畜牧兽医学报  2021, Vol. 52 Issue (4): 1126-1133. DOI: 10.11843/j.issn.0366-6964.2021.04.028    PDF    
硫酸化酵母葡聚糖对鸡球虫病的防治效果
刘博1, 陈融1,2, 陈凯1, 彭鼎1,2, 王米1     
1. 中国农业科学院上海兽医研究所农业农村部兽用化学药物及制剂学 重点实验室, 上海 200241;
2. 长江大学, 荆州 434023
摘要:旨在探讨硫酸化酵母葡聚糖(sGSC)对人工感染鸡柔嫩艾美耳球虫(Eimeria tenella)病的防治效果。采用笼饲法,将200只鸡随机分为A组(4 mg·kg-1)、B组(16 mg·kg-1)、C组(64 mg·kg-1)、D组(感染对照组)和E组(健康对照组)。感染球虫前3 d开始,给A、B、C组鸡每天按体重饮水喂上述各浓度的sGSC,给D、E组的鸡喂纯水(RO水),持续至试验结束。试验过程中观察各组鸡的临床症状、血便情况并记录,收集感染后5~6 d的粪便,检测每克粪便中的卵囊数,感染后第7天剖杀所有鸡,计算脏器指数;并通过Illumina测序平台研究鸡盲肠内微生物群落多样性。结果显示:1)与D组比较,各给糖组鸡的盲肠肿胀明显减轻,肠内容物和出血明显减少,与E组鸡体重相比,A、D组体重明显降低(P < 0.05),但B组和C组鸡的体重升高至接近E组水平,体重与E组鸡无显著差异(P>0.05);B组和C组鸡排出的卵囊数与D组相比,出现了明显的减少,但无统计学差异(P>0.05);A组鸡的胸腺指数明显增加(P < 0.05),肝指数也出现显著改善(P < 0.05);2)对盲肠内菌群分析发现,sGSC能提高盲肠内韦荣氏菌科(Veillonellaceae)和乳酸杆菌科(Lactobacillaceae)的相对丰度,降低肠球菌科(Enterococcaceae)的相对丰度。sGSC能减轻柔嫩艾美尔球虫感染对鸡造成的危害,且随着sGSC剂量的增加,效果越明显。综上表明,sGSC具有一定的抗球虫效果,并且对感染球虫鸡肠道内的菌群具有有益的调节作用。
关键词硫酸化酵母葡聚糖    球虫    肠道菌    药物滥用    
Control Effects of Sulfated Yeast Glucan on Chicken Coccidiosis
LIU Bo1, CHEN Rong1,2, CHEN Kai1, PENG Ding1,2, WANG Mi1     
1. Key Laboratory of Veterinary Chemicals and Pharmaceutics, Shanghai Veterinary Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
2. Changjiang University, Jingzhou 434023, China
Abstract: The purpose of our research was to explore the effects of sulfated yeast glucan (sGSC) on the prevention and treatment of artificial Eimeria tenella disease in chickens. In this study, cage feeding was used to randomly divide 200 chickens into group A (4 mg·kg-1), group B (16 mg·kg-1), group C (64 mg·kg-1), group D (infection control group) and group E (healthy control group). Three days before the coccidiosis infection, the chickens of groups A, B, and C were given the above-mentioned concentrations of sGSC by body weight every day, and the chickens of groups D and E were fed with reverse osmosis water (RO water) until the end of the experiment. During the experiment, the clinical symptoms, and bloody stools of each group of chickens were observed and recorded, the feces from 5 to 6 days after infection were collected and the number of oocysts per gram of feces was detected. All chickens were killed on the 7th day after infection, and the organ index was calculated; The diversity of the microbial community in the cecum of the chicken was studied through the Illumina sequencing platform. The results showed that: 1) Compared with group D, the cecal swelling of the chickens in each sugar group was significantly reduced, and their intestinal contents and bleeding were significantly reduced. Compared with the weight of the chickens in the E group, the weight of the A and D groups was significantly reduced (P < 0.05), however, the body weight of chickens in group B and C were increased to the level of group E, and there was no significant difference with the body weight from chickens in group E (P>0.05); the number of oocysts excreted by chickens in group B and C was compared with that in group D, and there have a significant reduction in group B and C compared with group D, but there was no statistical difference (P>0.05); The thymus index of chickens in group A increased significantly (P < 0.05), and the liver index was also significantly improved (P < 0.05); 2) Analysis of the cecal flora found that sGSC increased the relative abundance of Veillonellaceae and Lactobacillaceae in the cecum. The relative abundance of Enterococcaceae has been reduced. The results showed that sGSC could reduce the damage caused by Eimeria tenella infection to chickens, and the effects were more obvious with the increase of sGSC dose. In short, sGSC has good anti-coccidial effects, and has beneficial regulatory effects on the intestinal flora of chickens infected with coccidia. In conclusion, sGSC has a certain anti-coccidial effect and has beneficial regulatory effect on the intestinal flora of chickens infected with coccidia.
Key words: sulfated yeast glucan    coccidia    intestinal bacteria    overuse of drugs    

鸡球虫病是一种严重的寄生虫病,可引起鸡轻度至严重的病变,给畜牧业造成沉重负担,长期困扰着养禽业,不利于经济的增长。据估计,世界范围内每年养殖鸡群约有210亿只,产生1.1万亿个鸡蛋和约900亿kg鸡肉,但球虫病会降低鸡蛋和肉类的产量,并在全球每年造成约20亿英镑的损失[1-3]。根据球虫的分类,不同的球虫寄生在鸡体内不同的部位。球虫病可以导致鸡的营养损失、肠壁出血性炎症和上皮脱落或彻底破坏,导致大量出血和死亡[4]。在不断与鸡球虫病的抗争中,人们虽然开发出了许多有效的抗球虫药和球虫病疫苗,在控制疾病方面取得了很大进展,但是也出现了很多问题,比如药物残留和微生物耐药性问题[5]。此外,给家禽大量使用化学类抗球虫药物后,一些药物会通过排泄物原样排泄,并可以转移到农田中,污染了食物来源,并对环境、植物、土壤造成了极大的污染[6]。在家禽饲料中使用化学类药物及一些抗生素会对家禽、人类健康、食品安全及环境造成潜在的不利影响,因此,全球范围实施了完全禁止或限制使用抗生素的方案,并寻找能在畜禽业使用的绿色安全药物[7]。开发新的即能抗鸡球虫病又绿色安全、无污染残留的药物,日益受到人们的关注。

多糖是自然界中普遍存在的生物大分子,具有多种生物和药理活性。多糖的来源非常广泛,比如可以来源于光合作用较高的植物、真菌、藻类、细菌等,不同来源的多糖因其具有不同的的生物学活性而备受关注,如一些多糖具有抗肿瘤、抗氧化、抗糖尿病、抗辐射、抗病毒、降血脂、免疫调节等功能[8-9]。肠道微生物在食物能量的获取、储存和消耗中起着重要的作用,动物饲料中也常常添加细菌,如添加双歧杆菌属、乳酸杆菌属、球菌属、链球菌属、酵母菌株酿酒酵母和克鲁维酵母属来增加动物的体重增长,研究表明,益生菌在促进生长方面相当于或优于抗生素[10]。球虫感染会破坏鸡盲肠屏障和破坏菌群多样性,使鸡盲肠内的乳酸杆菌的数量大量减少,同时,机会病原体也会不断增加[11-12]。多糖可充当益生元的角色,可以作为底物被益生菌利用,可以促进肠道益生菌的生长[13]。另外,也有研究表明,一些多糖对小鼠体内球虫感染有一定的作用[14]。因此,对多糖进行研究具有重要的意义。

多糖经过硫酸化修饰,可以改变其结构,进而改变其生物活性功能,如硫酸化可以改善多糖对巨噬细胞的吞噬作用,还能改善多糖的抗氧化,抗肿瘤、抗炎的作用[15-18]。本试验拟探讨硫酸化酵母葡聚糖(sGSC)对感染球虫的鸡的影响,通过分析鸡的体重、脏器指数、卵囊排除情况及肠道菌群变化,以探究sGSC是否具有抗球虫的作用,是否具有被开发为抗球虫药物的潜力,为后续研究奠定基础。

1 材料与方法 1.1 试验动物

浦东三黄小公鸡,购自上海汇中种鸡场,1日龄购入,饲养在经过严格消毒的无球虫房间,14 d后开始分组。全价饲料委托上海祥兴有限公司加工, 饲料中不添加任何药物。饮水为RO水(reverse osmosis water)。

1.2 虫株

柔嫩艾美耳球虫孢子化卵囊(Eimeria tenella),由本研究室自备,4 ℃冰箱保存。

1.3 葡聚糖的准备

硫酸化酵母葡聚糖,由中国农业科学院上海兽医研究所兽用抗感染药物团队所制。

1.4 分组与处理

200只鸡随机分为A、B、C、D和E组,每组4笼,每笼10只鸡。分组完成后,A、B、C组分别在饮水中添加sGSC,用量分别为4、16、和64 mg· kg-1,D组和E组饮用RO水,连续3 d后,除了E组, 对其余各组鸡只人工经口感染柔嫩艾美耳球虫孢子化卵囊(每只鸡经口灌入卵囊1 mL,每毫升包含3万个孢子化卵囊)。

1.5 临床观察

试验期间每日观察各组鸡的精神状态、饮食饮水情况、有无血便、有无死亡等情况,并准确记录下来。如果试验期间出现鸡死亡,应进行解剖,观察其病理变化,判断其死亡原因[19]

1.6 感染鸡的卵囊检查

感染后第4天清除各组鸡的粪便,换上新的报纸,收集第5、6天的粪便,收集的粪便按组别混合搅拌均匀,分别称取2 g粪便至烧杯中,加水稀释至60 mL,搅拌均匀,各取1 mL稀释液后加入2 mL饱和盐水,振荡混匀后充入麦克马氏计数板计数室,静止3 min后在显微镜下计数,计算每克粪便中的卵囊数,计算公式为OPG= [(n1+n2)/(2×0.15)]×3×60÷2。

1.7 器官指数分析

感染后第7天对每只鸡称重,剖杀所有鸡,观察盲肠病变,计算心、肝、胸腺和法氏囊的脏器指数,计算公式: 器官指数=器官鲜重/宰前活重×100%。

1.8 肠道菌群分析

肠道内容物的DNA提取和高通量测序。剖杀鸡后,从每组中取3只鸡,在无菌条件下分别取其盲肠,分离肠道内容物,从盲肠中提取总微生物DNA,通过PCR扩增16S rRNA基因的V3-V4区域,然后在Illumina MiSeq / NovaSeq平台上测序。本工作由上海派森诺公司完成。

1.9 数据的统计分析

试验数据采用SPSS 17.0软件进行数据的统计与分析,使用one-way ANOVA对数据进行方差分析,并用LSD进行多重比较,试验数据用“x±s”表示,P<0.05为差异显著。图表用Graphad Prism 8软件绘制。

2 结果 2.1 临床表现情况

D组鸡在感染球虫第3天出现精神萎靡,羽毛凌乱现象,采食量明显减少,感染后第4天下午出现血便;第5天血便更加严重,鸡群呈现精神沉郁和嗜睡等症状。此外,试验期间,A、B、C、D 4组各死亡1只,对每只死鸡进行剖检,发现肠道出现病变,盲肠内出现血液或血样凝块和盲肠显著萎缩,肠黏膜变厚。E组鸡的精神状况良好,粪便颜色正常,无死亡。

2.2 体重变化分析

图 1可知,球虫感染后,D组中鸡的终末体重表现为明显降低,与E组相比差异极显著(P<0.01)。饮水中添加sGSC的各组鸡中,A组(4 mg·kg-1)鸡的体重显著低于E组(P<0.05),B组(16 mg·kg-1)和C组(64 mg·kg-1)中鸡的体重有所恢复,鸡体重与E组体重无统计学差异(P>0.05),说明恢复至接近E组水平。

A、B、C、D、E后面的数字1、2、3分别代表初始鸡体重、攻虫时鸡体重和终末鸡体重。*代表P<0.05,有统计学差异,**代表P<0.01有显著统计学差异,***代表P<0.001有极显著差异,没有*代表无统计学差异,下图同 The numbers 1, 2, and 3 behind A, B, C, D, and E represent the initial weight of the chicken, the weight of the chicken at the time of attack, and the weight of the final chicken, respectively. * means P < 0.05, there is a statistical difference, ** means P < 0.01, there is a significant statistical difference, *** means P < 0.001, there is a very significant difference, no* means no statistical difference, the same as below 图 1 sGSC对鸡体重的影响 Fig. 1 The effects of sGSC on chicken body weight
2.3 卵囊排出情况

由于E组鸡未排出卵囊,故对A、B、C、D 4组进行分析。由图 2可以看出,感染后第5天,A组(4 mg·kg-1)与D组排出卵囊数相近,而B组(16 mg·kg-1)和C组(64 mg·kg-1)鸡排出的卵囊数较低,其中,C组(64 mg·kg-1)排出的卵囊数最少。感染后第6天,A、B、C、D 4组的卵囊数逐渐接近。各组鸡排出卵囊的变化在统计学上均无明显差异(P>0.05)。

图 2 sGSC对鸡卵囊排出的影响 Fig. 2 The effect of sGSC on the excretion of chicken oocysts
2.4 脏器指数分析

对各组鸡的脏器指数进行分析。由图 3可知,与E组相比,球虫感染后导致D组的鸡出现肝指数、脾指数显著升高(P<0.05),但胸腺指数显著降低(P<0.05), 而心和法氏囊指数在统计学上均无明显变化。与D组相比,除了B组(16 mg·kg-1)的肝指数有所降低(P<0.05),其余组的脏器指数无明显差异(P>0.05)。此外,与D组相比,A组(4 mg·kg-1)中鸡的胸腺指数明显升高(P<0.05),趋向于恢复至健康对照组的水平。

图 3 sGSC对鸡脏器指数的影响 Fig. 3 The effects of sGSC on the organ index of chicken
2.5 盲肠菌群变化分析

在本研究中,通过Illumina系统分析了肠道菌群多样性。稀疏曲线的平缓程度反映了测序深度对于观测样本多样性的影响大小,曲线越平缓,表明测序结果已足够反映当前样本所包含的多样性,稀疏曲线图 4a表明,每个样品均可以完全捕获肠道菌群的测序深度,均可以用于进一步分析。以Chao1、Observed species指数表征丰富度,Shannon指数表征多样性,Pielou’s evenness指数表征均匀度,进行了分析,各指数数值越大,则说明物种丰富度越高、数量越多、或物种分布越均匀。图 4c分析了Chao1指数、Pielou_e指数、Observed_species指数和Shannon指数,发现各指数在统计学上均无明显差异(P>0.05)。用主坐标分析(PCoA)对各组菌群进行分析,图 4b中左下角最小三角形代表E组,与E组相比,其余各组在横坐标上的投影与E组距离基本相等,但A、B、C组与D组在纵坐标上的投影有所不同,说明SGSC对鸡肠道菌群产生了影响。

a.稀疏曲线;b. PCoA分析;c.α多样性分析;d.物种组成分类分析 a. Sparse curve; b. PCoA analysis; c. α diversity analysis; d. Species composition classification analysis 图 4 sGSC对鸡盲肠内微生物的影响 Fig. 4 The effects of sGSC on the microbes in the cecum of chickens

在科的水平上,对各组鸡盲肠微生物的分类学组成变化进行了分析,在科的水平上,比较有代表意义的菌群变化主要有VeillonellaceaeLactobacillaceaeEnterococcaceae(表 1图 4 d)。结果显示,sGSC能提高盲肠内VeillonellaceaeLactobacillaceae的相对丰度,降低Enterococcaceae的相对丰度,表明sGSC对鸡盲肠内的微生物结构组成产生了有利的改变。

表 1 每组盲肠内细菌组成在科水平上的不同 Table 1 The composition difference of bacteria in the cecum of each group at the departmental level  
3 讨论

家禽主要用于生产供人食用的肉和蛋,其中,鸡是最重要的家禽之一,在全球范围内被人们广泛饲养,鸡能提供动物源性蛋白质,在改善人们的营养方面发挥出了巨大的作用,在世界经济发展中具有极其重要的地位[20]。球虫病严重威胁家禽业,在全世界范围内造成了重大的经济损失,全球每年由球虫病造成的经济损失估计为30亿美元,由于抗生素和一些化学药物具有负面作用,研发新型绿色安全的抗球虫药物尤为重要[21]

球虫感染对鸡的生理状况带来巨大的影响,会使鸡的精神状态下降,体重减轻,采食量下降,柔嫩艾美耳球虫还能造成肠损伤,削弱肠屏障的完整性,也能改变鸡肠道内的致病菌和非致病菌[21-22]。球虫感染会在鸡肠道内产生高水平的氧化和炎性应激,严重影响鸡的生长发育,甚至造成死亡[23]。鸡胃肠道中的微生物群能提高从饮食中获取能量的效率,具有重要的作用,肉鸡盲肠和空肠中的菌群具有极高饲料转化能力,能间接影响鸡的体重[24]。葡聚糖具有抗炎、抗氧化、提高免疫力和改善肠道菌群的作用[25-27],因此,预测sGSC或具有一定的抗球虫作用。在本试验中,将sGSC提前3 d饮水饲喂鸡,持续至结束,探究提前饮水饲喂sGSC对柔嫩艾美耳球虫感染的影响。结果发现,sGSC能改善柔嫩艾美耳球虫感染对鸡的影响,表现为减轻了受感染鸡盲肠的病理变化,使血便减少,给糖浓度为16和64 mg·kg-1体重时,鸡排出卵囊数出现减少,同时sGSC也促进了受感染鸡体重的恢复,并改善了胸腺指数和脾指数。

本研究对鸡盲肠内微生物变化也进行了分析。结果显示,柔嫩艾美耳球虫感染使鸡盲肠内的Veillonellaceae相对丰度减少为0,而给糖浓度为4 mg·kg-1时,A组中盲肠内Veillonellaceae的相对丰度提升至0.2%,但仍然低于E组的0.74%。有研究表明,Veillonellaceae是一种有益的细菌,营养不良的病人肠道中Veillonellaceae丰度会减少,Veillonellaceae也可以将琥珀酸酯转化为丙酸酯,影响丙酸的形成及糖酵解[28]Lactobacillaceae是一种益生菌[29],感染柔嫩艾美耳球虫后,鸡盲肠内Lactobacillaceae丰度降低为0,但是在给糖浓度为16 mg·kg-1时,Lactobacillaceae丰度则恢复至0.27%,但仍低于E组的8.37%。Enterococcaceae与发热和腹泻有关,危害比较严重[30],在本研究中,E组Enterococcaceae丰度为0.感染对照组Enterococcaceae丰度为11.94%,A、B、C等给糖组的Enterococcaceae相对丰度分别降为0.92%、0.71% 和4.73%,说明sGSC减少了鸡盲肠中Enterococcaceae的相对丰度。以上结果均可说明,sGSC对鸡肠道菌群具有有益的调节作用。

4 结论

sGSC能改善柔嫩艾美耳球虫感染对鸡群带来的不利影响,并且对感染鸡的肠道菌群具有一定的调节作用。

参考文献
[1] TANG X M, SUO J X, LI C, et al. Transgenic Eimeria tenella expressing profilin of Eimeria maxima elicits enhanced protective immunity and alters gut microbiome of chickens[J]. Infect Immun, 2018, 86(9): e00888–17.
[2] BLAKE D P, CLARK E L, MACDONALD S E, et al. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development[J]. Proc Natl Acad Sci U S A, 2015, 112(38): E5343–E5350. DOI: 10.1073/pnas.1506468112
[3] SHIRLEY M W, SMITH A L, TOMLEY F M. The biology of avian Eimeria with an emphasis on their control by vaccination[J]. Adv Parasitol, 2005, 60: 285–330.
[4] CHAPMAN H D. Milestones in avian coccidiosis research: a review[J]. Poult Sci, 2014, 93(3): 501–511. DOI: 10.3382/ps.2013-03634
[5] GUETIYA WADOUM R E, ZAMBOU N F, ANYANGWE F F, et al. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications[J]. Br Poult Sci, 2016, 57(4): 483–493. DOI: 10.1080/00071668.2016.1180668
[6] BERENDSEN B J A, LAHR J, NIBBELING C, et al. The persistence of a broad range of antibiotics during calve, pig and broiler manure storage[J]. Chemosphere, 2018, 204: 267–276. DOI: 10.1016/j.chemosphere.2018.04.042
[7] SALIM H M D, HUQUE K S, KAMARUDDIN K M, et al. Global restriction of using antibiotic growth promoters and alternative strategies in poultry production[J]. Sci Prog, 2018, 101(1): 52–75. DOI: 10.3184/003685018X15173975498947
[8] ZENG P J, LI J, CHEN Y L, et al. The structures and biological functions of polysaccharides from traditional chinese herbs[J]. Prog Mol Biol Transl Sci, 2019, 163: 423–444.
[9] SHI L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review[J]. Int J Biol Macromol, 2016, 92: 37–48. DOI: 10.1016/j.ijbiomac.2016.06.100
[10] ANGELAKIS E, MERHEJ V, RAOULT D. Related actions of probiotics and antibiotics on gut microbiota and weight modification[J]. Lancet Infect Dis, 2013, 13(10): 889–899. DOI: 10.1016/S1473-3099(13)70179-8
[11] CHEN H L, ZHAO X Y, ZHAO G X, et al. Dissection of the cecal microbial community in chickens after Eimeria tenella infection[J]. Parasit Vectors, 2020, 13(1): 56. DOI: 10.1186/s13071-020-3897-6
[12] ZHOU B H, JIA L S, WEI S S, et al. Effects of Eimeria tenella infection on the barrier damage and microbiota diversity of chicken cecum[J]. Poult Sci, 2020, 99(3): 1297–1305. DOI: 10.1016/j.psj.2019.10.073
[13] NOWAK R, NOWACKA-JECHALKE N, JUDA M, et al. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth[J]. Eur J Nutr, 2018, 57(4): 1511–1521. DOI: 10.1007/s00394-017-1436-9
[14] 任超, 袁顺子, 贾妮娜, 等. 姬松茸多糖抗镰形艾美耳球虫感染作用的研究[J]. 黑龙江畜牧兽医, 2018(24): 183–185.
REN C, YUAN S Z, JIA N N, et al. Study on the effect of Agaricus blazei murrill polysaccharide against Eimeria falciparum infection[J]. Hlongjiang Animal Science & Veterinary Medicine, 2018(24): 183–185. (in Chinese)
[15] CHEN F, HUANG G L. Preparation and immunological activity of polysaccharides and their derivatives[J]. Int J Biol Macromol, 2018, 112: 211–216. DOI: 10.1016/j.ijbiomac.2018.01.169
[16] 谢明勇, 王之珺, 谢建华. 多糖的硫酸化修饰及其结构与生物活性关系研究进展[J]. 中国食品学报, 2015, 15(2): 1–8.
XIE M Y, WANG Z J, XIE J H. Research progress on the sulfated modification of polysaccharides and its structure-bioactivities relationship[J]. Journal of Chinese Institute of Food Science & Technology, 2015, 15(2): 1–8. (in Chinese)
[17] 王米, 王宵旸, 张丽芳, 等. 硫酸化酵母葡聚糖体外抗氧化及抗菌活性研究[J]. 畜牧与兽医, 2016, 48(8): 8–11.
WANG M, WANG X Y, ZHANG L F, et al. In vitro study on antioxidant and antibacterial activities of the sulfated yeast glucan[J]. Animal Husbandry & Veterinary Medicine, 2016, 48(8): 8–11. (in Chinese)
[18] 杨柳. 岩藻多糖硫酸酯的抗肿瘤活性筛选和初步机理研究[D] 济南: 山东大学, 2012.
YANG L Antitumor activities study of fucoidan and the underlying mechanisisma[D] Ji'nan: Shandong University, 2012 (in Chinese)
[19] 佘如凤, 费陈忠, 赵其平, 等. 沙咪珠利预防鸡球虫病的药效试验研究[J]. 中国兽医杂志, 2017, 53(11): 88–92.
SHE R F, FEI C Z, ZHAO Q P, et al. Study on the efficacy of acetamizuril against coccidiosis in chickens[J]. Chinese Journal of Veterinary Medicine, 2017, 53(11): 88–92. (in Chinese)
[20] GEETHA M, PALANIVEL K M A. review on poultry coccidiosis[J]. Int J Curr Microbiol Appl Sci, 2018, 7(6): 3345–3349. DOI: 10.20546/ijcmas.2018.706.392
[21] HUANG G P, TANG X L, BI F F, et al. Eimeria tenella infection perturbs the chicken gut microbiota from the onset of oocyst shedding[J]. Vet Parasitol, 2018, 258: 30–37. DOI: 10.1016/j.vetpar.2018.06.005
[22] 李建梅, 刘梅, 沈欣悦, 等. 我国不同地方品种鸡(Gallus gallus domesticus)对柔嫩艾美耳球虫的易感性[J]. 畜牧兽医学报, 2016, 47(10): 2098–2107.
LI J M, LIU M, SHEN X Y, et al. The susceptibility of Chinese indigenous chicken breeds (Gallus gallus domesticus) to Eimeria tenella infection[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(10): 2098–2107. DOI: 10.11843/j.issn.0366-6964.2016.10.019 (in Chinese)
[23] TONDA R M, RUBACH J K, LUMPKINS B S, et al. Effects of tannic acid extract on performance and intestinal health of broiler chickens following coccidiosis vaccination and/or a mixed-species Eimeria challenge[J]. Poult Sci, 2018, 97(9): 3031–3042. DOI: 10.3382/ps/pey158
[24] STANLEY D, DENMAN S E, HUGHES R J, et al. Intestinal microbiota associated with differential feed conversion efficiency in chickens[J]. Appl Microbiol Biotechnol, 2012, 96(5): 1361–1369. DOI: 10.1007/s00253-011-3847-5
[25] WANG M, YANG R L, ZHANG L F, et al. Sulfated glucan can improve the immune efficacy of Newcastle disease vaccine in chicken[J]. Int J Biol Macromol, 2014, 70: 193–198. DOI: 10.1016/j.ijbiomac.2014.05.048
[26] WANG Y, AMES N P, TUN H M, et al. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk[J]. Front Microbiol, 2016, 7: 129.
[27] WANG M, ZHANG L F, YANG R L, et al. Improvement of immune responses to influenza vaccine (H5 N1) by sulfated yeast beta-glucan[J]. Int J Biol Macromol, 2016, 93: 203–207. DOI: 10.1016/j.ijbiomac.2016.06.057
[28] STERNES P R, BROWN M A. The gut microbiome and ankylosing spondylitis[M]//MEASE P, KHAN M A Axial Spondyloarthritis Amsterdam: Elsevier, 2019: 87-95.
[29] DOLPADY J, SORINI C, DI PIETRO C, et al. Oral probiotic VSL#3 prevents autoimmune diabetes by modulating microbiota and promoting indoleamine 2, 3-dioxygenase-enriched tolerogenic intestinal environment[J]. J Diabetes Res, 2016, 2016: 7569431.
[30] HAKIM H, DALLAS R, WOLF J, et al. Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia[J]. Clin Infect Dis, 2018, 67(4): 541–548. DOI: 10.1093/cid/ciy153