畜牧兽医学报  2021, Vol. 52 Issue (12): 3619-3626. DOI: 10.11843/j.issn.0366-6964.2021.012.028    PDF    
土曲霉对小鼠肝氧化损伤及铁死亡相关指标的影响
向益1,2, 张桦1,2, 王利1,2, 魏勇3, 俄木曲者3     
1. 西南民族大学 青藏高原动物遗传资源保护与利用国家教育部重点实验室, 成都 610041;
2. 西南民族大学 动物科学国家民委重点实验室, 成都 610041;
3. 四川省畜牧科学研究院, 成都 610066
摘要:旨在探究土曲霉引起小鼠肝损伤的机制。将20只昆明小鼠随机分为对照组和试验组,试验组腹腔注射0.3 mL(5×107 CFU·mL-1)土曲霉MSF2菌株孢子悬液,试验周期为7 d。采集小鼠肝用丙二醛(MDA)、谷胱甘肽(GSH)、谷胱甘肽过氧化酶(GSH-PX)、总超氧化物歧化酶(T-SOD)试剂盒检测肝氧化损伤相关指标;铁检测试剂盒检测肝铁离子含量;制备肝石蜡切片,进行HE染色和普鲁士蓝染色,观察其病理变化及铁沉积;透射电镜观察肝细胞超微结构;qPCR检测肝铁死亡相关基因mRNA相对转录水平。结果表明:土曲霉可引起试验组小鼠肝MDA含量极显著升高(P < 0.01),GSH含量、GSH-PX活力和T-SOD活力极显著降低(P < 0.01),铁离子含量极显著升高(P < 0.01),肝细胞肿胀、坏死,炎性细胞浸润,肝细胞中可见蓝染的铁离子沉积,肝细胞线粒体萎缩、嵴减少和膜密度增加,转铁蛋白1(TFR1)、二价金属离子转运体1(DMT1)、铁蛋白重链1(FTH1)和电压依赖性阴离子通道3(VDAC3)基因mRNA相对转录水平显著升高(P < 0.05),过氧化物酶4(GPX4)和胱氨酸/谷氨酸转运受体11(SLC7A11)基因mRNA相对转录水平显著降低(P < 0.05)。综上表明,土曲霉MSF2菌株致小鼠肝损伤的机制是铁死亡,为深入研究土曲霉的致病机制提供参考资料。
关键词土曲霉        氧化损伤    铁死亡    
Effects of Aspergillus terreus on Oxidative Damage and Ferroptosis Related Indicators in Mice Liver
XIANG Yi1,2, ZHANG Hua1,2, WANG Li1,2, WEI Yong3, EMU Quzhe3     
1. Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
2. Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China;
3. Sichuan Academy of Animal Husbandry Science, Chengdu 610066, China
Abstract: In order to explore the mechanism of Aspergillus terreus causing liver injury of mice, 20 Kunming mice were divided into a control group and a test group. The test group was intraperitoneally injected with 0.3 mL (5×107 CFU·mL-1) spore suspension. The trail was 7 days. The indicators of oxidative damage in mouse liver tissue were evaluated by malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-PX) and superoxide dismutase (T-SOD) kits. The iron content of liver tissue was determined by iron kit. Prepare liver paraffin sections to observed the pathological changes and iron accumulation by HE and Perls stain. The ultrastructure of hepatocytes was observed by transmission electron microscope. The mRNA relative transcription level of ferroptosis-related genes in liver tissue were detected by qPCR. The results were as follows: compared with control group, the content of MDA in test group was significantly increased, but the content of GSH, the activities of GSH-PX and T-SOD in test group were significantly decreased (P < 0.01). Meanwhile, the content of iron ions in test group was significantly increased (P < 0.01). Some hepatocytes were swollen and necrotic. A few inflammatory cells were infiltrated. Iron ions accumulated in the center of hepatic loules. The mitochondria atrophied, cristae reduced, and membrane density increased in hepatocytes. The relative mRNA transcription level of transferrin receptor protein 1 (TFR1), iron uptake-related proteins divalent metal transporter-1 (DMT1), ferritin heavy chain 1 (FTH1), and voltage-dependent anion channel 3 (VDAC3) genes were significantly up-regulated (P < 0.05), while, the relative mRNA transcription level of glutathione peroxidase 4 (GPX4) and solute carrier family-7 member-11 (SLC7A11) genes were significantly down-regulated (P < 0.05). These results indicated that Aspergillus terreus MSF2 could cause ferroptosis in the liver of mice. It benefits for further study of the pathogenic mechanism of Aspergillus terreus.
Key words: Aspergillus terreus    liver    oxidative damage    ferroptosis    

肝是机体重要的代谢和解毒器官。生物性和物理性等因素均可造成肝损伤。四氯化碳可引起大鼠肝纤维化[1]。对乙酰氨基酚可引起小鼠药物性肝损伤[2]。白酒可引起小鼠酒精性肝损伤[3]。饲喂蛋氨酸胆碱缺乏饲料可引起小鼠非酒精性脂肪性肝损伤[4]。饲喂含镉饲料可引起仔猪肝毒性损伤[5]。脂多糖可引起小鼠脓毒症[6]。乙型肝炎病毒可引起大鼠病毒性肝炎[7]。土曲霉是一种机会性致病菌,可引起人和动物肝损伤,如儿童肝炎、小鼠脂肪肝和大鼠肝纤维化,但其损伤机制尚不清楚[8-10]

铁死亡(ferroptosis)是近年来发现的一种新的细胞死亡方式,其特征是铁依赖性的,细胞内活性氧堆积的非细胞凋亡形式的细胞死亡[11]。当诱导剂作用于肝癌、肺癌和卵巢癌细胞后,癌细胞的增殖通过铁死亡方式被抑制[12-14]。此外,铁死亡与伴随脂质过氧化的非恶性细胞损伤的发病机制也密切相关。铁死亡可发生于丙型肝炎、酒精性肝病、非酒精性脂肪性肝炎、药物性肝损伤和血色沉着病[11]。这些肝损伤类型均与铁代谢失衡以及活性氧增多诱导的脂质过氧化有关[15]。本研究用土曲霉MSF2菌株孢子悬液注射小鼠,观察肝氧化损伤相关指标、组织病理学和铁死亡相关基因mRNA转录水平的变化,揭示该菌株引起小鼠肝损伤的分子机制。这为进一步探究土曲霉的致病机制提供参考资料。

1 材料与方法 1.1 菌株来源

土曲霉MSF2菌株分离自四川某羊场发病羊肝,由本课题组鉴定并保种于西南民族大学青藏高原动物遗传资源保护与利用国家教育部重点实验室。

1.2 试验材料

20只昆明小鼠,体重为(18±2) g,雌雄各半,购自四川省成都市中医药研究所。马铃薯葡萄糖琼脂(PDA)培养基购自青岛海博生物技术有限公司;丙二醛(MDA)、谷胱甘肽(GSH)、谷胱甘肽过氧化酶(GSH-PX)、总超氧化物歧化酶(T-SOD)和铁离子检测试剂盒均购自南京建成科技有限公司;普鲁士蓝染色试剂盒购自上海索莱宝生物科技有限公司;RNAiso Plus、Prime ScriptTM RT Reagent Kit均购自宝生物工程(大连)有限公司。

1.3 实验动物分组及处理

采用三点接种法将保种的土曲霉MSF2菌株无菌接种于PDA培养基,37 ℃培养5 d,制备孢子悬液,用血球计数法将浓度调整为5×107 CFU·mL-1[16]。20只昆明小鼠经适应性饲喂3 d后,随机分为对照组和试验组,每组10只,试验组腹腔注射0.3 mL孢子悬液,对照组注射等量生理盐水,试验周期为7 d。试验结束后采集小鼠肝分别保存于4%多聚甲醛、2.5%戊二醛和-80 ℃冰箱备用。

1.4 小鼠肝氧化损伤指标及铁离子含量检测

取对照组和试验组小鼠肝0.2 g于50 mL管中,加入9倍体积生理盐水,用超声波破碎仪在400 A,5 s·次-1,间隔10 s反复5次条件下破碎,制成10%组织匀浆。按照试剂盒说明书检测肝MDA含量、GSH含量、GSH-PX活力、T-SOD活力及铁离子含量。

1.5 小鼠肝组织切片制作及HE染色

取出保存于4%多聚甲醛的肝,流水冲洗24 h后,于不同浓度乙醇中逐级脱水1 h,二甲苯透明25 min后,进行浸蜡与包埋。切片后,脱蜡至水,常规苏木素、伊红染色,中性树胶封片,用光学显微镜观察其病理变化。

1.6 小鼠肝普鲁士蓝染色

将制备的小鼠肝组织切片脱蜡至水,用普鲁士蓝工作液染色30 min,伊红复染10 s,90%乙醇、95%乙醇和100%乙醇各脱水2 min,二甲苯透明10 min,中性树胶封片,用光学显微镜观察结果。

1.7 小鼠肝透射电镜切片制作

将保存于2.5%戊二醛的小鼠肝取出,用1% 锇酸固定2 h,在4 ℃条件下,不同浓度乙醇中逐级脱水10 min。室温包埋与切片,醋酸铀、柠檬酸铅染色,用透射电子显微镜观察肝细胞结构变化。

1.8 Real-PCR检测铁死亡相关基因mRNA转录水平

按照试剂盒说明书提取小鼠肝总RNA,反转录为cDNA,于-20 ℃保存。检测各组小鼠肝TFR1、DMT1、FTH1、GPX4、SLC7A11、VDAC3基因mRNA转录水平(引物序列见表 1)。反应程序:95 ℃预变性3 min;95 ℃变性10 s,退火10 s(温度见表 1),72 ℃延伸30 s,40个循环。每个样本重复3次,采用2-ΔΔCt法处理数据,计算各基因mRNA相对转录水平。

表 1 铁死亡相关基因引物序列 Table 1 Primer sequences of ferroptosis related gene
1.9 数据处理

试验数据经Excel整理后,利用SPSS 18.0软件对数据进行统计学分析,组间采用单因素方差分析(ANOVA),P < 0.05表示差异显著,P < 0.01表示差异极显著,用Graphpad 5.0软件制图。

2 结果 2.1 小鼠肝氧化损伤指标的变化

用MDA、GSH、GSH-PX、T-SOD试剂盒检测小鼠肝各指标。结果表明,与对照组相比,试验组小鼠肝中MDA含量极显著升高(P < 0.01),GSH含量、GSH-PX活力和T-SOD活力极显著降低(P < 0.01),详见图 1。这表明小鼠感染土曲霉MSF2菌株后肝发生了氧化损伤。

A. 丙二醛含量;B. 谷胱甘肽含量;C. 谷胱甘肽过氧化物酶活力;D. 总超氧化物歧化酶活力。*表示对照组与试验组相比差异显著(P < 0.05);**表示对照组与试验组相比差异极显著(P < 0.01)。下同 A. MDA content; B. GSH content; C. GSH-PX activity; D. T-SOD activity. *indicates a significant difference between the control group and the test group (P < 0.05); ** indicates that the difference between the control group and the test group is extremely significant (P < 0.01). The same as below 图 1 小鼠肝氧化损伤指标的变化 Fig. 1 The change of oxidative damage indexes in mice liver
2.2 小鼠肝铁离子含量的变化

用铁检测试剂盒检测小鼠肝铁离子含量。结果表明,试验组小鼠肝中的铁离子含量极显著高于对照组(P < 0.01),详见图 2。这表明小鼠感染土曲霉MSF2菌株后肝铁离子代谢紊乱。

图 2 小鼠肝铁离子含量变化 Fig. 2 The change of iron ions content in mice liver
2.3 小鼠肝组织病理学变化

肝组织病理切片经HE染色后,用光学显微镜观察其病理变化。结果表明,对照组小鼠肝细胞清晰,核大小均一、呈圆形(图 3A);试验组小鼠肝中央静脉充满大量红细胞,肝细胞肿胀,炎性细胞浸润,以淋巴细胞、巨噬细胞为主,少量肝细胞肿胀、坏死,溶解(图 3B)。这表明小鼠感染土曲霉MSF2菌株后肝出现病理损伤。

A. 对照组小鼠肝细胞清晰,未见明显病理变化;B. 试验组小鼠肝细胞肿胀、坏死(黑色箭头),淋巴细胞(红色箭头),巨噬细胞(蓝色箭头)浸润 A. The hepatocytes of mice in the control group were clear and had no pathological changes; B. The hepatocytes of mice in the test group were swollen and necrotic (black arrow), lymphocytes (red arrow) and macrophages (blue arrow) were infiltrated 图 3 小鼠肝组织病理变化(400×) Fig. 3 The change of histopathologic in mice liver (400×)
2.4 小鼠肝普鲁士蓝染色

小鼠肝切片经普鲁士蓝染色后,用光学显微镜观察结果。结果表明,对照组小鼠肝细胞未见被染成蓝色的铁离子沉积,铁染色结果呈阴性(图 4A),试验组小鼠肝细胞中可见蓝色深染的铁离子沉积(图 4B)。

A. 对照组小鼠肝细胞铁染色阴性;B. 试验组小鼠肝细胞可见铁离子沉积(黑色箭头) A. Iron stain was negative in the control group of mice hepatocytes; B. Iron ions accumulated in the test group of mice hepatocytes (black arrow) 图 4 小鼠肝普鲁士蓝染色结果(400×) Fig. 4 Results of Perls stain in mice liver (400×)
2.5 小鼠肝超微结构变化

制备肝超微病理切片后,用透射电镜观察其超均匀,胞核规则,核内常染色质分布,线粒体大多呈圆形且结构完整, 电子密度均匀, 可见线粒体嵴微结构变化。结果表明,对照组小鼠肝细胞质分布(图 5A);试验组小鼠肝细胞质内线粒体变小、数量增多,线粒体嵴减少甚至消失,膜密度增加,染色变深(图 5B)。这表明小鼠感染土曲霉MSF2菌株后肝发生了铁死亡。

A. 对照组肝细胞内线粒体完整呈圆形,电子密度均匀,可见细管状嵴;B. 试验组肝细胞线粒体变小、数量增多,线粒体嵴减少甚至消失,膜密度增加,染色变深。Mit. 线粒体;rER. 粗面内质网;RI. 核糖体 A. The mitochondria in the hepatocytes of the control group were complete and round, with uniform electron density and fine tubular cristae; B. In the test group, the mitochondria of hepatocytes became smaller and more numerous, the mitochondrial cristae decreased or even disappeared, the membrane density increased, and the staining became darker. Mit. Mitochondria; rER. Rough endoplasmic reticulum; RI. Ribosome 图 5 小鼠肝超微结构变化(15 000×) Fig. 5 The change of ultrastructure in mice liver (15 000×)
2.6 小鼠肝铁死亡相关基因mRNA转录水平的变化

qPCR检测铁死亡相关基因mRNA转录水平。结果表明,与对照组相比,试验组小鼠肝中TFR1、DMT1、FTH1基因mRNA相对转录水平极显著升高(P < 0.01),GPX4基因mRNA相对转录水平极显著降低(P < 0.01);SLC7A11基因mRNA相对转录水平显著降低(P < 0.05);VDAC3基因mRNA相对转录水平显著升高(P < 0.05),详见图 6

图 6 小鼠肝铁死亡相关基因mRNA相对转录水平 Fig. 6 Relative mRNA transcription level of ferroptosis related genes of mice liver
3 讨论

土曲霉是一种机会性病原菌,易感染患有恶性肿瘤、接受同种异体造血干细胞移植或实体器官移植的患者,引起播散性真菌病。当人或动物感染土曲霉后,导致肝严重损伤。Trachana等[8]报道患免疫缺陷的儿童感染土曲霉后引发肝炎,活检发现肝细胞变性、坏死,淋巴细胞、嗜酸性粒细胞浸润。Slesion等[9]报道土曲霉可引起小鼠持久性、亚临床性肝损伤,组织病理学观察发现肝细胞脂肪变性,并伴有炎性细胞浸润。Sharma等[10]报道土曲霉感染可引起大鼠肝纤维化,组织病理学观察发现肝小叶周围纤维增生,细胞坏死、空泡化明显,并伴有单核细胞浸润。Day和Penhale[17]报道土曲霉感染可引起犬肝损伤,组织病理学观察发现霉菌菌丝出现在肝细胞间,肝细胞坏死,并伴有炎性细胞浸润。本研究中土曲霉MSF2菌株也引起小鼠急性肝炎,病理变化与上述报道基本一致。损伤程度的差异可能由菌株来源或毒力强弱不同导致。

铁死亡的特征是铁离子过载和毒性脂质过氧化物堆积,所以可通过氧化损伤相关指标以及铁死亡相关基因mRNA转录水平判定是否发生铁死亡。MDA是自由基发生过氧化反应的终产物。GSH、GSH-PX能将有毒的过氧化物还原为无毒的羟基化合物,维持机体氧化与抗氧化平衡。SOD能清除对机体有害的超氧阴离子自由基,是机体内重要的抗氧化酶[18-19]。这些指标的变化可反映机体氧化损伤程度。TFR1、DMT1、FTH1控制着铁离子的摄取与储存,对维持细胞内铁稳态有着重要作用。铁稳态被破坏后,细胞内游离铁含量增加通过Fenton反应促进脂质活性氧的产生,促进铁死亡的发生。GPX4表达降低导致GSH含量下降,大量活性氧产生,导致铁死亡发生。SLC7A11调控胱氨酸的摄取,胱氨酸可合成GSH,SLC7A11表达减少,加剧氧化损伤并促进铁死亡发生。VDAC3是细胞内代谢物分子进出线粒体的必经通道,VDAC3表达增加会促进铁死亡发生[20-22]。这些基因的变化与铁死亡密切相关。

铁死亡可见于各种类型的疾病模型中。Yang等[23]报道高脂饮食可引起小鼠非酒精性脂肪性肝炎,模型组小鼠肝氧化损伤程度增加,MDA含量升高,SOD活力和GSH-PX活力降低,铁离子含量升高,TFR1表达升高,FTH1和GPX4表达降低。李安培[24]报道六价铬可引起大鼠肾损伤,模型组大鼠肾铁离子含量升高,GPX4表达降低,TFR1表达升高。晏思源[25]报道葡萄糖腹膜透析液可引起大鼠腹膜纤维化,模型组GPX4和SLC7A11表达降低。Chen等[26]报道葡聚糖硫酸钠(DSS)可引起小鼠溃疡性结肠炎,模型组小鼠结肠组织铁离子含量升高,MDA含量升高,GPX4和FTH1表达降低。何信用等[27]报道高脂饮食可引起小鼠动脉粥样硬化,模型组小鼠动脉SOD活力、GSH含量降低,MDA含量升高,FTH1、GPX4和SLC7A11表达降低。Liu等[28]使用铁死亡激活剂(erastin)在神经细胞中构建铁中毒模型,细胞中铁离子含量升高,MDA含量升高,GSH含量降低,TFR1、FTH1和VDAC3表达升高,GPX4和SLC7A11表达降低。Xu等[29]采用DSS构建小鼠结肠炎模型,模型组MDA含量升高,组织铁离子含量升高,GPX4表达降低,FTH1表达升高。本研究结果与上述研究结果基本一致。在本研究中,FTH1基因mRNA相对转录水平显著升高,这是由于铁代谢失衡初期,细胞内游离铁离子含量升高,铁蛋白储存能力增加,导致FTH1转录水平升高。此外,本研究用透射电镜观察了肝细胞超微变化,发现试验组小鼠肝细胞具有显著的铁死亡特征——线粒体萎缩、嵴减少以及膜密度增加[18]

4 结论

土曲霉MSF2菌株可引起小鼠肝MDA含量升高,GSH含量、GSH-PX活力和T-SOD活力降低,肝氧化水平升高,铁离子含量升高,线粒体萎缩、嵴减少和膜密度增加,TFR1、DMT1、FTH1和VDAC3基因mRNA转录水平升高,GPX4和SLC7A11基因mRNA转录水平降低。土曲霉MSF2菌株可引起小鼠肝发生铁死亡。

参考文献
[1]
雷玲, 闵珺, 刘锋, 等. 黄芪对肝纤维化大鼠肝损伤保护作用及机制研究[J]. 陕西中医, 2020, 41(9): 1192-1196.
LEI L, MIN J, LIU F, et al. Study on protective effects and mechanism of astragalus on hepatic injury of rats with hepatic fibrosis[J]. Shaanxi Journal of Traditional Chinese Medicine, 2020, 41(9): 1192-1196. DOI:10.3969/j.issn.1000-7369.2020.09.004 (in Chinese)
[2]
常乐乐, 王思源, 窦乐, 等. 苦参碱对对乙酰氨基酚诱导的小鼠药物性肝损伤的保护作用及机制[J]. 中国现代医学杂志, 2020, 21(5): 412-419.
CHANG L L, WANG S Y, DOU L, et al. Protective mechanism of matrine against liver injury induced by acetaminophen in mice[J]. China Journal of Modern Medicine, 2020, 21(5): 412-419. (in Chinese)
[3]
陈发菊, 彭梅, 王丽, 等. 藤茶总黄酮对酒精性肝损伤小鼠的保护作用[J]. 中成药, 2021, 43(1): 200-203.
CHEN F J, PENG M, WANG L, et al. Protective effect of total flavonoids of Amphiacaceae on alcoholic liver injury in mice[J]. Chinese Traditional Patent Medicine, 2021, 43(1): 200-203. DOI:10.3969/j.issn.1001-1528.2021.01.041 (in Chinese)
[4]
朱晓宁, 汪静, 张玉蓉, 等. 祛痰活血方上调SOCS1抑制TLR4/NF-κB信号通路改善非酒精性脂肪性肝炎小鼠肝损伤[J]. 世界科学技术-中医药现代化, 2020, 22(12): 4293-4299.
ZHU X N, WANG J, ZHANG Y R, et al. Qutan huoxue prescription up-regulates SOCS1 inhibits TLR4/NF-κB signaling pathway to improve liver injury in nonalcoholic steatohepatitis mice[J]. World Science and Technology-Modernization of Traditional Chinese Medicine, 2020, 22(12): 4293-4299. (in Chinese)
[5]
WANG H, HAN Q, CHEN Y J, et al. Novel insights into cytochrome P450 enzyme and solute carrier families in cadmium-induced liver injury of pigs[J]. Ecotoxicol Environ Safe, 2021, 211: 111910. DOI:10.1016/j.ecoenv.2021.111910
[6]
GU C W, HOU C Z, ZHANG S. miR-425-5p improves inflammation and septic liver damage through negatively regulating the RIP1-mediated necroptosis[J]. Inflamm Res, 2020, 69(3): 299-308. DOI:10.1007/s00011-020-01321-5
[7]
黄培瑜, 赖晓琴, 张雅兰, 等. 黄芩苷在乙型病毒性肝炎大鼠模型中调节肝功能损伤的机制研究[J]. 免疫学杂志, 2020, 36(12): 1091-1098.
HUANG P Y, LAI X Q, ZHANG Y L, et al. Baicalin protects rat liver from Hepatitis B virus infection damage[J]. Immunological Journal, 2020, 36(12): 1091-1098. (in Chinese)
[8]
TRACHANA M, ROILIDES E, GOMPAKIS N, et al. Case report. Hepatic abscesses due to Aspergillus terreus in an immunodeficient child[J]. Mycoses, 2001, 44(9-10): 415-418. DOI:10.1046/j.1439-0507.2001.00674.x
[9]
SLESIONA S, IBRAHIM-GRANET O, OLIAS P, et al. Murine infection models for Aspergillus terreus pulmonary Aspergillosis reveal long-term persistence of conidia and liver degeneration[J]. J Infect Dis, 2012, 205(8): 1268-1277. DOI:10.1093/infdis/jis193
[10]
SHARMA R B, KUMAR A, ROY A N. Nature of hepatic damage induced by culture filtrates of seed-borne fungi in the laboratory rat[J]. Toxicol Lett, 1983, 19(1-2): 87-92. DOI:10.1016/0378-4274(83)90266-7
[11]
MACÍAS-RODRÍGUEZ R U, INZAUGARAT M E, RUIZ-MARGÁIN A, et al. Reclassifying hepatic cell death during liver Damage: ferroptosis—a novel form of non-apoptotic cell death?[J]. Int J Mol Sci, 2020, 21(5): 1651. DOI:10.3390/ijms21051651
[12]
白韬. 肝癌细胞中诱导产生铁死亡的机制研究[D]. 郑州: 郑州大学, 2019.
BAI T. The exploration of mechanism on ferroptosis induced in hepatocellular carcinoma cells[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese)
[13]
谭国耀, 蔡珮蘅, 曹霖, 等. 隐丹参酮对肺癌细胞铁死亡相关基因表达的影响[J]. 中国药理学通报, 2019, 35(12): 1654-1659.
TAN G Y, CAI P H, CAO L, et al. Effect of cryptotanshinone on ferroptosis-related gene expression in lung cancer cells[J]. Chinese Pharmacological Bulletin, 2019, 35(12): 1654-1659. DOI:10.3969/j.issn.1001-1978.2019.12.007 (in Chinese)
[14]
阮芳, 王云飞, 王继水. 基于JNK/p53通路探讨熊果酸诱导卵巢癌细胞系OVCAR3细胞铁死亡的作用及其机制[J]. 中华中医药学刊, 2020, 20(3): 125-131.
RUAN F, WANG Y F, WANG J S. To explore the role and mechanism of ursolic acid-induced iron death in ovarian cancer cell line OVCAR3 based on JNK/p53 pathway[J]. Chinese Archives of Traditional Chinese Medicine, 2020, 20(3): 125-131. (in Chinese)
[15]
LI S, TAN H Y, WANG N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. Int J Mol Sci, 2015, 16(11): 26087-26124. DOI:10.3390/ijms161125942
[16]
俞演, 古玉, 王承东, 等. 石膏样小孢子菌感染小鼠的Dectin-1、TLR-2和TLR-4及细胞因子动态变化[J]. 畜牧兽医学报, 2019, 50(7): 1449-1457.
YU Y, GU Y, WANG C D, et al. Dynamic changes of dectin-1, TLR-2, TLR-4 and cytokines in mice infected with Microsporum gypseum[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(7): 1449-1457. (in Chinese)
[17]
DAY M, PENHALE W. An immunohistochemical study of canine disseminated aspergillosis[J]. Aust Vet J, 1991, 68(12): 383-386. DOI:10.1111/j.1751-0813.1991.tb03103.x
[18]
XIE B S, WANG Y Q, LIN Y, et al. Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice[J]. CNS Neurosci Ther, 2019, 25(4): 465-475. DOI:10.1111/cns.13069
[19]
WANG Y, QUAN F, CAO Q H, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis[J]. J Adv Res, 2021, 28: 231-243. DOI:10.1016/j.jare.2020.07.007
[20]
WANG Y, TANG M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance[J]. Environ Pollut, 2019, 254: 112937. DOI:10.1016/j.envpol.2019.07.105
[21]
SONG X X, XIE Y C, KANG R, et al. FANCD2 protects against bone marrow injury from ferroptosis[J]. Biochem Biophys Res Commun, 2016, 480(3): 443-449. DOI:10.1016/j.bbrc.2016.10.068
[22]
LU J J, XU F, LU H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53[J]. Life Sci, 2020, 260: 118305. DOI:10.1016/j.lfs.2020.118305
[23]
YANG Y W, CHEN J, GAO Q, et al. Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease[J]. Toxicology, 2020, 445: 152599. DOI:10.1016/j.tox.2020.152599
[24]
李安培. 自噬和铁死亡在六价铬致大鼠肾脏损伤中的作用机制研究[D]. 长春: 吉林大学, 2020.
LI A P. Role of autophagy and ferroptosis in the mechanism underlying rat kidney injury caused by hexavalent chromium[D]. Chnagchun: Jilin University, 2020. (in Chinese)
[25]
晏思源. 铁死亡在大鼠腹膜纤维化模型中的作用[D]. 长沙: 湖南师范大学, 2020.
YAN S Y. Effect of ferroptosis in peritoneal fibrosis rats[D]. Changsha: Hunan Normal University, 2020. (in Chinese)
[26]
CHEN Y R, ZHANG P, CHEN W R, et al. Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway[J]. Immunol Lett, 2020, 225: 9-15. DOI:10.1016/j.imlet.2020.06.005
[27]
何信用, 王俊岩, 宋囡, 等. 二陈汤合桃红四物汤调控p53/SLC7A11介导的氧化损伤及铁死亡抗动脉粥样硬化的作用及机制研究[J]. 中华中医药杂志, 2020, 35(5): 2344-2348.
HE X Y, WANG J Y, SONG N, et al. Effects and mechanism of Erchen Decoction and Taohong Siwu Decoction on the regulation of p53/SLC7A11 mediated oxidative damage and ferroptosis on atherosclerosis[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(5): 2344-2348. (in Chinese)
[28]
LIU Z X, LV X Y, SONG E Q, et al. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis[J]. Toxicol Appl Pharmacol, 2020, 407: 115241. DOI:10.1016/j.taap.2020.115241
[29]
XU M Y, TAO J, YANG Y D, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis[J]. Cell Death Dis, 2020, 11(2): 86. DOI:10.1038/s41419-020-2299-1

(编辑 白永平)