畜牧兽医学报  2021, Vol. 52 Issue (12): 3492-3500. DOI: 10.11843/j.issn.0366-6964.2021.012.016    PDF    
饲喂PRL抑制剂对燕山绒山羊毛囊发育的影响
张乐超, 段春辉, 刘月琴, 张英杰     
河北农业大学动物科技学院, 保定 071000
摘要:旨在研究绒山羊毛囊生长期饲喂催乳素(PRL)抑制剂对毛囊发育的影响。本研究选择3月龄体重相近((23.01±4.82)kg)、健康良好的燕山绒山羊公羊20只,随机分为两组,每组10只,分别为对照组和试验组,试验组饲喂PRL抑制剂(0.06 mg·kg-1),试验期90 d。试验结束时采集羊绒纤维、血液和皮肤样品,分析饲喂PRL抑制剂对山羊绒长度、细度、血液指标、毛囊性状及皮肤组织PRLMTNR1a和RORα mRNA表达水平的影响。结果表明,饲喂PRL抑制剂显著提高了绒山羊初级毛囊数量、次级毛囊数量和S/P值(P < 0.05),并显著提高了活性初级毛囊占比和活性次级毛囊占比(P < 0.05),对山羊绒伸直长度和细度无显著影响(P>0.05)。饲喂PRL抑制剂3个月对绒山羊血清中PRL、MT、IGF-1、COR、GH、T4和T3均无显著影响(P>0.05),但显著降低了皮肤中PRLMTNR1a mRNA表达水平(P < 0.05),对RORα mRNA表达量无显著影响(P>0.05)。综上,在绒山羊毛囊生长期抑制PRL分泌可能是通过降低皮肤中PRLMTNR1a基因的表达来促进毛囊发育。
关键词绒山羊    PRL    次级毛囊    血液指标    MTNR1a    
Effect of PRL Inhibitor on Hair Follicle Development of Yanshan Cashmere Goat
ZHANG Lechao, DUAN Chunhui, LIU Yueqin, ZHANG Yingjie     
College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
Abstract: This experiment was conducted to study the effect of prolactin (PRL) inhibitor on hair follicle development of cashmere goats during anagen. Twenty healthy Yanshan cashmere goats with similar body weight ((23.01±4.82)kg) aged 3 months old were selected. Goats were randomly divided into two groups with 10 goats in each group, which were control group and experimental group, respectively. The goats in experimental group were fed PRL inhibitor (0.06 mg·kg-1) for 90 days. At the end of the experiment, cashmere fiber, blood and skin samples were collected to analyze the effects of PRL inhibitor on the length and fineness of cashmere, blood indexes, hair follicle traits and the expression levels of PRL, MTNR1a and RORα mRNA in skin tissues. The results indicated that the length and diameter of fibers were not significantly influenced (P>0.05) by the PRL inhibitor. The PRL inhibitor significantly increased primary and secondary hair follicle numbers and the ratio of secondary number to primary number (S/P, P < 0.05), and significantly increased the percentage of active primary and secondary hair follicles in anagen (P < 0.05). The PRL inhibitor had no significant effect on the serum concentrations of PRL, melatonin (MT), insulin-like growth factor-1(IGF-1), cortisol (COR), growth hormone (GH), tetraiodothyronine (T4) and triiodothyronine (T3), but significantly decreased mRNA expressions of PRL and MTNR1a in skin (P < 0.05), and had no significant effect on mRNA expression of RORα (P>0.05). Inhibition of PRL secretion during the anagen phase of goat hair follicle may promote hair follicle development by reducing the expression of PRL and MTNR1a genes in the skin.
Key words: cashmere goat    PRL    secondary hair follicle    blood indicator    MTNR1a    

山羊绒是由次级毛囊(secondary hair follicle,SF)发育而来,受光照周期的调节呈季节性生长[1]。毛囊的生长周期分为生长期(5~12月)、退行期(1~2月)和休止期(3~4月),毛囊周期性再生过程是由毛囊细胞与各类信号分子交互所致[2-6],其生长机制非常复杂。皮肤是垂体外催乳素(PRL)的重要合成和靶向器官,PRL及其受体(PRLR)表达于表皮角质形成细胞、皮肤附属器、成纤维细胞、血管内皮细胞及免疫细胞中,参与调节细胞增殖与分化、毛囊周期、免疫应答等生理过程[7-9]。Foitzik等[10]研究发现,人毛囊中有丰富的PRL和PRLR,PRL可通过自分泌和旁分泌的方式调控毛囊周期性变化。研究表明,高浓度的PRL对绵羊休止期的毛囊是一种活动信号,促使处于休止期的毛囊进入毛发生长阶段,但对处于活动状态的毛囊有抑制作用[11-12]。小鼠敲除PRLR会打乱毛发周期,使毛发脱落时间提前,缩短毛囊休止期[13]。这些研究说明,PRL与毛囊周期性有关,可通过影响毛囊的生长发育调控动物毛发的生长与脱落,但关于PRL调控毛囊周期性的分子机制尚不清楚。

本研究在燕山绒山羊次级毛囊生长期(9月份)通过饲喂PRL抑制剂研究PRL对山羊绒生长及毛囊发育的影响,通过分析相关激素水平及受体表达、毛囊性状,探索PRL影响毛囊发育的机制,为揭示次级毛囊再生机制奠定理论基础。

1 材料与方法 1.1 试验地点及时间

本试验于2019年9-12月在秦皇岛青龙利红绒山羊养殖场进行。

1.2 试验设计

2019年9月,随机选取3月龄体重相近、健康良好的燕山绒山羊公羊20只,试验开始前统一用伊维菌素驱虫。试验羊随机分为2组(n=10):对照组和试验组,平均体重为(23.01±4.82) kg,试验期间试验组公羊饲喂PRL抑制剂(溴隐亭,0.06 mg·kg-1),溴隐亭溶于水中,饲喂前均匀喷洒到饲料中,对照组喷洒等量的水,试验期90 d。饲喂量的选择依据Dicks等[14]的结果(约0.07 mg·kg-1)和溴隐亭说明书(0.05~ 0.07 mg·kg-1)。

1.3 试验羊的饲养管理

试验期间试验羊的日粮和饲养管理与羊场其他羊只相同,全舍饲饲养。日粮由蛋白浓缩料、玉米、玉米秸秆组成,组成比例为13.5%、37.8%、48.7%。自由采食和饮水。

1.4 样品采集

饲喂PRL抑制剂3个月后,上午07:30(空腹)用5 mL真空促凝管采集两组试验羊的血液,3 000 r·min-1离心10 min后取血清样品-20 ℃保存备用。贴皮采集绒毛样品,放封口袋保存。并用一次性医用采样器(直径1 cm)采集皮肤组织2块,一块放入10%福尔马林固定液保存,另一块放入液氮保存备用。

1.5 检测方法

1.5.1 羊绒长度和细度检测   用直尺测量羊绒伸直长度,每个样品检测50根[15]。纤维细度采用全自动纤维细度分析仪BEION F10(上海北昂科学仪器有限公司)测量,每个样品检测根数>2 000根,平均3 000根左右。

1.5.2 皮肤组织染色   用HE和Sacpics方法对横切片进行染色[16]。每个皮肤样品3个重复,每例切片计数10个视野。统计初级毛囊密度、次级毛囊密度、次级毛囊与初级毛囊比值(S/P)、活性初级毛囊占比和活性次级毛囊占比。

1.5.3 激素浓度测定   将促凝管中的新鲜血液样品3 000 r·min-1离心10 min,吸取上层血清,用放射免疫试剂盒(南京建成生物工程研究所,中国,南京)测定PRL(0.5~200 ng·mL-1,CV < 10%)、IGF-1(3~900 mg·L-1,CV < 10%)、MT(10~3 000 ng·L-1,CV < 10%)、GH(0.05~20 ng·mL-1,CV < 10%)、COR (1~400 ng·mL-1,CV < 10%)、T3(0.2~60 ng·mL-1,CV < 10%)和T4(5~1 500 ng·mL-1,CV < 10%)激素浓度。

1.5.4 皮肤总RNA提取   根据TransZol Up(Invitrogen,美国)提取总RNA,琼脂糖凝胶电泳检测,NanoDrop 2000测定RNA质量和浓度,全式金反转录试剂盒(全式金,北京,中国)进行反转录。凝胶电泳图见图 1,mRNA出现明显的3条带,可用于后续试验分析。

图 1 RNA凝胶电泳图 Fig. 1 RNA gel electrophoresis

1.5.5 RT-qPCR检测皮肤组织PRLMTNR1a和RORα表达量   基因引物由华大公司合成,引物信息见表 1。使用SYBR Green(宝生物,北京,中国)进行qPCR,利用Step One Plus仪器(Applied Biosystems, Carlsbad, CA)进行荧光检测。每孔设置3个重复。qPCR反应体系:正、反引物各0.4 μL,Taq酶10 μL,模板1 μL,水8.2 μL,共20 μL。qPCR程序:95 ℃ 2 min;95 ℃ 5 s、60 ℃ 30 s,40个循环;65~95 ℃,每个循环提高0.5 ℃,制作qPCR熔解曲线。

表 1 试验引物信息 Table 1 Primer information in this study
1.6 数据分析

采用SSCP软件中的student’s T检验分析羊绒长度、细度、毛囊数量、相关激素和基因的相对表达量(2-ΔΔCT),并统计显著性(P < 0.05)。数据以“平均值±标准差”表示。

2 结果 2.1 饲喂PRL抑制剂对山羊绒生长和绒毛品质的影响

表 2可知,饲喂PRL抑制剂3个月后对山羊绒伸直长度和细度无显著影响(P>0.05)。

表 2 饲喂PRL抑制剂对山羊绒生长和绒毛品质的影响 Table 2 Effects of PRL inhibitor on growth and quality of cashmere
2.2 饲喂PRL抑制剂对绒山羊皮肤毛囊性状的影响

图 2可知,饲喂PRL抑制剂3个月显著提高了初级毛囊密度(图 3A)、次级毛囊密度(图 3B)、S/P值(图 3C),并显著提高了活性初级毛囊占比(图 3D)和活性次级毛囊占比(图 3E)(P < 0.05)。

F. 皮肤组织HE染色,bar = 200 μm;H. 皮肤组织Sacpics染色,bar = 100 μm。a. 初级毛囊;b. 次级毛囊;c. 活性初级毛囊;d. 活性次级毛囊;e. 皮脂腺。*. P < 0.05,下同 F. HE staining of skin tissue, bar = 200 μm; H. Sacpics staining of skin tissue, bar = 100 μm. a. Primary hair follicles; b. Secondary hair follicles; c. Active primary hair follicles; d. Active secondary hair follicles; e. Sebaceous gland. *. P < 0.05, the same as below 图 2 饲喂PRL抑制剂对皮肤毛囊性状的影响 Fig. 2 Effects of PRL inhibitor on skin hair follicles
图 3 饲喂PRL抑制剂对绒山羊血清中PRL、MT、IGF-1、GH、COR、T3和T4的影响 Fig. 3 Effects of PRL inhibitor on serum PRL, MT, IGF-1, GH, COR, T3 and T4 concentrations
2.3 饲喂PRL抑制剂对绒山羊血清中PRL、MT、IGF-1、GH、COR、T3和T4的影响

饲喂PRL抑制剂3个月后对血清PRL、MT、IGF-1、GH、COR、T3和T4浓度无显著影响(P>0.05,图 3)。

2.4 饲喂PRL抑制剂对PRLMTNR1a和RORα mRNA表达的影响

图 4可知,饲喂PRL抑制剂显著降低了绒山羊皮肤组织PRL(图 4A)和MTNR1a(图 4B)mRNA表达水平(P < 0.05),对皮肤组织RORα(图 4C)mRNA表达量无显著影响(P>0.05)。

图 4 饲喂PRL抑制剂对PRLMTNR1a和RORα表达的影响 Fig. 4 Effects of PRL inhibitor on PRL, MTNR1a and RORα mRNA levels
3 讨论 3.1 PRL对绒山羊毛囊发育及山羊绒生长的影响

Foitzik等[17]研究发现,PRL在毛囊生长期能抑制毛囊的生长,在毛囊由生长期向退行期转变的过程中,PRL的免疫活性上调,在毛囊生长末期和休止期强烈表达。另有研究发现,敲除PRLR小鼠可延长毛囊休止期,并且埋植PRL能使毛囊退行期提前,缩短毛囊生长期[13]。Nixon等[11]发现,延长光照时间可使绵羊血清PRL含量升高,次级毛囊提前进入退行期,毛囊活性降到2%。以上研究说明,高浓度PRL对毛囊生长有抑制作用,可促使毛囊由生长期向退行期转化。本研究结果发现,抑制PRL 3个月,处于毛囊生长期的羊绒长度和细度并未发生明显的变化,但试验组绒山羊皮肤中初级毛囊数量、次级毛囊数量、S/P值、初级毛囊活性占比和次级毛囊活性占比显著高于对照组,说明抑制PRL分泌后促进了生长期毛囊的发育,PRL可以调控毛囊的活化及周期性。

3.2 PRL对血清PRL、MT、IGF-1、GH、COR、T3、T4及皮肤组织MTNR1a和RORα表达的影响

Dicks等[14]发现,苏格兰绒山羊从1月开始(活化期)每2周在皮下注射35 mg溴隐亭,PRL在第1周的第4天被显著抑制,而在第二次注射后的第11天,PRL与对照组无显著差异,持续到试验结束时的第17周。溴隐亭没有长期起到抑制PRL分泌的作用,这一现象也在赤鹿和苏格兰黑面母羊被发现[18-19]。另有研究证实,如果PRL释放被多巴胺或其激动剂抑制,PRL会在细胞分解而不分泌[20]。Blask和Orstead[21]利用多巴胺体外培养仓鼠垂体5 h,发现多巴胺可以降低培养基PRL含量,但不影响垂体3H-PRL(亮氨酸标记PRL)合成和免疫活性PRL含量。相反,Steger等[22]发现,仓鼠在接受长时间光照处理后,多巴胺并未表现出抑制PRL分泌的作用。这说明多巴胺和其激动剂可能在短期调节PRL分泌中发挥重要作用,另一个可能的解释是长期的溴隐亭处理下调了多巴胺受体的表达,多巴胺抑制作用减弱,使得PRL分泌上升[14]。Curlewis等[18]从2~11月对赤鹿注射溴隐亭,发现2~4月血清PRL含量虽然低于对照组,但差异不显著;4月中旬到9月中旬,试验组血清PRL被显著抑制,10月两组无显著差异,11月又出现明显抑制。这些变化导致粗毛和绒毛生长时间分别增加了1和3个月。因此,长期使用溴隐亭,血清PRL浓度先是无变化,然后降低,后又恢复至对照组水平,这期间的持续时间随着物种的不同而表现出长短的差异。本研究同样也观察到,溴隐亭处理3个月后,燕山绒山羊血清PRL浓度与对照组没有明显差异。本研究发现,试验组皮肤组织PRL表达量显著低于对照组,且试验组的次级毛囊数量及活性显著高于对照组,说明短期抑制PRL分泌后降低了PRL表达量,也说明皮肤中低PRL表达可促进毛囊活化,并可能会延长毛囊生长期。

大量研究表明,提高绒山羊血液中褪黑激素(MT)浓度可促进山羊绒生长、提高山羊绒产量[23-24],且PRL与MT浓度呈负相关关系[25]。本研究发现,抑制PRL 3个月后,MT浓度没有明显变化。但显著降低了MTNR1a表达量,对RORα表达量无显著影响。MTNR1a是MT膜受体的一种亚型,其表达分布对于MT功能起到重要作用,主要通过偶联G蛋白降低细胞内第二信使cAMP信号[26]。本研究检测到试验组MTNR1a表达量显著低于对照组,说明试验组细胞内酶活性要高于对照组,表明PRL可能通过降低绒山羊皮肤中MTNR1a的表达提高细胞内酶活性进而促进毛囊发育[27-29]。RORα是MT核受体的一种亚型,研究表明,RORα表达在毛囊生长期晚期较低,退行期晚期上调,休止期又下降[30]。埋植MT可以提高休止期RORα表达量,并不影响生长期和退行期的表达量[31-33]。本研究并未检测到RORα表达量发生显著变化,说明在次级毛囊生长期RORα可能不是影响次级毛囊生长发育的重要调节因子。

类胰岛素生长因子1(IGF-1)是一种多功能细胞调控因子,通过在毛囊发育过程中调节细胞增殖和迁移促进毛发生长[34-35]。绵羊皮肤注射IGF-1可增加角蛋白产生[36],缺失IGF-1受体的转基因小鼠皮肤发育不全,缺少毛囊结构[37]。另有研究发现,IGF-1转基因绵羊,羊毛纤维中副皮质细胞增加,导致直径变大[38]。且缺乏IGF-1患者的头发大部分缺乏根鞘,头发直径更细发质更脆[39]。在体外培养人皮肤毛囊的研究中发现,10和100 ng·mL-1的IGF-1可增加毛囊长度,在有10 μg·mL-1胰岛素存在的情况下,IGF-1(0.01~100 ng·mL-1)对毛囊生长没有明显影响[40]。以上研究说明,在不同物种中IGF-1对维持皮肤功能起重要作用。本研究发现,在毛囊生长期抑制PRL分泌对IGF-1浓度无显著影响,说明在山羊绒快速生长期PRL可能不通过IGF-1对毛囊发育起作用。

皮质醇(COR)由肾上腺皮质合成和分泌,可调节免疫和应激反应[41]。Ågren等[42]发现,低水平COR可减缓皮肤结构(透明质酸和蛋白多糖)的分解,高水平COR可加快这些皮肤结构的分解。Talbott和Kraemer[43]同样发现,高水平COR可以对皮肤结构产生副作用。通过促肾上腺皮质激素释放激素(CRH)促进COR合成,可抑制体外培养人毛囊毛干产生,诱导毛囊退化,抑制角质细胞增殖[44]。本研究发现,在毛囊生长期抑制PRL分泌3个月后,对COR浓度无显著影响,说明长期饲喂PRL抑制剂没有引起绒山羊的应激反应,且对绒山羊皮肤无损伤。而COR是否在次级毛囊发育过程中起作用还有待进一步研究。

生长激素(GH)可调节机体的生长、免疫、代谢和生殖等生理功能[45]。研究发现,GH可在真皮发挥作用,主要刺激胶原蛋白的合成,Sprague-Dawley小鼠在伽马射线照射后,皮下注射GH可保护毛囊不萎缩,真皮和表皮结构完整[46]。Celi等[47]检测绒山羊血浆GH浓度,发现GH浓度和季节无关,但高GH浓度的公羊脱绒分数要低于低GH浓度的母羊。Alam等[48]发现,100~200 ng·mL-1的重组GH(rGH)可使人毛囊提早进入退行期,显著提高细胞内IGF-1的免疫活性,且GH可通过自分泌和旁分泌的方式在靶组织中影响IGF-1发挥生理功能[49]。本研究发现,抑制PRL分泌对GH和IGF-1均无显著影响,说明在毛囊生长期抑制PRL分泌可能不会通过GH对毛囊发育起作用。

甲状腺激素由甲状腺分泌,可调节动物机体的生长发育、组织分化和物质代谢等。甲状腺激素主要有T3和T4,二者分泌呈季节性变化[47]。Vidali等[50]用100 pmol·L-1 T3和100 nmol·L-1 T4分别处理人的毛囊,发现二者减少了活性氧的形成,增加了活性氧清除剂(过氧化氢酶和超氧化物歧化酶2)的转录,刺激毛囊角质细胞产生ATP。Villar等[51]发现,山羊皮肤可发生甲状腺激素代谢,且甲状腺激素代谢与脱碘酶(MD)活性有直接关系,推测皮肤MD活性可能与羊绒生长有关;其在绒山羊皮肤组织检测到了MDII和MDIII,MDII可使T4转化为T3,MDIII可使T3转化为T2、T4转化为rT3,二者活性可能对脱绒模式有影响[51]。Merchant和Riach[52]发现,高水平的甲状腺激素可以延迟脱绒时间和毛囊的活化。Celi等[47]检测1年甲状腺激素(T3和T4)水平,发现T4与PRL有正相关关系,T3与脱绒有正相关关系,并且在2月份达到最高水平,11月份达到最低水平。本研究发现,试验组和对照组T3和T4并没有显著差异,说明在山羊绒生长期抑制PRL分泌对甲状腺激素分泌无显著影响。

4 结论

本研究结果显示,PRL可调控绒山羊毛囊的发育,在绒山羊毛囊生长期抑制PRL分泌可促进毛囊发育,提高毛囊数量和活性毛囊比例,且皮肤中PRLMTNR1a基因在PRL调控毛囊发育中起重要作用。

参考文献
[1]
ANSARI-RENANI H R, MUELLER J P, RISCHKOWSKY B, et al. Cashmere quality of Raeini goats kept by nomads in Iran[J]. Small Rumin Res, 2012, 104(1-3): 10-16. DOI:10.1016/j.smallrumres.2011.11.003
[2]
SASAKI G H. Review of Human hair follicle biology: dynamics of niches and stem cell regulation for possible therapeutic hair stimulation for plastic surgeons[J]. Aesthetic Plast Surg, 2019, 43(1): 253-266. DOI:10.1007/s00266-018-1248-1
[3]
DAI B, HAO F, XU T, et al. Thymosin β4 identified by transcriptomic analysis from HF anagen to telogen promotes proliferation of SHF-DPCs in albas cashmere goat[J]. Int J Mol Sci, 2020, 21(7): 2268. DOI:10.3390/ijms21072268
[4]
HAN W J, YANG F, WU Z H, et al. Inner mongolian cashmere goat secondary follicle development regulation research based on mRNA-miRNA Co-analysis[J]. Sci Rep, 2020, 10(1): 4519. DOI:10.1038/s41598-020-60351-5
[5]
YIN R H, ZHAO S J, JIAO Q, et al. CircRNA-1926 promotes the differentiation of goat SHF stem cells into hair follicle lineage by miR-148a/b-3p/CDK19 axis[J]. Animals (Basel), 2020, 10(9): 1552.
[6]
李长青, 尹俊, 张燕军, 等. 内蒙古绒山羊与辽宁绒山羊皮肤毛囊周期性变化的比较研究[J]. 畜牧兽医学报, 2005, 36(7): 674-679.
LI C Q, YIN J, ZHANG Y J, et al. Comparative study on skin and hair follicles cycling between Inner Mongolia and Liaoning cashmere goats[J]. Acta Veterinaria et Zootechnica Sinica, 2005, 36(7): 674-679. DOI:10.3321/j.issn:0366-6964.2005.07.007 (in Chinese)
[7]
FOITZIK K, LANGAN E A, PAUS R. Prolactin and the skin: a dermatological perspective on an ancient pleiotropic peptide hormone[J]. J Invest Dermatol, 2009, 129(5): 1071-1087. DOI:10.1038/jid.2008.348
[8]
LANGAN E A, FOITZIK-LAU K, GOFFIN V, et al. Prolactin: an emerging force along the cutaneous-endocrine axis[J]. Trends Endocrinol Metab, 2010, 21(9): 569-577. DOI:10.1016/j.tem.2010.06.001
[9]
赫晓燕, 朱芷葳, 游蓉丽, 等. 催乳素及其受体在青年公羊驼皮肤中分布的研究[J]. 畜牧兽医学报, 2008, 39(12): 1765-1771.
HE X Y, ZHU Z W, YOU R L, et al. The study on the distribution of PRL and its receptor in skin of Young male Alpaca(Lama pacos)[J]. Acta Veterinaria et Zootechnica Sinica, 2008, 39(12): 1765-1771. DOI:10.3321/j.issn:0366-6964.2008.12.022 (in Chinese)
[10]
FOITZIK K, KRAUSE K, CONRAD F, et al. Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression[J]. Am J Pathol, 2006, 168(3): 748-756. DOI:10.2353/ajpath.2006.050468
[11]
NIXON A J, FORD C A, WILDERMOTH J E, et al. Regulation of prolactin receptor expression in ovine skin in relation to circulating prolactin and wool follicle growth status[J]. J Endocrinol, 2002, 172(3): 605-614. DOI:10.1677/joe.0.1720605
[12]
PEARSON A J, PARRY A L, ASHBY M G, et al. Inhibitory effect of increased photoperiod on wool follicle growth[J]. J Endocrinol, 1996, 148(1): 157-166. DOI:10.1677/joe.0.1480157
[13]
CRAVEN A J, NIXON A J, ASHBY M G, et al. Prolactin delays hair regrowth in mice[J]. J Endocrinol, 2006, 191(2): 415-425. DOI:10.1677/joe.1.06685
[14]
DICKS P, RUSSEL A J F, LINCOLN G A. The role of prolactin in the reactivation of hair follicles in relation to moulting in cashmere goats[J]. J Endocrinol, 1994, 143(3): 441-448. DOI:10.1677/joe.0.1430441
[15]
DUAN C H, XU J H, SUN C M, et al. Effects of melatonin implantation on cashmere yield, fibre characteristics, duration of cashmere growth as well as growth and reproductive performance of Inner Mongolian cashmere goats[J]. J Anim Sci Biotechno, 2015, 6(1): 22. DOI:10.1186/s40104-015-0023-2
[16]
NIXON A J. A method for determining the activity state of hair follicles[J]. Biotech Histochem, 1993, 68(6): 316-325. DOI:10.3109/10520299309105637
[17]
FOITZIK K, KRAUSE K, NIXON A J, et al. Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce catagen[J]. Am J Pathol, 2003, 162(5): 1611-1621. DOI:10.1016/S0002-9440(10)64295-2
[18]
CURLEWIS J D, LOUDON A S I, MILNE J A, et al. Effects of chronic long-acting bromocriptine treatment on liveweight, voluntary food intake, coat growth and breeding season in non-pregnant red deer hinds[J]. J Endocrinol, 1988, 119(3): 413-420. DOI:10.1677/joe.0.1190413
[19]
CURLEWIS J D, SIBBALD A M, MILNE J A, et al. Chronic treatment with long-acting bromocriptine does not affect duration of the breeding season, voluntary food intake, body weight, or wool growth in the Scottish blackface ewe[J]. Reprod Fertil Dev, 1991, 3(1): 25-33. DOI:10.1071/RD9910025
[20]
DANNIES P S. Prolactin: multiple intracellular processing routes plus several potential mechanisms for regulation[J]. Biochem Pharmacol, 1982, 31(18): 2845-2849. DOI:10.1016/0006-2952(82)90253-2
[21]
BLASK D E, ORSTEAD K M. Dopamine inhibition of prolactin release but not synthesis in the male Syrian hamster: in vitro studies[J]. Life Sci, 1986, 38(21): 1915-1921. DOI:10.1016/0024-3205(86)90220-1
[22]
STEGER R W, MATT K S, KLEMCKE H G, et al. Interactions of photoperiod and ectopic pituitary grafts on hypothalamic and pituitary function in male hamsters[J]. Neuroendocrinology, 1985, 41(2): 89-96. DOI:10.1159/000124159
[23]
YANG C H, DUAN C H, WU Z Y, et al. Effects of melatonin administration to cashmere goats on cashmere production and hair follicle characteristics in two consecutive cashmere growth cycles[J]. Domest Anim Endocrinol, 2021, 74: 106534. DOI:10.1016/j.domaniend.2020.106534
[24]
刘斌, 杨军, 阿云嘎, 等. 外源褪黑激素促进绒山羊皮肤毛囊相关基因表达差异的研究[J]. 畜牧兽医学报, 2016, 47(11): 2210-2217.
LIU B, YANG J, A Y G, et al. Exogenous melatonin promotes expression differences of skin hair follicles related genes in cashmere goat[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(11): 2210-2217. DOI:10.11843/j.issn.0366-6964.2016.11.008 (in Chinese)
[25]
WULIJI T, LITHERLAND A, GOETSCH A L, et al. Evaluation of melatonin and bromocryptine administration in Spanish goats: Ⅲ.Effects on hair follicle activity, density and relationships between follicle characteristics[J]. Small Rumin Res, 2006, 66(1-3): 11-21. DOI:10.1016/j.smallrumres.2005.04.024
[26]
REPPERT S M, WEAVER D R, CASSONE V M, et al. Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain[J]. Neuron, 1995, 15(5): 1003-1015. DOI:10.1016/0896-6273(95)90090-X
[27]
WITT-ENDERBY P A, MASANA M I, DUBOCOVICH M L. Physiological exposure to melatonin supersensitizes the cyclic adenosine 3', 5'-monophosphate-dependent signal transduction cascade in Chinese hamster ovary cells expressing the human mt1 melatonin receptor[J]. Endocrinology, 1998, 139(7): 3064-3071. DOI:10.1210/endo.139.7.6102
[28]
WITT-ENDERBY P A, MACKENZIE R S, MCKEON R M, et al. Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor[J]. Cell Motil Cytoskeleton, 2015, 46(1): 28-42.
[29]
CHAN A S L, LAI F P L, LO R K H, et al. Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins[J]. Cell Signal, 2002, 14(3): 249-257. DOI:10.1016/S0898-6568(01)00240-6
[30]
KOBAYASHI H, KROMMINGA A, DUNLOP T W, et al. A role of melatonin in neuroectodermal-mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors[J]. FASEB J, 2005, 19(12): 1710-1720. DOI:10.1096/fj.04-2293fje
[31]
常子丽. 持续埋植褪黑素对绒山羊绒毛生长特性和相关基因影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2010.
CHANG Z L. Study on effect of constant-release melatonin implants on the cashmere growth traits of cashmere goats and related gene[D]. Huhhot: Inner Mongolia Agricultural University, 2010. (in Chinese)
[32]
吴静. 褪黑激素对内蒙古绒山羊产绒性能及皮肤毛囊中RORa表达的影响[D]. 呼和浩特: 内蒙古农业大学, 2016.
WU J. Effect of melatonin on cashmere performance and expression of RORa in hair follicles of Inner Mongolia cashmere goats[D]. Huhhot: Inner Mongolia Agricultural University, 2016. (in Chinese)
[33]
段春辉. 褪黑激素调控山羊绒生长的模式及机理初探[D]. 北京: 中国农业大学, 2016.
DUAN C H. The research on patterns and mechanisms of cashmere growth induced by melatonin[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[34]
BEN AMITAI D, LURIE R, LARON Z. I-GF-1 signalling controls the hair growth cycle and the differentiation of hair shafts[J]. J Invest Dermatol, 2006, 126(9): 2135.
[35]
王婷, 邢海权, 曹靖, 等. IGF-1对羊驼皮肤成纤维细胞作用的研究[J]. 畜牧兽医学报, 2013, 44(6): 880-887.
WANG T, XING H Q, CAO J, et al. Study on the Effect of insulin like growth factor 1(IGF-1) on the Alpaca skin fibroblasts[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(6): 880-887. (in Chinese)
[36]
HARRIS P M, MCBRIDE B W, GURNSEY M P, et al. Direct infusion of a variant of insulin-like growth factor-I into the skin of sheep and effects on local blood flow, amino acid utilization and cell replication[J]. J Endocrinol, 1993, 139(3): 463-472. DOI:10.1677/joe.0.1390463
[37]
LIU J P, BAKER J, PERKINS A S, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r)[J]. Cell, 1993, 75(1): 59-72.
[38]
SU H Y, HICKFORD J G H, BICKERSTAFFE R, et al. Insulin-like growth factor 1 and hair growth[J]. Dermatol Online J, 1999, 5(2): 1.
[39]
LURIE R, BEN-AMITAI D, LARON Z. Laron syndrome (primary growth hormone insensitivity): a unique model to explore the effect of insulin-like growth factor 1 deficiency on human hair[J]. Dermatology, 2004, 208(4): 314-318. DOI:10.1159/000077839
[40]
PHILPOTT M P, SANDERS D A, KEALEY T. Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro[J]. J Invest Dermatol, 1994, 102(6): 857-861. DOI:10.1111/1523-1747.ep12382494
[41]
CURLEY K O J R, NEUENDORFF D A, LEWIS A W, et al. Functional characteristics of the bovine hypothalamic-pituitary-adrenal axis vary with temperament[J]. Horm Behav, 2008, 53(1): 20-27. DOI:10.1016/j.yhbeh.2007.08.005
[42]
ÅGREN U M, TAMMI M, TAMMI R. Hydrocortisone regulation of hyaluronan metabolism in human skin organ culture[J]. J Cell Physiol, 1995, 164(2): 240-248. DOI:10.1002/jcp.1041640204
[43]
TALBOTT S, KRAEMER W J. The cortisol connection: why stress makes you fat and ruins your health and what you can do about it[M]. 2nd ed. Alameda: Hunter House, 2007.
[44]
ITO N, ITO T, KROMMINGA A, et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal (HPA) axis and synthesize cortisol[J]. FASEB J, 2005, 19(8): 1332-1334.
[45]
BERGAN-ROLLER H E, SHERIDAN M A. The growth hormone signaling system: insights into coordinating the anabolic and catabolic actions of growth hormone[J]. Gen Comp Endocrinol, 2018, 258: 119-133. DOI:10.1016/j.ygcen.2017.07.028
[46]
KANDAZ M, ERTEKIN M V, KARSLIO Ǧ LU Ī, et al. Zinc sulfate and/or growth hormone administration for the prevention of radiation-induced dermatitis: a placebo-controlled rat model study[J]. Biol Trace Elem Res, 2017, 179(1): 110-116. DOI:10.1007/s12011-017-0952-z
[47]
CELI P, SEREN E, CELI R, et al. Relationships between blood hormonal concentrations and secondary fibre shedding in young cashmere-bearing goats at their first moult[J]. Anim Sci, 2003, 77(3): 371-381. DOI:10.1017/S1357729800054321
[48]
ALAM M, BELOW D, CLAYTON R, et al. 214 Growth hormone-induced signaling: a novel, intrafollicular neuroendocrine control of human hair growth[J]. J Invest Dermatol, 2016, 136(9): S197.
[49]
HONG J W, KIM J Y, KIM Y E, et al. Metabolic parameters and nonalcoholic fatty liver disease in hypopituitary men[J]. Horm Metab Res, 2011, 43(1): 48-54. DOI:10.1055/s-0030-1265217
[50]
VIDALI S, KNUEVER J, LERCHNER J, et al. Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles[J]. J Invest Dermatol, 2014, 134(1): 33-42. DOI:10.1038/jid.2013.286
[51]
VILLAR D, NICOL F, ARTHUR J R, et al. Type Ⅱ and type Ⅲ monodeiodinase activities in the skin of untreated and propylthiouracil-treated cashmere goats[J]. Res Vet Sci, 2000, 68(2): 119-123. DOI:10.1053/rvsc.1999.0344
[52]
MERCHANT M, RIACH D J. The effect of plane of nutrition and shearing on the pattern of the moult in Scottish Cashmere goats[J]. Anim Sci, 2002, 74(1): 177-188. DOI:10.1017/S1357729800052346

(编辑   郭云雁)