猪繁殖与呼吸综合征(PRRS)是一种导致患病仔猪高死亡率以及母猪严重的繁殖与呼吸系统障碍的一种高度接触传染性疾病,每年给养猪业造成了巨大的经济损失[1-2]。据早期研究报道观察发现,PRRSV感染后,肾小球内皮细胞排列紊乱,局部出血,间质中存在大量淋巴细胞与少数巨噬细胞浸润,同时,对PRRSV导致的血液循环障碍提出了猜想与疑问[3-4]。随后,有研究发现,感染PPRSV后仔猪肾除上述肾小球病变外,肾小管上皮细胞变性肿胀、坏死脱落[5-6]。但目前关于PRRSV对肾的具体损伤机制以及血液微循环障碍的产生没有进行深入的研究。20世纪60年代以来,电镜已被广泛用于肾疾病的病理诊断,尤其对肾小球疾病的分类和鉴别的诊断价值[7]。因此,本研究在仔猪感染PRRSV后,通过IHC对病毒进行定位,同时,主要利用透射电镜技术对肾组织中肾小球足细胞、血管内皮细胞、肾小管及间质等细胞超微结构变化进行了系统的观察,结合肾损伤相关血清生化指标水平,对观察到的血液微循环相关病理变化进行分析,有利于在亚细胞水平揭示PRRSV感染仔猪肾损伤的病变特征和发生发展规律,为深入阐明PRRSV的感染致病机制提供理论基础。
1 材料与方法 1.1 实验动物及处理从湖北某猪场随机购买10头40日龄的通城仔猪。抽取全血分离血清,送武汉科前生物公司进行猪繁殖与呼吸综合征病毒、猪圆环病毒和伪狂犬病病毒抗原、抗体检测,检测结果全部为阴性。随机选择3头仔猪作为对照,不做任何处理。余下仔猪采用PRRSV-WUH3株(毒株由华中农业大学刘榜教授保存馈赠),按3 mL·15 kg-1(106 PFU·mL-1)进行攻毒,其中,肌内注射2 mL·15 kg-1,滴鼻1 mL·15 kg-1。感染后第8~17天进行扑杀、剖检。抽取全血分离血清,并采集仔猪肾组织。
1.2 血清生化分析取血清进行肾功能生化指标分析(采用全自动干式生化分析仪SPOTCHEM EZ SP-4430)。
1.3 病毒的定位取肾组织于4%多聚甲醛溶液中固定,然后进行常规石蜡切片制作。切片脱蜡至水,在枸橼酸盐溶液(pH=6.0)中微波高温修复抗原,5%山羊血清封闭非特异性,孵育鼠抗PRRSV抗体(抗体由华中农业大学方六荣教授馈赠)4 ℃过夜,采用基因科技有限公司GTVisionTM+抗鼠/兔通用型免疫组化试剂盒显色,苏木精复染,常规脱水透明、树脂封片。
1.4 电镜样品制作取肾组织皮质部分固定于2.5%戊二醛溶液中, 4 ℃保存,转至电镜固定液中固定2~4 h。随后磷酸缓冲液漂洗3次。1%锇酸溶液室温固定2 h。磷酸缓冲液漂洗3次。组织依次入梯度酒精与丙酮进行脱水。812包埋剂包埋,37 ℃过夜。60 ℃聚合48 h。超薄切片机(Leica, Leica UC7)切片60~80 nm超薄切片。铀铅双染色(2%醋酸铀饱和酒精溶液、枸橼酸铅各染色15 min),切片室温干燥过夜。
1.5 数据分析与图像采集血清学检测为T test双尾检验,P < 0.05表示有统计学意义。石蜡切片采用生物光学显微镜(Nikon80i)观察,高清晰度彩色图文分析系统(NIS-Elements)进行结果观察与记录。超微切片采用透射电子显微镜(HITACHI, HT7700)观察,采集图像分析(HITACHI, Hitachi TEM system control)。
2 结果 2.1 血清生化指标检测通过血清生化指标血清尿素氮(BUN)与肌酐(CRE)的检测,结果发现,感染组两个指标显著升高(表 1)。
![]() |
表 1 血清肾功能生化指标水平(x±s) Table 1 Serum renal biochemical index level (x±s) |
免疫组化染色结果显示,与正常对照组(图 1A)相比,感染组肾小管部分上皮细胞脱落至管腔内,病变严重的肾小管上皮细胞胞核坏死溶解;间质中可观察到巨噬细胞弥散浸润。在肾小球、变性的肾小管、间质中的巨噬细胞内均可观察到阳性(棕褐色或棕黄色)信号(图 1B~F)。
![]() |
A.对照组,PRRSV无阳性表达,Bar=50 μm;B.感染组,PRRSV在肾小球内足细胞胞质呈阳性(→标注),Bar=50 μm;C. 感染组,PRRSV在变性坏死的肾小管上皮细胞胞质内呈阳性(→标注),Bar=50 μm;D. 感染组,PRRSV在间质中巨噬细胞胞质内呈阳性(→标注),Bar=100 μm;E、F.感染组,PRRSV在间质中巨噬细胞胞质内呈阳性(→标注),Bar=50 μm A. Control group, negative expression of PRRSV, Bar=50 μm; B. Infected group The cytoplasm of glomerular cells was positive for PRRSV (→ labeled), Bar=50 μm; C. Infected group, PRRSV was positive in the cytoplasm of denatured and necrotic renal tubular epithelial cells (→ labeled), Bar=50 μm; D. Infected group, PRRSV was positive in the cytoplasm of macrophages in the stroma (→ labeled), Bar=100 μm; E, F. Infected group, PRRSV was positive in the cytoplasm of macrophages in the stroma (→ labeled), Bar=50 μm 图 1 PRRSV在通城仔猪肾中的分布(IHC) Fig. 1 Distribution of PRRSV in kidney of Tongcheng piglets (IHC) |
透射电子显微镜下观察发现:对照组,肾小球毛细血管袢、基底膜结构清晰(图 2A),足细胞足突紧贴于毛细血管基底膜外,排列整齐,结构正常,突起之间可见裂孔(图 3A);肾小球毛细血管基底膜及系膜基质结构正常,基底膜未见明显增厚;血管内皮细胞靠于基底膜内侧,形成连续紧密连接的有孔内皮(图 4A)。PRRSV感染组,肾小球毛细血管袢扩张,充满红细胞、白细胞、血小板及纤维蛋白,表明微血栓形成(图 2B、C);足细胞内溶酶体数量增加,伴有足突广泛融合或足突微绒毛化(图 3B、C);血管内皮细胞肿胀,线粒体等膜性细胞器肿胀,内皮细胞间孔减少、消失,细胞质电子密度降低,部分毛细血管基底膜与血管内皮细胞间有电子致密物沉积(图 4B、C)。
![]() |
A. 对照组,肾小球毛细血管袢、足细胞、基底膜结构清晰,Bar=10 μm;B. 感染组,肾小球毛细血管袢扩张,Bar=10 μm;C.感染组,肾小球毛细血管腔内充满红细胞、血小板及纤维蛋白,微血栓(☆标注)形成,Bar=10 μm A. Control group, the glomerular capillary loops, the foot cells, the basal membrane structure were clear, Bar=10 μm; B. Infected group, glomerular capillary loop expansion, Bar=10 μm; C. Infected group, the glomerular capillaries are full of red blood cells, platelets and fibrin, microthrombotic (☆labeled) formation, Bar=10 μm 图 2 PRRSV感染猪肾小球的超微结构变化 Fig. 2 Ultrastructural changes of glomeruli in PRRSV infected pigs |
![]() |
A. 对照组,足细胞足突紧贴于毛细血管基底膜外,突起之间可见裂孔(→标注),足细胞排列整齐,结构正常,Bar=2 μm;B. 感染组,足细胞溶酶体数量增加(△标注),伴有足突广泛融合(→标注),Bar=2 μm;C. 感染组,足突微绒毛化(→标注),Bar=5 μm A. Control group, podocyte podocytes were closely attached to the basal membrane of capillaries, and there were cracks between the processes (→ labeled), podocytes were neatly arranged and had normal structure, Bar=2 μm; B. Infected group, the number of podocyte lysosomes increased (△ labeled), accompanied by extensive foot process fusion (→ labeled), Bar=2 μm; C. Infected group, foot processes microvillous (→ labeled), Bar=5 μm 图 3 PRRSV感染猪肾小球中足细胞的超微结构变化 Fig. 3 Ultrastructural changes of podocytes in renal glomeruli of PRRSV infected pigs |
![]() |
A. 对照组,血管内皮细胞形成连续紧密连接的有孔内皮(→标注),Bar=2 μm;B. 感染组,血管内皮细胞肿胀(→标注),Bar=2 μm;C. 感染组,血管内皮细胞肿胀,毛细血管基底膜与血管内皮细胞间有电子致密物沉积(→标注),Bar=2 μm A. Control group, vascular endothelial cells formed perforated endothelium with continuous and tight connection (→ labeled), Bar=2 μm; B. Infected group, swelling of vascular endothelial cells in the infected group (→ labeled), Bar=2 μm; C. Infected group, the vascular endothelial cells were swollen, and there was electron dense deposition between the capillary basement membrane and the vascular endothelial cells (→ labeled), Bar=2 μm 图 4 PRRSV感染猪肾小球血管内皮细胞的超微结构变化 Fig. 4 Ultrastructural changes of renal glomerular endothelial cells infected with PRRSV in pigs |
对照组肾远曲小管为单层立方上皮细胞,细胞结构清晰(图 5A),肾近曲小管为单层立方上皮细胞,微绒毛明显,形成完整的刷状缘(图 6A);肾小管及间质毛细血管结构清晰(图 7A)。而感染组,远曲小管上皮细胞细胞质电子密度明显降低,有大量空泡,线粒体肿胀,电子密度降低,线粒体嵴断裂、溶解(图 5B、C);近曲小管上皮细胞电子密度增加,溶酶体数量增加(图 6B);有的肾小管上皮细胞的细胞核消失,细胞膜崩解,细胞器电子密度增加,结构紊乱;间质内有中性粒细胞浸润(图 7B)。
![]() |
A.对照组,肾远曲小管上皮细胞细胞结构清晰,Bar=5 μm;B. 感染组,肾小管上皮细胞细胞质电子密度明显降低,Bar=10 μm;C.感染组,线粒体肿胀,嵴断裂、溶解(△标注),Bar=5 μm A. Control group, renal distal convoluted tubule epithelial cells, Bar=2 μm; B. Infected group, the cytoplasmic electron density of renal tubular epithelial cells was significantly decreased, Bar=10 μm; C. Infected group, mitochondria swelled, cristae ruptured, and dissolved (△ labeled), Bar=5 μm 图 5 PRRSV感染猪肾远曲小管的超微结构变化 Fig. 5 Ultrastructural changes of distal convoluted tubules in PRRSV infected pigs |
![]() |
A. 对照组,肾近曲小管为单层立方上皮,微绒毛明显形成完整的刷状缘,Bar=10 μm;B. 感染组,近曲小管上皮细胞电子密度增加,溶酶体(△标注)数量增加,Bar=5 μm A. Control group, the proximal convoluted tubules were single cuboidal epithelium, and the microvilli obviously formed a complete brush border, Bar=10 μm; B. Infected group, electron density and lysosome (△ labeled) number of epithelial cells increased in proximal convoluted tubule, Bar=5 μm 图 6 PRRSV感染猪肾近曲小管的超微结构变化 Fig. 6 Ultrastructural changes of proximal convoluted tubule of PRRSV infected pig kidney |
![]() |
A. 对照组,肾小管及间质结构清晰,Bar=20 μm;B. 感染组,肾小管上皮细胞的细胞核消失,间质中有中性粒细胞浸润(△标注),Bar=10 μm A. Control group, renal tubules and interstitium were clearly structured, Bar=20 μm; B. Infected group, the nuclei of the renal tubular epithelial cells have disappeared and neutrophils are present in the stroma (△ labeled), Bar=10 μm 图 7 PRRSV感染猪肾间质的超微结构变化 Fig. 7 Ultrastructural changes of renal interstitium in PRRSV-infected pigs |
PRRSV在仔猪肺组织中不仅引起常见的间质性肺炎,同时,引起广泛的血液微循环障碍[8],本研究发现,肾组织同样存在血液微循环障碍。血清生化指标BUN、CRE可用于预测肾损伤[9],本试验结果显示在感染PRRSV后,肾小球、肾小管及间质均有PRRSV阳性表达,且血清指标较对照组显著性升高,提示PRRSV引起仔猪严重肾损伤。
肾小球滤过膜主要由足细胞、系膜基质、血管内皮细胞以及基底膜组成。足细胞在肾小球维持毛细血管结构完整性、执行滤过功能上发挥着重要的作用[10]。微小病变性肾病(MCD)、膜性肾病(MN)和IgA肾病等共同病理学变化都存在足细胞损伤。在足细胞损伤过程中,最显著的形状改变是足突融合[11-13],而严重疾病状态下,足突广泛融合会引起肾小球对大分子物质的通透性增加[14]。本研究发现,PRRSV感染仔猪肾组织内少数足细胞呈现病毒阳性。透射电镜观察发现,足突减少并出现广泛融合或足突微绒毛化,同时,足细胞内大量的溶酶体形成,线粒体等膜性细胞器肿胀,这些足细胞凋亡早期特点变化说明PRRSV引起足细胞发生了损伤[15]。结合血清生化分析结果,PRRSV感染仔猪肾小球的通透性失衡,滤过功能障碍[16]。
肾小球血管内皮细胞作为肾小球滤过膜组成之一,除了执行滤过功能外,血管内皮细胞还有抗凝、防血栓形成的作用[17]。当血管内皮细胞损伤时会引起的血管壁损伤,是血栓形成的条件之一[18]。本研究观察发现,PRRSV感染仔猪肾小球内皮细胞间孔减少、消失,细胞质电子密度降低,部分毛细血管基底膜与血管内皮细胞间有电子致密物沉积。这些超微结构变化与曹剑波等[19-20]的研究一致,但由于电镜样品的局限性,没有观察到清晰的病毒颗粒。可以推测毛细血管内皮细胞肿大、活化、增生,导致血管内皮细胞排列紊乱,引起血管壁损伤[21],导致了肾小球内微血栓的形成。
1970年,Striker等[22]发现肾小管与间质的损害与肾功能存在着显著的相关性,并首次提出肾小管的损伤在肾损伤发展中产生重要的影响。由于肾小管有重吸收和调节尿液的作用,消耗大量ATP酶,故线粒体在肾小管上皮细胞内发挥重要作用[23]。本研究发现,肾小管上皮细胞坏死脱落,肾小管变性溶解,并表达PRRSV阳性。这与翟研妮等[24-25]的研究一致。超微结构损伤主要见于上皮细胞中线粒体肿胀,嵴断裂、溶解,同时发现溶酶体大量增加。由于肾小管上皮细胞中的线粒体结构发生异常,导致其氧化磷酸化功能发生障碍,激活了线粒体凋亡途径,从而引起肾小管上皮细胞氧化损伤[26]。说明PRRSV感染后不仅影响了肾小球滤过率,也损害了肾小管功能。间质方面,本研究发现PRRSV主要在巨噬细胞中表达阳性,同时,可以观察到中性粒细胞浸润,这印证了PRRSV进入机体后在肺泡巨噬细胞中复制,随血液进入肾组织,引起炎症反应[27],但感染仔猪肾组织血液微循环损伤是否存在巨噬细胞浸润等炎症因素影响有待进一步验证。
4 结论采用IHC与透射电镜对PRRSV感染仔猪肾组织进行病毒的定位及超微病理学观察,结合血清学生化分析,发现病毒感染能造成严重肾损伤,PRRSV主要分布于肾小球足细胞、变性的肾小管以及间质中巨噬细胞;超微结构方面肾小球内足细胞足突广泛融合或纤毛化,内皮细胞肿胀等损伤导致肾组织微血栓形成,肾小管上皮细胞各细胞器普遍受到损伤,多为线粒体的肿胀以及溶酶体的增多为主,提示PRRSV感染仔猪的肾小球滤过率降低,进而对血液微循环系统造成损伤。
[1] | MATEU E, DIAZ I. The challenge of PRRS immunology[J]. Vet J, 2008, 177(3): 345–351. DOI: 10.1016/j.tvjl.2007.05.022 |
[2] |
郭振华, 陈鑫鑫, 李睿, 等. 中国猪繁殖与呼吸综合征病毒流行历史及现状[J]. 畜牧兽医学报, 2018, 49(1): 1–9.
GUO Z H, CHEN X X, LI R, et al. The prevalent history and current status of porcine reproductive and respiratory syndrome in China[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(1): 1–9. DOI: 10.11843/j.issn.0366-6964.2018.01.001 (in Chinese) |
[3] |
尹训南, 司昌德, 郭宝清, 等. 仔猪生殖-呼吸道综合症病理形态学观察[J]. 中国畜禽传染病, 1997(1): 55–58.
YIN X N, SI C D, GUO B Q, et al. Pathological observation of piglet reproductive and respiratory syndrome[J]. Chinese Journal of Preventive Veterinary Medicine, 1997(1): 55–58. (in Chinese) |
[4] | COOPER V L, HESSE R A, DOSTER A R. Renal lesions associated with experimental porcine reproductive and respiratory syndrome virus (PRRSV) infection[J]. J Vet Diagn Invest, 1997, 9(2): 198–201. DOI: 10.1177/104063879700900216 |
[5] | TIAN K G, TIAN X L, YU T Z, et al. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark[J]. PLoS One, 2007, 2(6): e526. DOI: 10.1371/journal.pone.0000526 |
[6] |
刘山辉. 猪高致病性蓝耳病的病理观察[J]. 中国兽医杂志, 2012, 48(7): 40–41.
LIU S H. Pathological observation of porcine highly pathogenic reproduction and respiratory syndrome[J]. Chinese Journal of Veterinary Medicine, 2012, 48(7): 40–41. (in Chinese) |
[7] | KATSUNO T, KATO M, FUJITA T, et al. Chronological change of renal pathological findings in the proliferative glomerulonephritis with monoclonal IgG deposits considered to have recurred early after kidney transplantation[J]. CEN Case Rep, 2019, 8(3): 151–158. DOI: 10.1007/s13730-019-00384-6 |
[8] |
赵红利, 罗传真, 娄江城, 等. HP-PRRSV抑制猪肺eNOS表达与猪肺微血栓形成的相关性研究[J]. 畜牧兽医学报, 2020, 51(4): 834–840.
ZHAO H L, LUO C Z, LOU J C, et al. Study on the relationship between the inhibition of eNOs expression by HP-PRRSV and the formation of microthrombus in pig lung[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 834–840. (in Chinese) |
[9] | ERBAYRAKTAR Z, EVLICE A, YENER G, et al. Effects of donepezil on liver and kidney functions for the treatment of Alzheimer's disease[J]. J Integr Neurosci, 2017, 16(3): 335–346. |
[10] |
佘锐萍.
动物超微结构及超微病理学[M]. 北京: 中国农业大学出版社, 2018.
SHE R P. Ultrastructure & ultrastructural pathology of animals[M]. Beijing: China Agricultural University Press, 2018. (in Chinese) |
[11] | SHIRATO I. Podocyte process effacement in vivo[J]. Microsc Res Tech, 2002, 57(4): 241–246. DOI: 10.1002/jemt.10082 |
[12] | PAVENSTÄDT H, KRIZ W, KRETZLER M. Cell biology of the glomerular podocyte[J]. Physiol Rev, 2003, 83(1): 253–307. DOI: 10.1152/physrev.00020.2002 |
[13] |
王莹, 李明慧, 张岩, 等. 狼疮性肾炎患者足细胞损伤与肾组织巨噬细胞浸润的关系[J]. 北京大学学报: 医学版, 2019, 51(4): 723–727.
WANG Y, LI M H, ZHANG Y, et al. Relationship between podocyte injury and macrophage infiltration in renal tissues of patients with lupus nephritis[J]. Journal of Peking University: Health Sciences, 2019, 51(4): 723–727. (in Chinese) |
[14] |
钟永忠. 足细胞足突融合的机制及意义[J]. 肾脏病与透析肾移植杂志, 2014, 23(6): 548–552.
ZHONG Y Z. Mechanisms of podocyte foot process effacement[J]. Chinese Journal of Nephrology, Dialysis & Transplantation, 2014, 23(6): 548–552. (in Chinese) |
[15] | KERR J F R, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4): 239–257. |
[16] |
邹婷, 王淑君, 唐皓璇, 等. 溶酶体与肾固有细胞病理生理研究进展[J]. 中国比较医学杂志, 2019, 29(2): 124–127.
ZOU T, WANG S J, TANG H X, et al. Progress in research on lysosome and pathophysiology of intrinsic renal cells[J]. Chinese Journal of Comparative Medicine, 2019, 29(2): 124–127. (in Chinese) |
[17] | LEE L K, MEYER T W, POLLOCK A S, et al. Endothelial cell injury initiates glomerular sclerosis in the rat remnant kidney[J]. J Clin Invest, 1995, 96(2): 953–964. |
[18] | GAENGEL K, GENOVÉ G, ARMULIK A, et al. Endothelial-mural cell signaling in vascular development and angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(5): 630–638. |
[19] |
曹剑波, 李彬, 陈焕春, 等. 高致病性猪繁殖与呼吸障碍综合征病毒感染猪主要脏器的超微结构变化[J]. 华中农业大学学报, 2009, 28(3): 330–333.
CAO J B, LI B, CHEN H C, et al. Ultrastructural changes of organs from pig infected with highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Journal of Huazhong Agricultural University, 2009, 28(3): 330–333. (in Chinese) |
[20] |
岳磊. 猪蓝耳病病理变化及细胞超微结构分析[D]. 晋中: 山西农业大学, 2013.
YUE L. Pathological changes and ultrastructural analysis of porcine reproductive and respiratory syndrome[D]. Jinzhong: Shanxi Agricultural University, 2013. (in Chinese) |
[21] | HONG Q, ZHANG L, FU J, et al. LRG1 promotes diabetic kidney disease progression by enhancing TGF-β-induced angiogenesis[J]. J Am Soc Nephrol, 2019, 30(4): 546–562. |
[22] | STRIKER G E, SCHAINUCK L I, CUTLER R E, et al. Structural-functional correlations in renal disease: part I: a method for assaying and classifying histopathologic changes in renal disease[J]. Hum Pathol, 1970, 1(4): 615–630. |
[23] | KONARI N, NAGAISHI K, KIKUCHI S, et al. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo[J]. Sci Rep, 2019, 9(1): 5184. |
[24] |
翟研妮. 大白猪和通城猪感染HP-PRRSV后比较组织病理学研究[D]. 武汉: 华中农业大学, 2012.
ZHAI Y N. Comparative histological and pathologic study on Large-white and Tongcheng pigs that infected HP-PRRSV[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese) |
[25] | LI L M, ZHAO Q, GE X N, et al. Chinese highly pathogenic porcine reproductive and respiratory syndrome virus exhibits more extensive tissue tropism for pigs[J]. Virol J, 2012, 9(1): 203. DOI: 10.1186/1743-422X-9-203 |
[26] | YOON Y, GALLOWAY C A, JHUN B S, et al. Mitochondrial dynamics in diabetes[J]. Antioxid Redox Signal, 2011, 14(3): 439–457. |
[27] | HALBUR P G, MILLER L D, PAUL P S, et al. Immunohistochemical identification of porcine reproductive and respiratory syndrome virus (PRRSV) antigen in the heart and lymphoid system of three-week-old colostrum-deprived pigs[J]. Vet Pathol, 1995, 32(2): 200–204. |