畜牧兽医学报  2021, Vol. 52 Issue (12): 3449-3460. DOI: 10.11843/j.issn.0366-6964.2021.012.012    PDF    
水牛附睾不同部位精子超微结构及荧光标记差异分析
何翁潭1, 张鹏飞1, 黄愉淋2, 肖凯1, 黄良凤1, 陆阳清1, 张明1     
1. 广西大学动物繁殖研究所 亚热带农业生物资源保护与利用国家重点实验室, 南宁 530004;
2. 广西中医药大学基础医学院 细胞与遗传学教研室, 南宁 530004
摘要:哺乳动物精子经过附睾成熟后才能获得运动及受精的能力,为解释水牛精子在附睾中的成熟过程,本研究选用性成熟期的沼泽型水牛附睾,利用乙烯吡咯烷酮包裹的硅胶微小颗粒(Percoll)梯度离心纯化分别提取附睾头、体和尾部精子,应用计算机辅助精子分析系统(CASA)检测精子活力,透射电镜观察附睾不同部位精子的超微结构,对精子进行荧光标记后,利用流式细胞仪和荧光显微镜观察检测不同部位精子质膜完整率、线粒体鞘膜电位和顶体差异。结果表明,Percoll分离得到附睾头、体和尾3部位精子的纯度达95%,不同部位精子活力分别为8.35%、20.21%和65.60%;附睾不同部位精子都存在着结构完整的精子以及相同的畸形类型,附睾尾部精子线粒体鞘高膜电位比率最高,精子质膜完整率从附睾头部到尾部逐渐升高,精子顶体完整率从附睾头部到尾部逐渐升高。本研究直观地展示了水牛附睾不同部位精子特征以及差异,为研究水牛精子成熟机理提供理论依据。
关键词附睾    精子    超微结构观察    荧光分子探针    顶体    
Analysis of Ultrastructure and Fluorescent Markers of Sperm in Different Parts of Buffalo Epididymis
HE Wengtan1, ZHANG Pengfei1, HUANG Yulin2, XIAO Kai1, HUANG Liangfeng1, LU Yangqing1, ZHANG Ming1     
1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, China;
2. Department of Cell and Genetics, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning 530004, China
Abstract: In mammals, spermatozoa acquired the ability of motility and fertilization only after being matured in the epididymis. To explain the maturation process of buffalo spermatozoa in the epididymis, sexually mature buffalo (Bubalus bubalis) epididymis were selected and the spermatozoa from the caput, corpus and cauda of the epididymis were purified by Polyvinylpyrrolidone coated silica (Percoll) gradient centrifugation. Computer-assisted sperm analysis system (CASA) was used to examine sperm motility, transmission electron microscopy to observe the ultrastructure of spermatozoa in different regions of the epididymis, and after fluorescent labeling of spermatozoa, flow cytometry and fluorescence microscopy were employed to determine the plasma membrane integrity, mitochondrial membrane potential and acrosome variations in different regions of the spermatozoa. As the result showed, the purity of spermatozoa obtained from the head, body and tail of epididymis by Percoll were 95%, whereas the motility of spermatozoa in various regions was 8.35%, 20.21% and 65.60%, respectively; All the spermatozoa in different regions of epididymis existed the same abnormality pattern, and the spermatozoa in the cauda of epididymis showed the highest ratio of mitochondrial membrane potential, the sperm plasma membrane integrity rate and and the sperm acrosome integrity rate increased gradually from the caput to the cauda region of epididymis. Overall, this study demonstrated the characterization and variation of spermatozoa in distinct regions of the buffalo epididymis which provides a theoretical basis for investigating the mechanism of sperm maturation.
Key words: epididymal    sperm    ultrastructure observation    fluorescent molecular probe    acrosome    

精子到达附睾时,虽有完整的形态学特征,但缺乏运动能力,不具备受精能力,仍然属于不成熟的生殖细胞。精子在经过附睾成熟后才获得运动及受精的能力[1],这一过程称为精子的成熟[2-4]。附睾附着在睾丸上,是一条连接睾丸和输精管的细长导管,里面包含有数条细的小管并布满纤毛,纤毛的摆动引起液体流动使精子悬浮在管腔内,从附睾头部向尾部转运[5-6]。附睾具有分泌激素、离子、蛋白质等物质的功能,多数物质是以微囊泡的形式转运分泌[7-8]。附睾小管是高度有序的分段器官,每个分段部位的上皮细胞内具有独特的基因表达谱,这些基因转录翻译成蛋白质并特异性分泌,直接或间接影响精子在附睾中成熟,并且上皮细胞可以调节基因片段特异性表达,进而形成特殊的精子成熟微环境[9-11]。附睾在结构上被分成头部、体部和尾部3部分或者更多部位[12-13],精子在附睾转运过程中逐渐成熟,并储存在远端的尾部区域,直到射精[13]。在睾丸中完成精子发生的精子首先进入附睾头部,附睾头部会大量吸收睾丸液,精子在附睾转运过程中,附睾对其进行了重塑,包括顶体和核的变化以及细胞质液滴脱落等[14],进而精子的形态结构、能量代谢和生理功能发生变化,逐渐获得了运动能力,发育成为具有活力的成熟精子,具备精卵识别能力和受精能力[15-16]

精子自身结构是否具有一定的完整性与受精能力密切相关。荧光分子探针可探究细胞的某些结构功能状态,是测量活细胞内部生理变化的一种手段[17]。因此,使用荧光分子探针标记可准确、清晰评估精子细胞特定结构的完整性和功能。碘化丙锭(PI)是可进入受损质膜的细胞中与DNA结合,而无法穿过完整细胞膜的一种荧光探针,可用于检测质膜完整性,另外还有可以穿过细胞膜与核酸结合的荧光探针赫斯德染料:Hoechst 33258(H258)、Hoechst 33342(H342)[18-19]。花生凝集素(FITC-PNA)可以特异性结合精子顶体,检测精子的顶体状态[20],也可用于测定质膜完整性,在牛、马、犬、猫精子染色上都得到有效应用[21-22]。线粒体分子探针(Mito-Tracker)可以与线粒体特异性结合,对线粒体的染色依赖于线粒体膜电位,进而检测线粒体功能的完整性[23],高线粒体膜电位是精子具有受精能力的特征之一[24-25]。流式细胞仪分析不同荧光探针的标记情况可以评估不同的精子状态,并能够在几秒内分析数以千计的细胞[6],具有高的统计稳健性。

本研究运用透射电镜观察以及荧光标记染色的方法,观察和分析附睾头、体和尾部位的精子,寻找这3部位精子在外部形态和结构上的异同,从而揭示精子在附睾成熟过程中的具体变化,为研究水牛精子在附睾中的成熟机理提供依据。

1 材料与方法 1.1 试验材料

从南宁市屠宰场获得性成熟期(2~3岁)水牛新鲜的附睾材料,水牛类型为广西本地沼泽型水牛。

1.2 主要试剂

精子稀释液、Percoll细胞分离液、Anhydrous Dimethyl Sulfoxide均购自北京索莱宝公司;环氧树脂812购自美国SPI公司;柠檬酸铅,醋酸双氧铀、200目碳膜支持铜网购自中镜科仪公司;Hoechst33342、PropidiumI odide(PI)购自碧云天公司,Fluorescein-labeledlectinfrom Arachishypogaea(FITC- PNA)购自Sigma-Aldrich公司;Mito-TrackerTM Red CMXRos购自Thermo Fisher Scientific公司。

1.3 试验方法

1.3.1 附睾HE染色   取新鲜附睾的头部、体部和尾部,在4% 聚甲醛中固定,经脱水、透明、浸蜡、包埋、切片、粘片和烤片及脱蜡后将切片用苏木素染色,盐酸分化,氨水反蓝,水洗后依次投入梯度酒精中脱水,再入伊红染色,无水乙醇、二甲苯中透明,然后用中性树胶封片,镜检和采集图像。

1.3.2 附睾精子分离纯化   取出新鲜的水牛睾丸组织,分离附睾,将附睾按照形态学特征分离为头、体和尾3部分。26 ℃条件下将附睾样品在精子稀释液中去除表面白色结缔组织后剪碎,通过40 μm孔径筛子过滤;室温条件下300×g,3 min, 弃上清,重悬后用Percoll密度梯度离心。Percoll分离方法参照文献描述并做适当改进[26]。在试管中加入预先配置好的Percoll工作液,从下到上浓度依次90%、43%、30%。在分离液上层加入适量的精子悬液后进行离心,离心力与时间设定分别为50×g,1 min;100×g,1 min;150×g,30 s;200×g,30 s;250×g,30 s;300×g,15 min。离心结束后,可观察到管中溶液分为3层,吸取最下层精子(90%与43%之间),漂洗后备用。

1.3.3 精子运动能力评估   收集到的精子重悬于精子稀释液中立刻进行精子运动能力评估(CASA)分析。将精子各取20 μL分别注入预热的20 μL CASA腔室(精子分析仪(CASA)IVOS IITM,Hamilton Thorne,美国)中,置于倒置荧光显微镜(Olympus,日本)显微镜的恒温加热台上(35 ℃)。用Hamilton Thorn CEROS CASA系统(版本14.0)评估运动学参数。以60 Hz的频率采集30个视频帧,每个单元设置13个跟踪点[27]。本部分共设置4组生物学重复。

1.3.4 透射电镜观察   将分离出的精子加入2.5%的戊二醛固定过夜,300×g离心,PBS漂洗3次, 加入1%锇酸, 固定20 min,PBS漂洗离心3次。将4 g琼脂和100 mL超纯水充分混合煮沸至充分溶解,冷却至37 ℃,滴加入精子,制备含有精子的琼脂块。将包埋块修成1 mm3大小,进行30%、50%、70%、80%、90%酒精梯度脱水各5 min,100%丙酮脱水3次,每次5 min。将脱水后的琼脂块和Spurr树脂包埋剂按比例浸润,分别为常温1 h(75%丙酮,25% Spurr树脂包埋剂),常温1.5 h(25%丙酮,75% Spurr树脂包埋剂),100% Spurr树脂包埋剂37 ℃放置12 h、45 ℃放置12 h、60 ℃放置24 h。取出聚合好的树脂样品进行超薄切片, 厚度50 nm,用捞片环捞取薄片放置200目铜网上。室温避光进行负染首先0.5%醋酸铀15~30 min,水洗后3%柠檬酸铅3~7 min,水洗,烘烤后上镜,通过TEM(日本日立)电镜观察,拍照。

1.3.5 精子顶体染色   精子顶体染色方法参照前人描述并做适当改进[20, 27-30],结合本次研究具体观察对精子进行分类。将分离的精子分别用4%多聚甲醛固定30 min,用PBS漂洗3次(300×g,3 min)后用1%Triton X-100(Sigma-Aldrich Co)处理5 min,然后用PBS漂洗3次后进行FITC-PNA(6 μg·mL-1)与PI(0.8 mg·mL-1)混合染色15 min,漂洗后用Hoechst 33342(1 μg·mL-1)染色10 min,然后用PBS对精子漂洗2次去除多余染料,再滴加荧光抗淬灭剂,最后注入20 μL腔室的载玻片,进行荧光显微镜观察并拍照,使用ImageJ软件(版本1.47 v)对拍照结果分析。

1.3.6 流式细胞仪分析   将精子样品用PBS重悬至浓度为1×105个·mL-1。每个样品取500 μL,分别加入试管,定容体积至1 mL,染料及浓度为PI(0.8 mg·mL-1)、FITC-PNA(6 μg·mL-1)、20 nm Mito-TrackerRed,避光22 ℃孵育30 min。孵育后进行PBS漂洗,用2%的多聚甲醛中固定,固定后的精子用4 ℃的PBS重悬后用流式细胞仪分析。流式细胞仪为AttuneTM Acoustic Focusing Cytometer(Thermo Fisher)。YL2(585/40带通滤光片)评估碘化丙啶荧光,使用YL2(585/40带通滤光片)测量Mito-Tracker红色荧光,BL1(488/40带通光片)评估绿色荧光。计数:5万个,流速:100 μL·min-1。使用FlowJo(FlowJo V 10软件;俄勒冈州阿什兰)软件分析。

1.3.7 数据统计与分析   数据应用SAS系统中GLM模块进行多重比较。当P < 0.05时,被认为差异是显著的。结果显示为:百分比(%),“平均值(mean)±平均标准误(SEM)”。研究设置3次生物学重复,3次技术重复。

2 结果 2.1 附睾HE染色

为观察附睾不同部位组织的形态差异,分别对附睾头、体和尾3部分进行HE染色。附睾小管直径尾部最大;附睾小管上皮基膜外侧是薄层平滑肌(图 1中a箭头),并从附睾头至尾部逐渐增厚;附睾上皮中的细胞核深染,位于细胞近腔面有游离的纤毛伸入管腔(图 1中b箭头),头部附睾小管绒毛相对较长。

A. 附睾头部;B. 附睾体部;C. 附睾尾部。a箭头所示为平滑肌层,b箭头所示为微绒毛,深染为细胞核,浅染为细胞质。微绒毛游离于管腔 A. The caput of epididymis; B. The corpus of epididymis; C. The cauda of epididymis. The black arrow points to the smooth muscle layer, the red arrow points to the microvilli, the deep stain is the nucleus, and the light stain is the cytoplasm. The microvilli are close to the lumen 图 1 附睾头、体和尾3部分HE染色 Fig. 1 HE staining of caput, corpus and cauda of epididymis
2.2 精子纯化和活力分析

Percoll分离后,结合Hoechst 33342染色观察统计,精子存在于90%~43%浓度层,纯度达到95%,图 2展示纯化后的精子。通过计算机辅助精子分析系统(CASA)发现(表 1),附睾头、体和尾部精子活力分别是:8.35%、20.21%和65.6%(P < 0.05);而原生质滴脱落情况为头部与体部和尾部有差异显著(P < 0.05),体部和尾部差异不显著(P>0.05)。

A. 附睾头部精子;B.附睾体部精子;C.附睾尾部精子 A. The spermatozoa from the caput of epididymis; B. The spermatozoa from the corpus of epididymis; C. The spermatozoa from the cauda of epididymis 图 2 Percoll梯度离心后附睾头、体和尾3部分精子 Fig. 2 The spermatozoa of the caput, corpus and cauda of the epididymis after Percoll gradient centrifugation
表 1 用CASA分析所得精子特性 Table 1 The CASA analysis of spermatozoa in the caput, corpus and cauda of epididymis  
2.3 精子形态差异分析

采用透射电镜观察附睾3部位精子超微结构。首先对正常精子进行观察,精子头部呈典型圆锥状,核(N)被染色后颜色较深电子密度均匀,核膜(PM)被覆在核外周,顶体(AC)覆盖在头部上部分外部(图 3A);尾部轴丝(AX)包括9对外部双微管和1个中心对的“9×2+2”结构, 外周致密纤维(ODF)整齐排列, 线粒体鞘(MS)规则得排列在中段,颈部(NA)不同的切面呈现的形状(图 3B);精子尾部中(线粒体鞘包裹轴丝)、主(纤维鞘包裹轴丝)、末段(胞膜包裹轴丝)纵切面可观察到轴丝、外周致密纤维、纤维鞘、以及线粒体鞘结构, 横切面尾部从中段到末段的变化依次为线粒体鞘(MS)消失,轴丝(AX)、纤维鞘(FS)延伸到尾末端,最后在末端消失(图 3C)。通过观察发现附睾头部、体部以及尾部的精子都存在着完整的顶体、颈部、尾部等结构。

A. 精子头部纵切面,AC.顶体;PM.核膜;N.核染色质。B. 精子尾部中、主、末段各个不同横截面,AX.轴丝;MS.线粒体鞘(线粒体螺旋);ODF.外周致密纤维。C. 精子尾部纵切面,FS. 纤维鞘;NA.颈部 A. Vertical section of spermic head region, AC. Acrosome; PM. Nuclear membrane; N. Nuclear chromatin.B. Different cross-sections of the middle, main and terminal segments of the spermic tail region, AX. Axon; MS. Mitochondrial sheath (mitochondrial helix); ODF. Outer dense fibers. C. Vertical section of the spermic tail region, FS. Fibrous sheath; NA. Neck 图 3 水牛附睾中精子超微结构 Fig. 3 Ultrastructure of spermatozoa in the buffalo epididymis

通过对畸形精子部位及种类观察发现头部异常的类型主要包括破损、膨胀、质膜分离,顶体囊泡化(图 4);颈部畸形包括断裂和线粒体鞘的结构异常(图 5);尾部异常主要发生在精子线粒体鞘(MS)和纤维鞘(FS)膨胀和缺失、破损,外周致密纤维(ODF)和轴丝(AX)紊乱、缺失(图 6)。

a、b. 顶体缺失;c. 顶体外膜膨胀;d. 质膜分离;e. 顶体囊泡化轻度膨胀外膜部分形成二串大小不等的空泡 a, b. The absence of acrosome; c. The expansion of acrosomal extracorporeal membrane; d. The separation of plasma membrane; e. The acrosome vesicles and slightly swelling, forming two vesicles of different sizes in the outer membrane 图 4 精子头部异常 Fig. 4 The abnormalities of spermic head region
A. 线粒体鞘排列缺失、紊乱,箭头a所指;B. 中心粒缺失,箭头b所指 A. The absence of mitochondrial sheath, Mitochondrial sheath loss, pointed by arrow a; B. The absence of centriole, pointed by arrow b 图 5 精子颈部畸形 Fig. 5 The abnormalities of the spermic neck region
A. 线粒体鞘膜脱落;B. 线粒体鞘膜缺失;C. 原生质滴未脱落;D. 线粒体鞘膜膨胀;E. 轴丝紊乱、分散、缺失(箭头a);线粒体鞘膜破损(箭头b);F. 轴丝缺失;G. 鞘膜破损,轴丝裸露和丢失;H. 双尾畸形 A. Mitochondrial sheath shedding; B. Mitochondrial sheath loss; C. Protoplast drop not shedding; D. Mitochondrial sheath swelling; E. Axonal filament disorder, Axonal filament dispersion, Axonal filament loss(arrow a); Mitochondrial sheath membrane damage(arrow b); F. Axons loss; G. Damaged sheath, exposed and axons loss; H. Double-tailed deformity 图 6 精子尾部畸形 Fig. 6 The abnormalities of the spermic tail region
2.4 流式细胞仪分析

对附睾头、体和尾部分精子进行流式分析(图 7),并对数据进行统计分析发现精子质膜完整率在附睾头部最低,从头部到尾部,精子质膜完整率增大,高线粒体膜电位精子比率逐渐增大(P < 0.05),顶体高荧光强度比率增大,但差异不显著(表 2)。

PI染色精子,峰图描绘了两个亚群,左侧峰表示未染色质膜完整的精子,右侧峰表示质膜不完整的精子;Mito-TrackerRed染色精子,右侧峰表示具有高线粒体膜电位的精子,左侧峰表示线粒体膜电位低的精子;FITC-PNA是单个的峰图,结合染色后显微镜下观察,并且根据BL1通道下样品自发荧光,计算荧光补偿值后,区分FITC-PNA荧光强度大小界限,划定有效染色精子荧光强度的大小范围 PI stained sperm, the peak diagram depicts two areas, the left area indicates that the sperm is not stained, the sperm plasma membrane is intact, the right area indicates the sperm with incomplete plasma membrane; the Mito-TrackerRed stained sperm, the right area indicates that it has sperm with high mitochondrial membrane potential, the left area represents sperm with low mitochondrial membrane potential; FITC-PNA is a single area, combined with sperm staining and observation under a fluorescence microscope, and according to the fluorescence value of the control group under the BL1 channel, the fluorescence compensation value is calculated, used to distinguish the limits of FITC-PNA fluorescence intensity and delimit the range of fluorescence intensity of effectively stained sperm 图 7 流式分析图展示附睾头、体和尾部精子分布特征 Fig. 7 Flow cytometry chart showing the sperm distribution characteristics in the caput, corpus and cauda of epididymis
表 2 附睾头、体和尾部精子流式分析 Table 2 Flow cytometry analysis of spermatozoa in the caput, corpus and cauda of epididymis  
2.5 精子顶体染色分析

为了检测附睾不同部位精子顶体完整性,对附睾精子进行了顶体染色分析(图 8)。发现3部位精子顶体完整比率从头到尾依次增加,差异显著(P < 0.05)。对不完整的顶体参照前人[27, 31]描述的分类方法并做适当改进,分为一类,二类,三类(表 3)。第一类中,头部、体部所占总体最高,尾部所占比率较小,头部、体部相对尾部精子差异显著(P < 0.05)。第二类中,头部和体部占比大,尾部比率最小,头部、体部相对尾部差异显著(P < 0.05)。第三类中,头部比率最高,体部、尾部最小,头部相对体部、尾部差异显著(P < 0.05),体部与尾部无显著差异(P>0.05)。

A. 正常精子完整的顶体,顶体呈帽状覆盖在精子头部,荧光均匀。B1~B4.类别一,无完整的顶体质膜结构的非完整顶体精子:B1.轮廓边缘有绿色荧光;B2~B3. 严重紊乱的顶体,顶体整部分荧光少;B4. 无顶体,头部无荧光。C1~C3. 类别二,有顶体质膜结构的非完整顶体精子:C1. 顶体轻度紊乱,荧光分布不均;C2. 顶体紊乱;C3. 重度紊乱的顶体,绿色荧光亮度异常增强。D1~D2. 类别三,有较完整顶体膜的非完整顶体精子:荧光分布紊乱、不均匀 A. Intact acrosome of normal sperm, the acrosome is cap-shaped covering the sperm head, and the fluorescence is uniform. B1-B4. The first type, incomplete acrosome sperm with incomplete acrosome plasma membrane structure: B1. Green fluorescence at the edge of the contour; B2-B3. Severely disordered acrosome, the whole part of the acrosome has little fluorescence; B4. No acrosome and no fluorescence on the head. C1-C3. The second type, incomplete acrosome sperm has acrosomal plasma membrane structure: C1. Mild acrosome disorder, uneven fluorescence distribution; C2. Acrosome disorder; C3. Severely disordered acrosomes have abnormally enhanced green fluorescence. D1-D2. The third type, incomplete acrosome sperm with relatively complete acrosome membrane, but the fluorescence distribution is disordered and uneven 图 8 正常精子顶体和3种类型非完整顶体类型染色效果图 Fig. 8 Staining effect of normal sperm acrosomal and 3 categories of non-intact acrosome
表 3 水牛附睾精子中的顶体染色 Table 3 Comparison of acrosomal staining in buffalo epididymal sperm  
3 讨论

精子在附睾的成熟过程一直是精子成熟领域的研究热点,本研究按照附睾的结构和功能分为头、体和尾3部分[13],对提取到的精子进行超微结构观察、荧光分子探针特异性标记分析,探究附睾三部位精子形态学特征以及之间的差异。

在附睾HE染色试验中,观察到附睾小管管腔在头部比较细小、在尾部较宽大;纤毛长度从附睾头部到尾部逐渐变短。这些现象显示水牛附睾结构与大象、骆驼、小鼠[13]、牦牛[32]等动物之间具有相似性。已知附睾对精子成熟过程具有重要的影响,但具体附睾每一部位中精子的变化仍需进一步研究。精子在形成的过程中由于核致密化和原生质滴脱落具有密度持续增大的特征[33],本研究采用Percoll梯度离心法分离得到附睾头、体和尾3部位的精子。通过CASA系统检测分离得到水牛附睾3部位精子的活力,结果显示,从头部到尾部精子活力逐渐增强,与相关文献结果一致[34],说明了Percoll梯度离心可适用于附睾精子的分离。

精子的外部形态和结构异常影响精液质量,是雄性动物不育的重要原因。精子异常又称为精子畸形,当精子畸形率过高,会影响精子的受精能力,并且容易造成流产[29]。有研究表明,精子尾巴的形成是一个独特的过程,轴丝附着的动力蛋白和纤维鞘(FS)、线粒体鞘(MS)在精子尾部动力提供能量方面起着重要作用[35],外周致密纤维(ODF)起到支撑作用[36-38]。线粒体鞘(MS)在精子变形后期形成并附着在精子尾前部分,其功能和细胞中的功能大体相似,与ODF链接传导是保证精子正常能量传递的前提,一些相关蛋白起到联系及稳定MS和ODF的作用[39-41],并且发现线粒体鞘对冷打击和冷冻保存引起的温度变化特别敏感[42]。本研究通过透射电镜,分别对精子头部、颈部、体部、尾部精子超微结构进行观察总结,发现附睾3部位精子均存在正常完整形态的精子和不同畸形状态的精子,说明精子结构异常可能以复合型形式出现,与附睾部位没有明确相关性。此外,精子头部未观察到染色质囊泡化、空心化现象,多发生顶体脱落和损失、顶体外膜膨胀、精子质膜分离以及破裂等,与相关报导中精子顶体异常伴随着发生染色质异常[43-45]情况不符合。

本研究进一步通过流式细胞仪及顶体染色分析附睾3部位精子顶体荧光强度及顶体完整性差异。流式分析结果显示,附睾3部位顶体荧光强度无显著差异;进一步通过顶体染色观察附睾3部位精子顶体完整性,发现附睾头部和体部精子顶体不完整集中在一类和二类非完整类型当中,附睾尾部精子顶体完整率最高,表明精子逐渐成熟的过程中,精子顶体完整率随之升高。结合附睾体部形态较长且细的特征,推测精子从附睾头部到尾部的过程中,可能受到附睾体部影响,进而顶体完整率提高。此外,有研究表明,附睾中存在巨噬细胞等免疫相关的细胞[46-48]具有吞噬功能,其是否能消除顶体不完整精子也需要进一步的研究。

另外,通过流式分析从附睾头部到尾部中精子头部质膜完整率及线粒体膜电位变化,结果显示,从附睾头部到尾部,精子头部质膜完整率逐渐升高,线粒体高膜电位比率增加。已知,精子具有线粒体高膜电位,是线粒体功能完整的特征之一,是具有受精能力的前提。结合CASA分析精子活力结果,本试验进一步验证了从附睾头部到尾部,尾部精子活力逐渐增强。极少有报道精子质膜完整与精子成熟和活力具有相关性,本试验结果表明,精子头部质膜完整可能与精子成熟及活力具有一定的相关性,但仍需要进一步的验证。

4 结论

本研究主要观察分析水牛附睾头、体和尾3部位精子的超微结构、顶体完整性、头部质膜完整率及线粒体鞘膜电位功能等方面的差异,首次阐述了水牛附睾精子超微形态结构特征,发现水牛附睾头、体和尾3部位都存在完整的正常精子和不同类型畸形的精子。研究发现水牛精子在附睾成熟过程中活力、质膜完整率、顶体完整率和高线粒体鞘膜电位比率逐渐升高,这说明精子成熟可能与精子顶体完整性、头部质膜完整率及线粒体膜电位有关。这项研究为探索水牛精子在附睾成熟过程的生殖机理提供了可靠的理论依据。

参考文献
[1]
HERMO L, ROBAIRE B. Epididymal cell types and their functions[M]//ROBAIRE B, HINTON B T. The Epididymis: From Molecules to Clinical Practice. Boston, MA: Springer, 2002.
[2]
DACHEUX J L, DACHEUX F. New insights into epididymal function in relation to sperm maturation[J]. Reproduction, 2013, 147(2): R27-R42.
[3]
GERVASI M G, VISCONTI P E. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation[J]. Andrology, 2017, 5(2): 204-218. DOI:10.1111/andr.12320
[4]
NEJABATI H R, SHAHNAZI V, FARIDVAND Y, et al. Epididymosomes: the black box of Darwin's pangenesis?[J]. Mol Hum Reprod, 2021, 27(2): gaaa079. DOI:10.1093/molehr/gaaa079
[5]
LEIR S H, YIN S Y, KERSCHNER J L, et al. An atlas of human proximal epididymis reveals cell-specific functions and distinct roles for CFTR[J]. Life Sci Alliance, 2020, 3(11): e202000744. DOI:10.26508/lsa.202000744
[6]
DA COSTA R, REDMANN K, SCHLATT S. Simultaneous detection of sperm membrane integrity and DNA fragmentation by flow cytometry: A novel and rapid tool for sperm analysis[J]. Andrology, 2021, 9(4): 1254-1263. DOI:10.1111/andr.13017
[7]
PLEUGER C, LEHTI M S, DUNLEAVY J E M, et al. Haploid male germ cells-the Grand Central Station of protein transport[J]. Human Reprod Update, 2020, 26(4): 474-500. DOI:10.1093/humupd/dmaa004
[8]
WU E H, DE CICCO F L. Anatomy, abdomen and pelvis, male genitourinary tract[M]. Treasure Island (FL): Stat Pearls Publishing, 2021.
[9]
CORNWALL G A. New insights into epididymal biology and function[J]. Hum Reprod Update, 2009, 15(2): 213-227.
[10]
SHENG Z Y, GAO N, FAN D Y, et al. Zika virus disrupts the barrier structure and Absorption/Secretion functions of the epididymis in mice[J]. PLoS Negl Trop Dis, 2021, 15(3): e0009211. DOI:10.1371/journal.pntd.0009211
[11]
DONG D Q, YANG J M, CHEN Y N, et al. Palmitoylated GLB1L4 transfers via exosomes to maintain sperm function in rat epididymis[J]. Reproduction, 2021, 161(2): 159-172. DOI:10.1530/REP-20-0423
[12]
DACHEUX J L, BELGHAZI M, LANSON Y, et al. Human epididymal secretome and proteome[J]. Mol Cell Endocrinol, 2006, 250(1-2): 36-42. DOI:10.1016/j.mce.2005.12.022
[13]
TINGARI M D. The fine structure of the epithelial lining of the epididymis of the camel (Camelus dromedarius) with special reference to regional differences[J]. J Anat, 1989, 165: 201-214.
[14]
ZHOU W, DE IULIIS G N, DUN M D, et al. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage[J]. Front Endocrinol (Lausanne), 2018, 9: 59. DOI:10.3389/fendo.2018.00059
[15]
ZHANG P F, HUANG Y L, FU Q, et al. Integrated analysis of phosphoproteome and ubiquitylome in epididymal sperm of buffalo (Bubalus bubalis)[J]. Mol Reproduct Dev, 2021, 88(1): 15-33. DOI:10.1002/mrd.23432
[16]
HOU Z, FU Q, HUANG Y L, et al. Erratum to Comparative proteomic identification of capacitation and noncapacitation swamp buffalo spermatozoa[J]. Theriogenology, 2019, 128: R1. DOI:10.1016/j.theriogenology.2019.03.024
[17]
CASEY P J, HILLMAN R B, ROBERTSON K R, et al. Validation of an acrosomal stain for equine sperm that differentiates between living and dead sperm[J]. J Androl, 1993, 14(4): 289-297.
[18]
GRAHAM J K, KUNZE E, HAMMERSTEDT R H. Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry[J]. Biol Reprod, 1990, 43(1): 55-64. DOI:10.1095/biolreprod43.1.55
[19]
熊显荣, 张雁, 熊燕, 等. 利用流式细胞仪建立牦牛X、Y精子分选体系的研究[J]. 畜牧兽医学报, 2021, 52(2): 399-407.
XIONG X R, ZHANG Y, XIONG Y, et al. The establishment of X, Y sperm sorting system in yak by flow cytometer[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 399-407. (in Chinese)
[20]
AXNÉR E, LAGERSON E. Cryopreservation of dog semen in a Tris extender with 1% or 2% soya bean lecithin as a replacement of egg yolk[J]. Reprod Domest Anim, 2016, 51(2): 262-268. DOI:10.1111/rda.12675
[21]
CELEGHINI E C C, DE ARRUDA R P, DE ANDRADE A F, et al. Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes[J]. Reprod Domest Anim, 2007, 42(5): 479-488. DOI:10.1111/j.1439-0531.2006.00810.x
[22]
PEZO F, CHEUQUEMÁN C, SALINAS P, et al. Freezing dog semen using-80℃ ultra-freezer: Sperm function and in vivo fertility[J]. Theriogenology, 2017, 99: 36-40. DOI:10.1016/j.theriogenology.2017.05.007
[23]
PEÑA F J, BALL B A, SQUIRES E L. A new method for evaluating stallion sperm viability and mitochondrial membrane potential in fixed semen samples[J]. Cytom Part B Clin Cytomet, 2018, 94(2): 302-311. DOI:10.1002/cyto.b.21506
[24]
MAURO-LIZCANO M, ESTEBAN-MARTÍNEZ L, SECO E, et al. New method to assess mitophagy flux by flow cytometry[J]. Autophagy, 2015, 11(5): 833-843. DOI:10.1080/15548627.2015.1034403
[25]
BOGUENET M, BOUET P E, SPIERS A, et al. Mitochondria: their role in spermatozoa and in male infertility[J]. Hum Reprod Update, 2021, 27(4): 697-719. DOI:10.1093/humupd/dmab001
[26]
HISHINUMA M, SEKINE J. Separation of canine epididymal spermatozoa by Percoll gradient centrifugation[J]. Theriogenology, 2004, 61(2-3): 365-372. DOI:10.1016/S0093-691X(03)00219-X
[27]
ALMADALY E, EL-KON I, HELEIL B, et al. Methodological factors affecting the results of staining frozen-thawed fertile and subfertile Japanese Black bull spermatozoa for acrosomal status[J]. Anim Reprod Sci, 2012, 136(1-2): 23-32. DOI:10.1016/j.anireprosci.2012.10.016
[28]
ESTEVES S C, SHARMA R K, THOMAS A J Jr, et al. Effect of in vitro incubation on spontaneous acrosome reaction in fresh and cryopreserved human spermatozoa[J]. Int J Fertil Women's Med, 1998, 43(5): 235-242.
[29]
CHEMES H E, RAWE V Y. Sperm pathology: a step beyond descriptive morphology.Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men[J]. Hum Reprod Update, 2003, 9(5): 405-428. DOI:10.1093/humupd/dmg034
[30]
SULLIVAN R, MIEUSSET R. The human epididymis: its function in sperm maturation[J]. Human Reprod Update, 2016, 22(5): 574-587. DOI:10.1093/humupd/dmw015
[31]
HARAYAMA H, NISHIJIMA K, MURASE T, et al. Relationship of protein tyrosine phosphorylation state with tolerance to frozen storage and the potential to undergo cyclic AMP-dependent hyperactivation in the spermatozoa of Japanese Black bulls[J]. Mol Reprod Dev, 2010, 77(10): 910-921. DOI:10.1002/mrd.21233
[32]
林金杏. 野牦牛精子超微结构和精液蛋白组分的研究[D]. 兰州: 中国农业科学院, 2007.
LIN J X. Ultrastructure of spermatozoa and protein components of semen on wild yak[D]. Lanzhou: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)
[33]
OSHIO S. Apparent densities of spermatozoa of various mammalian species[J]. Gamete Res, 1988, 20(2): 159-164. DOI:10.1002/mrd.1120200206
[34]
张世生, 李跃民. 水牛附睾精子品质初步观察[J]. 草食家畜, 2004(1): 43-45.
ZHANG S S, LI Y M. Quality of epididymal spermatozoa in buffalo[J]. Grass-Feed Livestock, 2004(1): 43-45. DOI:10.3969/j.issn.1003-6377.2004.01.018 (in Chinese)
[35]
PARK Y J, PANG M G. Mitochondrial functionality in male fertility: from spermatogenesis to fertilization[J]. Antioxidants (Basel), 2021, 10(1): 98. DOI:10.3390/antiox10010098
[36]
EDDY E M, TOSHIMORI K, O'BRIEN D A. Fibrous sheath of mammalian spermatozoa[J]. Microsc Res Tech, 2003, 61(1): 103-115. DOI:10.1002/jemt.10320
[37]
GADÊLHA H, HERNÁNDEZ-HERRERA P, MONTOYA F, et al. Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering[J]. Sci Adv, 2020, 6(31): eaba5168. DOI:10.1126/sciadv.aba5168
[38]
ZHOU W, STANGER S J, ANDERSON A L, et al. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions[J]. BMC Biol, 2019, 17(1): 35. DOI:10.1186/s12915-019-0653-5
[39]
NAYERNIA K, ADHAM I M, BURKHARDT-GÖTTGES E, et al. Asthenozoospermia in mice with targeted deletion of the sperm mitochondrion-associated cysteine-rich protein (Smcp) gene[J]. Mol Cell Biol, 2002, 22(9): 3046-3052. DOI:10.1128/MCB.22.9.3046-3052.2002
[40]
GU N H, ZHAO W L, WANG G S, et al. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility[J]. Reprod Biol Endocrinol, 2019, 17(1): 66. DOI:10.1186/s12958-019-0510-y
[41]
CONTRERAS C T, HOYER-FENDER S. CCDC42 localizes to manchette, HTCA and tail and interacts with ODF1 and ODF2 in the formation of the male germ cell cytoskeleton[J]. Front Cell Dev Biol, 2019, 7: 151. DOI:10.3389/fcell.2019.00151
[42]
MI Y J, SHI Z, LI J. Spata19 is critical for sperm mitochondrial function and male fertility[J]. Mol Reprod Dev, 2015, 82(11): 907-913. DOI:10.1002/mrd.22536
[43]
CHEMES H E, RAWE V Y. Sperm pathology: a step beyond descriptive morphology.Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men[J]. Hum Reprod Update, 2003, 9(5): 405-428. DOI:10.1093/humupd/dmg034
[44]
ESCALIER D. Arrest of flagellum morphogenesis with fibrous sheath immaturity of human spermatozoa[J]. Andrologia, 2006, 38(2): 54-60. DOI:10.1111/j.1439-0272.2006.00711.x
[45]
WANG Z Y, SHI Y Q, MA S H, et al. Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional Gmap210 knockout mice[J]. Am J Physiol Cell Physiol, 2020, 318(1): C174-C190. DOI:10.1152/ajpcell.00517.2018
[46]
SONG W H, BALLARD J W O, YI Y J, et al. Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility[J]. BioMed Res Int, 2014, 2014: 981867.
[47]
SONG W H, YI Y J, SUTOVSKY M, et al. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization[J]. Proc Natl Acad Sci U S A, 2016, 113(36): E5261-E5270. DOI:10.1073/pnas.1605844113
[48]
TARIQUE I, SHI Y H, GANDAHI N S, et al. In vivo cellular evidence of autophagic associated spermiophagy within the principal cells during sperm storage in epididymis of the turtle[J]. Aging, 2020, 12(10): 8987-8999. DOI:10.18632/aging.103144

(编辑   范子娟)