畜牧兽医学报  2021, Vol. 52 Issue (11): 3317-3322. DOI: 10.11843/j.issn.0366-6964.2021.011.033    PDF    
一起境外输入性牛结节性皮肤病疫情
刘存1, 吕桂霞2, 徐鸿1, 党安坤1, 梁琳3, 陈静1, 孙圣福1, 兰邹然1     
1. 山东省动物疫病预防与控制中心, 济南 250100;
2. 东营市现代畜牧业发展服务中心, 东营 257091;
3. 中国农业科学院北京畜牧兽医研究所, 北京 100193
摘要:2020年11月,山东滨州市、东营市引进牛皮肤出现自限性皮肤结节、损伤以及结痂等症状,疑似发生牛结节性皮肤病(lumpy skin disease,LSD)。为确诊两地疫情及了解病原的遗传演化关系,利用荧光定量PCR方法进行诊断,以PCR方法扩增GCPR基因并进行核苷酸比对分析和遗传演化分析。检测结果显示,采集的样品中检测到牛结节性皮肤病病毒(lumpy skin disease virus,LSDV),两地疫情确诊为LSD疫情。GCPR基因核苷酸比对结果显示,China/SDBinzhou/2020、China/SDDongying/2020 GCPR基因存在12个核苷酸的插入,与疫苗毒株Neethling vaccine LW 1959株、Neethling-LSD vaccine-OBP株以及俄罗斯发现的疫苗样毒株Saratov株在GCPR基因的核苷酸插入序列相同,具备疫苗样毒株的特征。系统发育分析结果表明,China/SDBinzhou/2020、China/SDDongying/2020 GCPR基因与我国新疆发现的LSDV毒株GCPR基因处同一小分支中,亲缘关系较近。同时,我国LSDV毒株与Neethling vaccine LW 1959株、Neethling-LSD vaccine-OBP株以及Saratov株等共处于一大分支中。综上,确诊滨州市、东营市两地疫情为LSD疫情,这是山东省首次确诊输入性LSD疫情。
关键词牛结节性皮肤病    牛结节性皮肤病病毒    荧光定量PCR方法    外来动物疫病    
An Imported Case of Lumpy Skin Disease
LIU Cun1, LÜ Guixia2, XU Hong1, DANG Ankun1, LIANG Lin3, CHEN Jing1, SUN Shengfu1, LAN Zouran1     
1. Shandong Provincial Center for Animal Disease Control, Ji'nan 250109, China;
2. Dongying Modern Animal Husbandry Development Service Center, Dongying 257091, China;
3. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: In November 2020, the imported cattle in Binzhou and Dongying of Shandong Province showed circumscribed skin nodules, skin wounds and scab, which were suspected of lumpy skin disease (LSD). In order to confirm the cause of the disease in the two places and understand its genetic evolution relationship, fluorescent quantitative PCR(qPCR) was used for etiological diagnosis. GCPR gene was amplified by PCR and the alignment analysis and phylogenetic analysis were carried out. Lumpy skin disease virus (LSDV) was detected with qPCR in the collected samples. The disease occurred in the two cities were finally confirmed as LSD. The alignment analysis showed that there were 12 nucleotides insertion in the GCPR gene of China/SDBinzhou/2020 and China/SDDongying/2020, which was same as the insertion sequence in GCPR gene of vaccine strains, Neethling vaccine LW 1959 and Neethling-LSD vaccine-OBP, and vaccine-like strain, Saratov. Phylogenetic analysis showed that GCPR of China/SDBinzhou/2020 and China/SDDongying/2020 were closely related to LSDV strains found in Xinjiang. At the same time, LSDV strain found in China were allocated in a large branch. In conclusion, the disease occurred in Binzhou and Dongying were confirmed as LSD, which was the first confirmation of the imported case of LSD in Shandong province.
Key words: lumpy skin disease    lumpy skin disease    fluorescent quantitative PCR    exotic animal diseases    

牛结节性皮肤病(lumpy skin disease, LSD),又称牛疙瘩皮肤病,是OIE须通报动物疫病名录中一种牛的重要传染病[1-2]。该病以皮肤结节病变为典型特征,发病率为3%~85%,通常死亡率为1%~5%,是严重威胁养牛业健康可持续发展的疾病之一[2-4]。2015年以后,我国周边哈萨克斯坦、俄罗斯等国家LSD疫情频繁发生,这使LSD输入我国的风险增大[5]。2019年,我国首次确诊LSD疫情,在福建、江西、广东、安徽、浙江等省也相继发现了LSD疫情,但我国快速、及时采取综合防控措施,及时阻断了LSD继续蔓延[2, 6-7]

2020年11月初,山东滨州及东营报告可疑LSD疫情,后经山东省动物疫病预防与控制中心、中国动物卫生与流行病学中心进行病原学诊断,最终确诊该起疫情为LSD疫情。此次LSD疫情是山东省首次确诊境外输入LSD疫情。

1 材料与方法 1.1 主要试剂及仪器

MagNA Pure 96 DNA and Viral NA Small Volume Kit为Roche产品;LSDV荧光PCR检测试剂盒Biovet产品;核酸提取仪、荧光定量PCR仪均为Roche产品。

1.2 引物设计

参照LSDV GCPR基因序列(MN598006),以Primer Premier5.0软件设计引物,GCPR-F:5′-ATGAATTATACTCTTAGACAGTT-3′,GCPR-R:5′-AACAATGACATAGAGACACAATTTC-3′。

1.3 样品采集

滨州共采集71份样本,包括54份牛抗凝全血和17份皮痂组织。东营共采集273份样本,包括144份牛抗凝全血和129份皮痂。

1.4 DNA提取

皮痂样本使用组织匀浆机对进行匀浆。分别取200 μL皮痂组织匀浆液、牛抗凝全血,利用Roche核酸提取仪提取DNA。

1.5 荧光定量PCR方法检测

以“1.4”所提取DNA为模板,参照牛结节性皮肤病病毒(lumpy skin disease virus,LSDV)荧光定量PCR检测试剂盒说明书进行检测。

1.6 GCPR基因扩增

以“1.4”提取的DNA为模板,利用GCPR-F/R引物进行PCR扩增。将PCR扩增产物经琼脂糖凝胶电泳检测后,切胶回收目的DNA片段并送测序。

1.7 GCPR基因比对分析及遗传演化分析

将测序获得的GCPR基因序列与GenBank中下载的LSDV GCPR基因序列,利用MegAlign软件进行核苷酸序列比对分析,并利用MEGA 6.0软件以最大似然法构建系统发育树,对GCPR基因的遗传演化关系进行分析。

2 结果 2.1 发病牛临床症状

流行病学调查显示,滨州、东营两市购买的牛均为由智利引进的种用牛。该批牛2020年8月底由连云港入境,按要求隔离45 d后进行入境检疫,检疫合格牛取得合格证明。滨州市业主共购入奶牛、肉牛75头,于2020年10月21日运抵养殖场隔离场。在饲养约5 d后,隔离牛发病,出现精神不振、皮肤结节等临床症状,之后出现死亡病例1例。11月4日,80%的牛表现出皮肤圆形结节、破伤以及皮痂(图 1),符合皮肤性结节病的临床症状,初步判定为可疑牛皮肤性结节病。2020年10月24日,东营市业主由连云港购入273头,运输前即发现约40头牛出现皮肤破伤。11月4日,专家现场诊断发现该批牛整群精神萎靡、消瘦,皮肤有圆形结节、破伤以及伤口愈合形成的结痂等临床症状(图 1),无死亡病例。滨州市及东营市业主购入牛运抵隔离场后未与其他牛群混养。

黄色箭头. 局限性皮肤结节;红色箭头. 皮肤破伤;蓝色箭头. 伤口愈合后形成的结痂 Yellow arrow. Circumscribed skin nodules; Red arrow. Skin wounds formed by the shedding of nodules; Blue arrow. Scab formed after wounds healing 图 1 发病皮肤损伤 Fig. 1 Skin lesions of the sick cattles
2.2 实验室诊断

检测结果显示,滨州采集的样品中,15份全血及17份组织样品呈LSDV阳性,共确诊25头牛。滨州采集的样品中,3份全血及128份组织样品呈LSDV阳性。

2.3 GCPR扩增

利用PCR方法成功扩增出约1 045 bp的DNA片段,符合预期大小(图 2)。测序结果显示,所获序列为GCPR基因序列并暂标记为CH/SDBinzhou/2020、CH/SDDongying/2020。

M. DNA相对分子质量标准;1. CH/SDBinzhou/2020;2. CH/SDDongying/2020 M. DNA marker; 1. CH/SDBinzhou/2020;2. CH/SDDongying/2020 图 2 LSDV GCPR基因的PCR扩增 Fig. 2 The amplification of LSDV GCPR gene by PCR
2.4 GCPR基因比对分析及遗传演化分析

GCPR基因比对分析结果显示,CH/SDBinzhou/2020和CH/SDDongying/2020GCPR基因与2019年我国新疆地区发现的LSDV GCPR基因相似性最高。同时,发现CH/SDBinzhou/2020和CH/SDDongying/2020 GCPR基因存在12个核苷酸的插入(图 3),这一插入序列与疫苗毒株Neethling vaccine LW 1959株、Neethling-LSD vaccine-OBP株以及俄罗斯发现的疫苗样毒株Saratov株在GCPR基因的核苷酸插入序列相同,这表明CH/SDBinzhou/2020株和CH/SDDongying/2020株GCPR基因具备疫苗样毒株的特征。

图 3 LSDV GCPR基因核苷酸序列比对分析 Fig. 3 Alignment analysis based on the nucleotide sequence of GCPR gene

系统发育分析结果显示,CH/SDBinzhou/2020、CH/SDDongying/2020 GCPR基因与我国新疆发现的LSDV毒株处同一小分支中,亲缘关系较近。同时,我国LSDV毒株与Neethling vaccine LW 1959株、Neethling-LSD vaccine-OBP株以及Saratov株等共处于同一大分支中(图 4)。

三角形标记为本研究中涉及的LSDV毒株 Triangle labeled strains were involved in this study 图 4 基于GCPR基因核苷酸序列构建的系统发育树 Fig. 4 Phylogenetic tree constructed based on nucleotide sequence of GCPR gene
3 讨论

牛结节性皮肤病(LSD)是牛的一种重要的经济性传染病,具有潜在的快速传播特性,可造成重大经济损失[8]。2019年,欧亚大陆LSD疫情频发发生,疫情形势严峻,俄罗斯发生26起、土耳其131起,以色列、叙利亚等国也均有LSD疫情报道[9],而中国、印度、孟加拉国也首次发现了LSD疫情[10-12]。我国所面临的LSD疫情形势更加复杂,并且防控LSD疫情输入压力增大。

2020年11月初,山东滨州及东营报告可疑LSD疫情,经荧光定量PCR检测最终此次疫情确诊为LSD疫情。发病牛呈现典型的临床症状,全身皮肤出现圆形结节、结节脱落后形成破伤及结痂等。山东本次确诊的LSD疫情与种牛引进有关,是输入型LSD疫情。该起LSD疫情已被快速处置,消除传染源,对环境进行全面消毒,降低了此次疫情继续传播的风险。

LSD是由痘病毒科(Poxviridae)山羊痘病毒属(Capripoxvirus)LSDV引起[13]。LSDV基因组为双股线性DNA,变异率低,具有遗传稳定性,而这一特性也被应用于弱毒活疫苗与也毒株的鉴定[14-17]。2017年,俄罗斯发现流行的LSDV野毒株中存在疫苗样毒株的特征,如GCPR基因中12个核苷酸序列的插入、EEV糖蛋白基因中27个核苷酸序列的缺失[18]。将这种现象归结于疫苗毒株和野毒株共同存在于易感动物体内时发生的重组事件[19-20]。作者成功扩增出此次疫情LSDV GCPR基因,发现其中存在12个核苷酸序列的插入,具有疫苗毒株GCPR基因的特征。此外,研究也显示,此类重组变异LSDV毒株在体内和体外相较于经典LSDV毒株引发更严重的病情。此次疫情中LSDV GCPR基因的疫苗毒株样特征,提示山东输入LSD疫情可能与LSDV重组变异毒株有关,但需要测定病毒全基因组序列进行研究。

迄今为止,我国多个省份报导了LSD疫情,主要与边境地区带毒嗜血虫媒传播、境外输入带毒种畜、由虫媒或进出人员、交通工具等引入病毒[2, 6-7]。当前,我国LSD疫情呈多点散发,而我国周边LSD疫情形势严峻,LSD输入我国风险持续增加。依托《牛结节性皮肤病防治技术规范》,落实“早发现、早报告、早确诊、早处置”动物疫情防控工作,防止LSD疫情输入我国,阻止LSD疫情的蔓延与扩散,为我国养牛业高效绿色健康可持续发展保驾护航。

4 结论

确诊滨州市、东营市两地疫情为牛结节性皮肤病疫情,这是山东省首次确诊输入性牛结节性皮肤病疫情。对引起疫情的牛结节性皮肤病病毒(LSDV)毒株的GCPR基因开展了比对分析和遗传演化分析,发现其具有与疫苗毒株及疫苗样毒株相同的插入序列,具备疫苗样毒株的特征,同时发现引起疫情的LSDV的GCPR基因与疫苗毒株Neethling vaccine LW 1959株、Neethling-LSD vaccine-OBP株以及俄罗斯发现的疫苗样毒株Saratov株位于同一进化分支中。

参考文献
[1]
OIE. Technical disease card: lumpy skin disease[EB/OL]. Paris: OIE, 2014. https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/LUMPY_SKIN_DISEASE_FINAL.
[2]
刘平, 李金明, 陈荣贵, 等. 我国首例牛结节性皮肤病的紧急流行病学调查[J]. 中国动物检疫, 2020, 37(1): 1-5.
LIU P, LI J M, CHEN R G, et al. The first outbreak investigation of lumpy skin disease in China[J]. China Animal Health Inspection, 2020, 37(1): 1-5. (in Chinese)
[3]
TUPPURAINEN E S M, OURA C A L. Review: lumpy skin disease: an emerging threat to Europe, the Middle East and Asia[J]. Transbound Emerg Dis, 2012, 59(1): 40-48. DOI:10.1111/j.1865-1682.2011.01242.x
[4]
MÖLLER J, MORITZ T, SCHLOTTAU K, et al. Experimental lumpy skin disease virus infection of cattle: comparison of a field strain and a vaccine strain[J]. Arch Virol, 2019, 164(12): 2931-2941. DOI:10.1007/s00705-019-04411-w
[5]
KONONOV A, PRUTNIKOV P, SHUMILOVA I, et al. Determination of lumpy skin disease virus in bovine meat and offal products following experimental infection[J]. Transbound Emerg Dis, 2019, 66(3): 1332-1340. DOI:10.1111/tbed.13158
[6]
中华人民共和国农业农村部. 关于浙江发生牛结节性皮肤病疫情有关情况的通报[EB/OL]. [2020-07-15]. http://www.xmsyj.moa.gov.cn/yqfb/202007/t20200715_6348686.htm.
Ministry of Agriculture and Rural Areas of the People's Republic of China. Notification on the relevant information of lumpy skin disease occurred in Zhejiang Province[EB/OL]. [2020-07-15]. http://www.xmsyj.moa.gov.cn/yqfb/202007/t20200715_6348686.htm.
[7]
洪功飞, 何长生, 刘峻, 等. 安徽省一起牛结节性皮肤病的暴发调查[J]. 中国动物检疫, 2020, 37(10): 7-10.
HONG G F, HE C S, LIU J, et al. An outbreak investigation on lumpy skin disease in Anhui Province[J]. China Animal Health Inspection, 2020, 37(10): 7-10. (in Chinese)
[8]
TUPPURAINEN E S M, VENTER E H, SHISLER J L, et al. Review: Capripoxvirus diseases: current status and opportunities for control[J]. Transbound Emerg Dis, 2017, 64(3): 729-745. DOI:10.1111/tbed.12444
[9]
European Food Safety Authority (EFSA), CALISTRI P, DE CLERCQ K, et al. Lumpy skin disease epidemiological report IV: data collection and analysis[J]. EFSA J, 2020, 18(2): e06010.
[10]
LU G, XIE J X, LUO J L, et al. Lumpy skin disease outbreaks in China, since 3 August 2019[J]. Transbound Emerg Dis, 2020, 68(2): 216-219.
[11]
KUMAR N, CHANDER Y, KUMAR R, et al. Isolation and characterization of lumpy skin disease virus from cattle in India[J]. PLoS One, 2021, 16(1): e0241022. DOI:10.1371/journal.pone.0241022
[12]
BADHY S C, CHOWDHURY M G A, SETTYPALLI T B K, et al. Molecular characterization of lumpy skin disease virus (LSDV) emerged in Bangladesh reveals unique genetic features compared to contemporary field strains[J]. BMC Vet Res, 2021, 17(1): 61. DOI:10.1186/s12917-021-02751-x
[13]
OCHWO S, VANDERWAAL K, MUNSEY A, et al. Seroprevalence and risk factors for lumpy skin disease virus seropositivity in cattle in Uganda[J]. BMC Vet Res, 2019, 15(1): 236. DOI:10.1186/s12917-019-1983-9
[14]
AGIANNIOTAKI E I, TASIOUDI K E, CHAINTOUTIS S C, et al. Lumpy skin disease outbreaks in Greece during 2015-16, implementation of emergency immunization and genetic differentiation between field isolates and vaccine virus strains[J]. Vet Microbiol, 2017, 201: 78-84. DOI:10.1016/j.vetmic.2016.12.037
[15]
MENASHEROW S, RUBINSTEIN-GIUNI M, KOVTUNENKO A, et al. Development of an assay to differentiate between virulent and vaccine strains of lumpy skin disease virus (LSDV)[J]. J Virol Methods, 2014, 199: 95-101. DOI:10.1016/j.jviromet.2013.12.013
[16]
GELAYE E, BELAY A, AYELET G, et al. Capripox disease in Ethiopia: Genetic differences between field isolates and vaccine strain, and implications for vaccination failure[J]. Antivir Res, 2015, 119: 28-35. DOI:10.1016/j.antiviral.2015.04.008
[17]
AGIANNIOTAKI E I, CHAINTOUTIS S C, HAEGEMAN A, et al. Development and validation of a TaqMan probe-based real-time PCR method for the differentiation of wild type lumpy skin disease virus from vaccine virus strains[J]. J Virol Methods, 2017, 249: 48-57. DOI:10.1016/j.jviromet.2017.08.011
[18]
KONONOV A, BYADOVSKAYA O, KONONOVA S, et al. Detection of vaccine-like strains of lumpy skin disease virus in outbreaks in Russia in 2017[J]. Arch Virol, 2019, 164(6): 1575-1585. DOI:10.1007/s00705-019-04229-6
[19]
SPRYGIN A, PESTOVA Y, BJADOVSKAYA O, et al. Evidence of recombination of vaccine strains of lumpy skin disease virus with field strains, causing disease[J]. PLoS One, 2020, 15(5): e0232584. DOI:10.1371/journal.pone.0232584
[20]
SPRYGIN A, BABIN Y, PESTOVA Y, et al. Analysis and insights into recombination signals in lumpy skin disease virus recovered in the field[J]. PLoS One, 2018, 13(12): e0207480. DOI:10.1371/journal.pone.0207480

(编辑   白永平)