. DOI: 10.1038/nri2653
[20] DELGADO M E, GRABINGER T, BRUNNER T. Cell death at the intestinal epithelial front line[J]. FEBS J, 2016, 283(14): 2701–2719. DOI: 10.1111/febs.13575
[21] CAMARA-LEMARROY C R, METZ L, MEDDINGS J B, et al. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics[J]. Brain, 2018, 141(7): 1900–1916. DOI: 10.1093/brain/awy131
[22] GUTTMAN J A, FINLAY B B. Tight junctions as targets of infectious agents[J]. Biochim et Biophys Acta, 2009, 1788(4): 832–841. DOI: 10.1016/j.bbamem.2008.10.028
[23] GASSLER N. Paneth cells in intestinal physiology and pathophysiology[J]. World J Gastrointest Pathophysiol, 2017, 8(4): 150–160. DOI: 10.4291/wjgp.v8.i4.150
[24] MUNIZ L R, KNOSP C, YERETSSIAN G. Intestinal antimicrobial peptides during homeostasis, infection, and disease[J]. Front Immunol, 2012, 3: 310.
[25] ANDERSSON D I, HUGHES D, KUBICEK-SUTHERLAND J Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides[J]. Drug Resist Updat, 2016, 26: 43–57. DOI: 10.1016/j.drup.2016.04.002
[26] KABAT A M, POTT J, MALOY K J. The mucosal immune system and its regulation by autophagy[J]. Front Immunol, 2016, 7: 240.
[27] AHLUWALIA B, MAGNUSSON M K, ÖHMAN L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad[J]. Scand J Gastroenterol, 2017, 52(11): 1185–1193. DOI: 10.1080/00365521.2017.1349173
[28] NEWBERRY B D, LORENZ R G. Organizing a mucosal defense[J]. Immunol Rev, 2005, 206(1): 6–21. DOI: 10.1111/j.0105-2896.2005.00282.x
[29] MOWAT A M, AGACE W W. Regional specialization within the intestinal immune system[J]. Nat Rev Immunol, 2014, 14(10): 667–685. DOI: 10.1038/nri3738
[30] MACPHERSON A J, UHR T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria[J]. Science, 2004, 303(5664): 1662–1665. DOI: 10.1126/science.1091334
[31] BRUNSE A, MARTIN L, RASMUSSEN T S, et al. Effect of fecal microbiota transplantation route of administration on gut colonization and host response in preterm pigs[J]. ISME J, 2019, 13(3): 720–733. DOI: 10.1038/s41396-018-0301-z
[32] HU L S, GENG S J, LI Y, et al. Exogenous fecal microbiota transplantation from local adult pigs to crossbred newborn piglets[J]. Front Microbiol, 2018, 8: 2663. DOI: 10.3389/fmicb.2017.02663
[33] GENG S J, CHENG S S, LI Y, et al. Faecal microbiota transplantation reduces susceptibility to epithelial injury and modulates tryptophan metabolism of the microbial community in a piglet model[J]. J Crohns Colitis, 2018, 12(11): 1359–1374.
[34] CHENG S S, MA X, GENG S J, et al. Fecal microbiota transplantation beneficially regulates intestinal mucosal autophagy and alleviates gut barrier injury[J]. mSystems, 2018, 3(5): e00137–18.
[35] LIN C H, WAN J J, SU Y, et al. Effects of early intervention with maternal fecal microbiota and antibiotics on the gut microbiota and metabolite profiles of piglets[J]. Metabolites, 2018, 8(4): 89. DOI: 10.3390/metabo8040089
[36] 陈雪, 任二都, 苏勇. 早期灌喂母源粪菌对新生仔猪肠道菌群发育的影响[J]. 微生物学报, 2018, 58(7): 1224–1232.
CHEN X, REN E D, SU Y. Effect of oral feeding maternal fecal microbiota on intestinal microbiota development of newborn piglets[J]. Acta Microbiologica Sinica, 2018, 58(7): 1224–1232. (in Chinese)
[37] 岳晓敬, 胡栾莎, 扶雄锋, 等. 菌群移植对新生和K88攻毒仔猪生长、腹泻和肠道菌群的影响[C]//中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会. 武汉, 2016.
YUE X J, HU L S, FU X F, et al. Effects of microbiota transplantation on growth, diarrhea and intestinal flora of newborn and K88 challenged piglets[C]//Proceedings of the 12th Symposium on Animal Nutrition of the Animal Nutrition Branch of the Chinese Society of Animal Husbandry and Veterinary Medicine. Wuhan, 2016. (in Chinese)
[38] DIAO H, YAN H L, XIAO Y, et al. Modulation of intestine development by fecal microbiota transplantation in suckling pigs[J]. RSC Adv, 2018, 8(16): 8709–8720. DOI: 10.1039/C7RA11234C
[39] MCCORMACK U M, CURIÃO T, WILKINSON T, et al. Fecal microbiota transplantation in gestating sows and neonatal offspring alters lifetime intestinal microbiota and growth in offspring[J]. mSystems, 2018, 3(3): e00134–17.
[40] MILANI C, DURANTI S, BOTTACINI F, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota[J]. Microbiol Mol Biol Rev, 2017, 81(4): e00036–17.
[41] 徐菊美, 范觉鑫, 张颖, 等. 早期菌群干预在仔猪肠道健康中的应用[J]. 畜牧与兽医, 2018, 50(10): 137–141.
XU J M, FAN J X, ZHANG Y, et al. Application of early microbial intervention in intestinal health of weaning piglets[J]. Animal Husbandry & Veterinary Medicine, 2018, 50(10): 137–141. (in Chinese)
[42] HU J, MA L B, NIE Y F, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets[J]. Cell Host Microbe, 2018, 24(6): 817–832. DOI: 10.1016/j.chom.2018.11.006
[43] LI S S, ZHU A, BENES V, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation[J]. Science, 2016, 352(6285): 586–589. DOI: 10.1126/science.aad8852
[44] CANIBE N, O'DEA M, ABRAHAM S. Potential relevance of pig gut content transplantation for production and research[J]. J Anim Sci Biotechnol, 2019, 10(1): 55. DOI: 10.1186/s40104-019-0363-4
[45] HU J, NIE Y F, CHEN J W, et al. Gradual changes of gut microbiota in weaned miniature piglets[J]. Front Microbiol, 2016, 7: 1727.
[46] KUMAR A, VLASOVA A N, DEBLAIS L, et al. Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model[J]. BMC Gastroenterol, 2018, 18(1): 93. DOI: 10.1186/s12876-018-0810-2
[47] PANG X Y, HUA X G, YANG Q, et al. Inter-species transplantation of gut microbiota from human to pigs[J]. ISME J, 2007, 1(2): 156–162. DOI: 10.1038/ismej.2007.23
[48] GILBERT J A, BLASER M J, CAPORASO J G, et al. Current understanding of the human microbiome[J]. Nat Med, 2018, 24(4): 392–400. DOI: 10.1038/nm.4517
[49] BIN P, TANG Z Y, LIU S J, et al. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets[J]. BMC Vet Res, 2018, 14(1): 385. DOI: 10.1186/s12917-018-1704-9
[50] KRISS M, HAZLETON K Z, NUSBACHER N M, et al. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery[J]. Curr Opin Microbiol, 2018, 44: 34–40. DOI: 10.1016/j.mib.2018.07.003
[51] KUMP P, WURM P, GRÖCHENIG H P, et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis[J]. Aliment Pharmacol Ther, 2018, 47(1): 67–77. DOI: 10.1111/apt.14387
[52] SUEZ J, ZMORA N, ZILBERMAN-SCHAPIRA G, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT[J]. Cell, 2018, 174(6): 1406–1423. DOI: 10.1016/j.cell.2018.08.047
[53] DUVALLET C, GIBBONS S M, GURRY T, et al. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses[J]. Nat Commun, 2017, 8: 1784. DOI: 10.1038/s41467-017-01973-8
[54] 马晨, 张和平. 粪便菌群移植的研究与应用[J]. 中国微生态学杂志, 2016, 28(3): 364–368.
MA C, ZHANG H P. Research and application of fecal microbiota transplantation[J]. Chinese Journal of Microecology, 2016, 28(3): 364–368. (in Chinese)
[55] WILSON B C, VATANEN T, CUTFIELD W S, et al. The super-donor phenomenon in fecal microbiota transplantation[J]. Front Cell Infect Microbiol, 2019, 9: 2. DOI: 10.3389/fcimb.2019.00002
[56] SMILLIE C S, SAUK J, GEVERS D, et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation[J]. Cell Host Microbe, 2018, 23(2): 229–240. DOI: 10.1016/j.chom.2018.01.003
[57] FALONY G, VIEIRA-SILVA S, RAES J. Richness and ecosystem development across faecal snapshots of the gut microbiota[J]. Nat Microbiol, 2018, 3(5): 526–528. DOI: 10.1038/s41564-018-0143-5
[58] BRON P A, KLEEREBEZEM M, BRUMMER R J, et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. Br J Nutr, 2017, 117(1): 93–107. DOI: 10.1017/S0007114516004037
[59] 舒龙, 胡继. 粪便移植技术的应用研究[J]. 四川畜牧兽医, 2014(6): 33–35.
SHU L, HU J. Research on the application of faeces transplant[J]. Sichuan Animal & Veterinary Sciences, 2014(6): 33–35. DOI: 10.3969/j.issn.1001-8964.2014.06.020 (in Chinese)
[60] NIEDERWERDER M C, CONSTANCE L A, ROWLAND R R R, et al. Fecal microbiota transplantation is associated with reduced morbidity and mortality in porcine circovirus associated disease[J]. Front Microbiol, 2018, 9: 1631. DOI: 10.3389/fmicb.2018.01631
[61] WANG X F, TSAI T, DENG F L, et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria[J]. Microbiome, 2019, 7(1): 109. DOI: 10.1186/s40168-019-0721-7
[62] ROOS S, KARNER F, AXELSSON L, et al. Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine[J]. Int J Syst Evol Microbiol, 2000, 50: 251–258. DOI: 10.1099/00207713-50-1-251
[63] ARRIETA M C, WALTER J, FINLAY B B. Human microbiota-associated mice: a model with challenges[J]. Cell Host Microbe, 2016, 19(5): 575–578. DOI: 10.1016/j.chom.2016.04.014
[64] SARTOR R B, WU G D. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches[J]. Gastroenterology, 2017, 152(2): 327–339. DOI: 10.1053/j.gastro.2016.10.012
[65] STALEY C, KAISER T, VAUGHN B P, et al. Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation[J]. Microbiome, 2018, 6(1): 166. DOI: 10.1186/s40168-018-0549-6
[66] LIBERTUCCI J, YOUNG V B. The role of the microbiota in infectious diseases[J]. Nat Microbiol, 2019, 4: 35–45. DOI: 10.1038/s41564-018-0278-4
[67] PARAMSOTHY S, NIELSEN S, KAMM M A, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis[J]. Gastroenterology, 2019, 156(5): 1440–1454. DOI: 10.1053/j.gastro.2018.12.001
[68] MULLISH B H, MCDONALD J A K, PECHLIVANIS A, et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection[J]. Gut, 2019, 68(10): 1791–1800. DOI: 10.1136/gutjnl-2018-317842
[69] ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9: 3294. DOI: 10.1038/s41467-018-05470-4
[70] LAZAR V, DITU L, PIRCALABIORU G G, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer[J]. Front Immunol, 2018, 9: 1830. DOI: 10.3389/fimmu.2018.01830
[71] KELLY C J, ZHENG L, CAMPBELL E L, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host Microbe, 2015, 17(5): 662–671. DOI: 10.1016/j.chom.2015.03.005
[72] XIAO Y, YAN H L, DIAO H, et al. Early gut microbiota intervention suppresses DSS-induced inflammatory responses by deactivating TLR/NLR signalling in pigs[J]. Sci Rep, 2017, 7(1): 3224. DOI: 10.1038/s41598-017-03161-6
[73] SHANAHAN F. Probiotics in perspective[J]. Gastroenterology, 2010, 139(6): 1808–1812. DOI: 10.1053/j.gastro.2010.10.025
[74] KARCZEWSKI J, TROOST F J, KONINGS I, et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(6): G851–G859. DOI: 10.1152/ajpgi.00327.2009
[75] HE B, XU W F, SANTINI P A, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL[J]. Immunity, 2007, 26(6): 812–826. DOI: 10.1016/j.immuni.2007.04.014
[76] HAPFELMEIER S, LAWSON M A E, SLACK E, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses[J]. Science, 2010, 328(5986): 1705–1709. DOI: 10.1126/science.1188454
[77] IVANOV I I, ATARASHI K, MANEL N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009, 139(3): 485–498. DOI: 10.1016/j.cell.2009.09.033
[78] LIGGENSTOFFER A S, YOUSSEF N H, COUGER M B, et al. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores[J]. ISME J, 2010, 4(10): 1225–1235. DOI: 10.1038/ismej.2010.49
[79] ILIEV I D, FUNARI V A, TAYLOR K D, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis[J]. Science, 2012, 336(6086): 1314–1317. DOI: 10.1126/science.1221789
[80] GOGOKHIA L, BUHRKE K, BELL R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis[J]. Cell Host Microbe, 2019, 25(2): 285–299. DOI: 10.1016/j.chom.2019.01.008
[81] REYES A, HAYNES M, HANSON N, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers[J]. Nature, 2010, 466(7304): 334–338. DOI: 10.1038/nature09199
[82] LIN D M, LIN H C. A theoretical model of temperate phages as mediators of gut microbiome dysbiosis[J]. F1000Res, 2019, 8: F1000 Faculty Rev-997.
[83] OTT S J, WAETZIG G H, REHMAN A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection[J]. Gastroenterology, 2017, 152(4): 799–811. DOI: 10.1053/j.gastro.2016.11.010
[84] ZUO T, WONG S H, LAM K, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome[J]. Gut, 2018, 67(4): 634–643.
[85] CONCEIÇÃO-NETO N, DEBOUTTE W, DIERCKX T, et al. Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC[J]. Gut, 2018, 67(8): 1558–1559. DOI: 10.1136/gutjnl-2017-315281
[86] ALLEGRETTI J R, KAO D, SITKO J, et al. Early antibiotic use after fecal microbiota transplantation increases risk of treatment failure[J]. Clin Infect Dis, 2018, 66(1): 134–135. DOI: 10.1093/cid/cix684
[87] 王宏刚. 粪菌移植治疗克罗恩病的临床安全性研究[D]. 南京: 南京医科大学, 2019.
WANG H G. The long term safety of fecal microbiota transplantation for Crohn's disease[D]. Nanjing: Nanjing Medical Univerdity, 2019. (in Chinese)
[88] FADDA H M. The route to palatable fecal microbiota transplantation[J]. AAPS Pharm Sci Tech, 2020, 21(3): 114. DOI: 10.1208/s12249-020-1637-z
[89] 李晓蕾, 李地艳, 孙静. 以肠道菌群为靶向的粪菌移植法及其在畜牧业的应用潜能[J]. 中国实验动物学报, 2019, 27(1): 124–128.
LI X L, LI D Y, SUN J. Intestinal flora-targeted fecal microbiota transplantation and its potential applications in animal husbandry[J]. Acta Laboratorium Animalis Scientia Sinica, 2019, 27(1): 124–128. DOI: 10.3969/j.issn.1005-4847.2019.01.021 (in Chinese)