畜牧兽医学报  2021, Vol. 52 Issue (10): 2895-2904. DOI: 10.11843/j.issn.0366-6964.2021.010.020    PDF    
豪猪血蜱卵蛋白成分初步鉴定及其功能分类
刘金宝, 程天印     
湖南农业大学动物医学院, 长沙 410128
摘要:旨在探明豪猪血蜱卵原生质蛋白成分,为探索干扰蜱类胚胎发育和新型控蜱策略奠定基础。采用FASP法消化豪猪血蜱卵蛋白提取物,LC/MS/MS法对其进行分析、检测,搜索褐黄血蜱卵巢转录组文库、唾液腺转录组文库和中肠转录组文库,分别检出特异性肽段359、312、357条,鉴定多肽108、170、161条,终而鉴定高可信蛋白103种。豪猪血蜱蜱卵原生质中富含酶类、蛋白酶抑制剂、转运蛋白、细胞骨架蛋白、蛋白质合成与修饰、分泌蛋白以及未鉴定的蛋白共8类蛋白。
关键词    液相色谱-串联质谱    蛋白酶    转运蛋白    蛋白酶抑制剂    
Preliminary Identification and Functional Classification of Haemaphysalis hystricis Egg Protein Components
LIU Jinbao, CHENG Tianyin     
College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
Abstract: The identification of protein components of Haemaphysalis hystricis egg protoplasm illustrated the tick embryo protein profile and laid a foundation for the discovery of new anti-tick strategies. The egg protein extracts of Haemaphysalis hystricis was digested with trypsin according the FASP procedure and the LC/MS/MS method was employed to detect and identify peptides. The MS data were searched against the ovarian, salivary gland and midgut transcriptomic libraries of Haemaphysalis flava, and the 359, 312 and 357 specific peptides were detected, then the 108, 170 and 161 polypeptides were identified. Eventrually, the 103 proteins of them were considered as high confidence proteins (peptides ≥ 2). These high confidence proteins were involved in eight groups including enzymes, protease inhibitors, transporters, cytoskeleton proteins, protein synthesis modifications, secreted proteins and uncharacterized proteins.
Key words: egg    LC-MS/MS    protease    transporter    protease inhibitor    

蜱是一类以吸血为生的体外寄生虫,其生活史包括卵、幼蜱、若蜱和成蜱4个阶段。在卵期,受精卵经过卵裂、囊胚、原肠胚、分节等过程发育成幼蜱,并破壳而出,其间发生的反应众多而有序、参与的物质复杂而有定,尚能探明对了解蜱类胚胎发育规律,创新控蜱策略具有重要意义。

人们很早就已开始了蜱卵原生质组成和胚胎发育过程的研究。1943年,Wigglesworth[1]首先关注蜱卵颜色与血红素的关系。随后,Bremner[2]证实了蜱卵中的色素取决于球蛋白与血红素结合而成的复合物。迄今为止,人们已经从安氏矩头蜱[3]、毛白钝缘蜱[4]、变异矩头蜱[5-6]、肩突硬蜱[7]、微小扇头蜱[8]、长角血蜱[9]卵中分离鉴定了多种卵黄蛋白,以及催化卵黄蛋白和血红蛋白分解的微小扇头蜱的heme-binding aspartic proteinase[10]Boophilus Yolk pro-Cathepsin[11]、vitellin-degrading cysteine endopeptidase[12]、毛白钝缘蜱的cathepsin L-like proteinase[13]。最近,人们又发现了参与糖类代谢的GSK-3[14]、能清除自由基的GST[15]、具抑制作用的serine proteinase inhibitor[16]、kallikrein inhibitor[17]和抑制细菌生长发育的抗菌肽[18]。人们对蜱卵蛋白成分及其相互关系知之尚少,本研究拟以LC/MS/MS法对豪猪血蜱卵原生质中蛋白质成分进行鉴定。

豪猪血蜱广泛分布于温带和亚热带地区,我国鲁、苏、闽、台、粤、琼、湘、鄂、滇、甘等地均有发现[19],常寄生于野猪、豪猪、猪獾,偶尔也见于狗、水牛、小麂和人类[20]。该蜱携带锥虫[21]、埃立克体[22]、立克次氏体[23]、包柔氏螺旋体、吉氏巴贝斯虫[24]等多种病原微生物,并有人被叮咬后发生无形体病[25]、日本斑点热[26]的报道,具有一定的公共卫生意义。

1 材料与方法 1.1 材料

1.1.1 试剂与仪器   氯仿、甲醛、乙腈、甲酸系国药集团化学试剂有限公司产品;胰蛋白酶购于Promega(北京)生物技术有限公司;Q Exactive质谱仪为Thermo Fisher生产;液相色谱仪购于Agilent Technologies。

1.1.2 豪猪血蜱   豪猪血蜱采自湖南省湘西猪獾体表,由湖南农业大学动物医学院程天印教授鉴定。

1.2 方法

1.2.1 蜱卵的收集与处理   将饱血雌蜱置于昆虫培养箱,于28 ℃,85%RH下培养。每日定时收集蜱卵。按徐律和程天印[27]的方法去除卵表腊质。

1.2.2 蛋白的提取与消化   取去腊质卵50 mg,加入0.1 mol·L-1 Tris-HCl溶液0.4 mL,研碎;转移至洁净离心管,加入20%SDS和1M DTT各25 μL,混匀,95 ℃孵育3 min;25 ℃下,16 000 g离心10 min,取上清;冻干,备用。

1.2.3 样品处理   取卵蛋白干粉50 g,加入100 mmol·L-1 DTT 50 μL,沸水浴5 min,冷却至室温;加入8 mol·L-1尿素缓冲液200 μL,混匀,转入10 ku超滤离心管,14 000 g离心15 min。加入100的IAA液,混匀,14 000 g离心10 min。尿素缓冲液洗涤2次。加胰蛋白酶消化液40 μL至滤膜上,600 r·min-1振荡1 min,37 ℃ 16~18 h。14 000 g离心滤液10 min,移至C18小柱,过柱脱盐后冷冻干燥。

1.2.4 质谱分析   以0.1%三氟乙酸溶解上述肽段样粉,自动进样器进样,经捕集柱、色谱柱分离后,质谱仪检测离子。检测方式:正离子;采集方法:每次采集10个碎片图谱。

1.2.5 数据分析   将质谱数据和自建的褐黄血蜱卵巢转录组翻译文库(PRJNA600997)、唾液腺转录组翻译文库(PRJNA280697)和中肠转录组翻译文库(PRJNA286260)肽序列导入Mascot2.2,设定搜索参数,搜索特异性肽段及其匹配多肽。

1.2.6 蛋白序列分析   上传各高可信蛋白序列至Uniprot数据库,进行搜库、注释。

2 结果 2.1 卵总蛋白检测

采用BCA法测定卵蛋白粗提液浓度,提取液蛋白含量5.26 μg·μL-1。卵蛋白粗提液的SDS-PAGE结果表明,豪猪血蜱卵原生质所含蛋白多在15~170 ku,且分布不均,相对质量近55、65、80、120和170 ku者丰度尤高。

2.2 卵蛋白鉴定

以卵蛋白酶解物质谱检测数据搜索卵巢、唾液腺、中肠转录组文库,分别检出特异性肽段359、312、357条,鉴定蛋白108、170、161种,其中高可信的(unique peptides≥2)依次为60、35、45种(图 2,有部分重叠)。基于序列比对,合并由同一mRNA编码的,最终鉴定高可信蛋白103种,但其中36种尚无相关研究资料(表 1)。

M. 蛋白质相对分子质量标准;1.样品 M. Protein marker; 1. Sample 图 1 豪猪血蜱卵总蛋白提取液SDS-PAGE图 Fig. 1 Proteins extracted from the eggs of Haemaphysalis hystricis
OV、SG、MG分别是卵巢转录组文库、唾液腺转录组文库、中肠转录组文库鉴定到的蛋白 OV, SG and MG represent the proteins identified in ovarian transcriptome library, salivary gland transcriptome library and midgut transcriptome library respectively 图 2 卵巢、唾液腺和中肠转录组文库中鉴定到的高可信蛋白及其重叠情况 Fig. 2 Overlap of highly confidence proteins identified in the ovary, salivary glands, and midgut transcriptome libraries
表 1 豪猪血蜱卵蛋白功能分类 Table 1 Functional classification of Haemaphysalis hystricis egg proteins

基于既有文献,按活性或功能对本研究检出的、有文献参考的67种高可信蛋白进行分类,结果见表 1表 1列出的67种高可信蛋白分别属于酶类、蛋白酶抑制剂、转运蛋白、细胞骨架蛋白、热休克蛋白和免疫相关蛋白等6类,其中酶类最多(25种),其次是蛋白酶抑制剂(18种)和转运蛋白(11种)。

2.3 103种高可信蛋白生物信息学分析

借助Omics Bean对高可信蛋白进行GO分析,结果表明(图 3),本次鉴定的高可信蛋白多为细胞外蛋白,参与免疫调节,并且在酶活性调节方面发挥作用。

图 3 豪猪血蜱卵103种高可信蛋白GO分析结果 Fig. 3 GO analysis of 103 highly confident proteins in Haemaphysalis hystricis eggs
3 讨论

由于目前尚无豪猪血蜱的基因或蛋白文库,故本研究便基于笔者构建的其近缘蜱种(褐黄血蜱)的卵巢、唾液腺和中肠转录组文库进行其卵蛋白成分鉴定。与笔者所做的褐黄血蜱卵蛋白鉴定结果一致,暗示这一做法可行、可靠。在分析过程中,发现有些蛋白可从不止一个文库搜出,为此,我们首先借助序列比对厘清它们的关系,然后进行取舍或拼接,如SG27993长149 aa,MG1301长373 aa,两者相同部分138 aa,对其进行拼接,然后搜库、注释;MG4254长316 aa、OVN53697长673 aa,MG4254包含于OVN53697,故舍弃MG4254,以卵巢序列OVN53697搜库、注释。

从本次鉴定的高可信蛋白看,无论是酶,还是酶抑制剂和转运蛋白都存在同一家族多个成员并存的情况,笔者称之为家族性。在卵原生质蛋白中比较突出的是Cathepsin、Aspartic protease、Serpins 9、Kunitz、Vitellogenin、Microtubule associated complex、HSP70等。同家族蛋白在胚胎发育过程中如何协调、互补地发挥作用尚不得而知。比对显示,同家族蛋白间的一级结构极其相似,如OVN53099和MG241(Cathepsin L-like cysteine protein)对应部分的相似性达93.16%。

组织蛋白酶类是酶类最多的,且主要是天冬氨酸蛋白酶和半胱氨酸蛋白酶两类,其中前者14种,后者7种。业已证明,Cathepsin D、Heme-binding aspartic peptidase、Cathepsin L-like cysteine protein以及Vitellin-degrading cysteine endopeptidase均可催化卵黄蛋白和血红蛋白水解[12-13, 28-30], 但活性有所差异,如微小扇头蜱的Cathepsin D对卵黄蛋白的活性较高[28],Vitellin-degrading cysteine endopeptidase对血红蛋白的活性更高[12]

在蜱卵原生质中还存在大量的蛋白酶抑制剂,其中Serpin类数量最多,其次是Cystatin。人们已从长角血蜱、篦子硬蜱等蜱鉴定到数种Serpin[31-35],大多数serpin既能抑制丝氨酸蛋白酶,进而影响到血红蛋白的降解[36],又可抑制糜蛋白酶、弹性蛋白酶和木瓜蛋白酶样半胱氨酸蛋白酶等,起到调节宿主免疫系统的作用[37-38]。Waxman等[39]证实,蜱类的Serpin具有抗凝活性,但机制不尽相同,如毛白钝缘蜱的serpin抑制Xa因子,长角血蜱的serpin 2抑制凝血酶活性[40]。Cystatin是半胱氨酸蛋白酶抑制剂,可抑制Cathepsin L-like cysteine protein[41]以及Vitellin-degrading cysteine endopeptidase[42]等酶的活性,暗示蜱类胚胎发育过程中发生的酶促反应也受控制、调节。

Vg是豪猪血蜱卵中的高丰度成分,种类也较多,如Vitellogenin-1、Vitellogenin-2、Vitellogenin-B以及Vitellogenin。Vg主要由饱血雌蜱的中肠和脂肪体合成,通过淋巴转移至卵巢,然后转化为Vn,作为胚胎发育必须的营养贮存于卵原生质[43]。另外,本次还鉴定了6个脂蛋白和1个脂肪酸结合蛋白。Kluck等[44]证实,微小扇头蜱血淋巴中的一种脂蛋白RmLCP可结合大多数脂肪酸,发挥运输脂类的作用。Campos等[45]认为,脂类和碳水化合物是微小牛蜱胚胎发育的主要能源物质。此次鉴定到的葡萄糖脱氢酶、甘油醛-3-磷酸脱氢酶、转酮醇酶和ATP合酶等4种糖代谢相关酶的存在说明胚胎发育过程中既有糖酵解反应[46],也有戊糖磷酸途径[47]

蜱卵原生质蛋白具有开发应用价值。Maria以微小扇头蜱卵源Cathepsin免疫牛,激发了显著的免疫应答[48]。以微小扇头蜱卵源Vitellin-degrading enzyme免疫牛使其获得了保护性[49]

4 结论

经FASP法消化豪猪血蜱卵蛋白提取物,LC/MS/MS法检测结果显示:搜索褐黄血蜱卵巢转录组文库、唾液腺转录组文库和中肠转录组文库,分别检出特异性肽段359、312、357条,鉴定多肽108、170、161条,高可信蛋白103种。豪猪血蜱蜱卵原生质中富含酶类、蛋白酶抑制剂、转运蛋白、细胞骨架蛋白、蛋白质合成与修饰、分泌蛋白以及未鉴定的蛋白等。

参考文献
[1]
WIGGLESWORTH V B. The fate of haemoglobin in Rhodnius prolixus (Hemiptera) and other blood-sucking arthropods[J]. Proc Roy Soc B-Biol Sci, 1943, 131: 313-339.
[2]
BREMNER K C. Studies on "Haemixodovin", the pigment in the eggs of the cattle tick Boophilus microplus (Acarina: Ixodidae)[J]. Aust J Biol Sci, 1959, 12(3): 263-273. DOI:10.1071/BI9590263
[3]
BOCTOR F N, KAMEL M Y. Purification and characterization of two lipovitellins from eggs of the tick, Dermacentor andersoni[J]. Insect Biochem, 1976, 6(3): 233-240. DOI:10.1016/0020-1790(76)90088-3
[4]
CHINZEI Y, CHINO H, TAKAHASHI K. Purification and properties of vitellogenin and vitellin from a tick, Ornithodoros moubata[J]. J Comp Physiol, 1983, 152(1): 13-21. DOI:10.1007/BF00689722
[5]
ROSELL R, COONS L B. Purification and partial characterization of vitellin from the eggs of the hard tick, Dermacentor variabilis[J]. Insect Biochem, 1991, 21(8): 871-885. DOI:10.1016/0020-1790(91)90094-U
[6]
THOMPSON D M, KHALIL S M S, JEFFERS L A, et al. Sequence and the developmental and tissue-specific regulation of the first complete vitellogenin messenger RNA from ticks responsible for heme sequestration[J]. Insect Biochem Mol Biol, 2007, 37(4): 363-374. DOI:10.1016/j.ibmb.2007.01.004
[7]
JAMES A M, OLIVER JR J H. Purification and partial characterization of vitellin from the black-legged tick, Ixodes scapularis[J]. Insect Biochem Mol Biol, 1997, 27(7): 639-649. DOI:10.1016/S0965-1748(97)00038-6
[8]
LOGULLO C, MORAES J, DANSA-PETRETSKI M, et al. Binding and storage of heme by vitellin from the cattle tick, Boophilus microplus[J]. Insect Biochem Mol Biol, 2002, 32(12): 1805-1811. DOI:10.1016/S0965-1748(02)00162-5
[9]
YANG X L, YU Z J, HE Y J, et al. Purification of vitellin and dynamics of vitellogenesis in the parthenogenetic tick Haemaphysalis longicornis (Acari: Ixodidae)[J]. Exp Appl Acarol, 2015, 65(3): 377-388. DOI:10.1007/s10493-014-9866-z
[10]
SORGINE M H F, LOGULLO C, ZINGALI R B, et al. A heme-binding aspartic proteinase from the eggs of the hard tick Boophilus microplus[J]. J Biol Chem, 2000, 275(37): 28659-28665. DOI:10.1074/jbc.M005675200
[11]
LOGULLO C, DA SILVA VAZ I, SORGINE M H F, et al. Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus[J]. Parasitology, 1998, 116(6): 525-532. DOI:10.1017/S0031182098002698
[12]
SEIXAS A, DOS SANTOS P, VELLOSO F F, et al. A Boophilus microplus vitellin-degrading cysteine endopeptidase[J]. Parasitology, 2003, 126(Pt 2): 155-163.
[13]
FAGOTTO F. Yolk degradation in tick eggs: I. Occurrence of a cathepsin L-like acid proteinase in yolk spheres[J]. Arch Insect Biochem Physiol, 1990, 14(4): 217-235. DOI:10.1002/arch.940140403
[14]
LOGULLO C, WITOLA W H, ANDRADE C, et al. Expression and activity of glycogen synthase kinase during vitellogenesis and embryogenesis of Rhipicephalus (Boophilus) microplus[J]. Vet Parasitol, 2009, 161(3-4): 261-269. DOI:10.1016/j.vetpar.2009.01.029
[15]
FREITAS D R J, ROSA R M, MORAES J, et al. Relationship between glutathione S-transferase, catalase, oxygen consumption, lipid peroxidation and oxidative stress in eggs and larvae of Boophilus microplus (Acarina: Ixodidae)[J]. Comp Biochem Physiol A Mol Integr Physiol, 2007, 146(4): 688-694. DOI:10.1016/j.cbpa.2006.04.032
[16]
WILLADSEN P, MCKENNA R V. Trypsin-chymotrypsin inhibitors from the tick, Boophilus microplus[J]. Aust J Exp Biol Med Sci, 1983, 61(2): 231-238. DOI:10.1038/icb.1983.21
[17]
ABREU P A, SOARES T S, BUARQUE D S, et al. RmKK, a tissue kallikrein inhibitor from Rhipicephalus microplus eggs[J]. Biochem Biophys Res Commun, 2014, 449(1): 69-73. DOI:10.1016/j.bbrc.2014.04.154
[18]
ESTEVES E, FOGACA A C, MALDONADO R, et al. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: cellular localization and temporal expression of microplusin during oogenesis and embryogenesis[J]. Dev Comp Immunol, 2009, 33(8): 913-919. DOI:10.1016/j.dci.2009.02.009
[19]
陈泽, 杨晓军, 杨晓红, 等. 中国蜱类地理分布及区系分析[J]. 四川动物, 2008, 27(5): 820-823.
CHEN Z, YANG X J, YANG X H, et al. Geographical distribution and fauna of Chinese ticks[J]. Sichuan Journal of Zoology, 2008, 27(5): 820-823. (in Chinese)
[20]
DURDEN L A, MERKER S, BEATI L. The tick fauna of Sulawesi, Indonesia (Acari: Ixodoidea: Argasidae and Ixodidae)[J]. Exp Appl Acarol, 2008, 45(1-2): 85-110. DOI:10.1007/s10493-008-9144-z
[21]
THEKISOE O M M, HONDA T, FUJITA H, et al. A trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan[J]. Parasitology, 2007, 134(7): 967-974. DOI:10.1017/S0031182007002375
[22]
LI J J, LIU X X, MU J Q, et al. Emergence of a Novel Ehrlichia minasensis strain, harboring the major immunogenic glycoprotein trp36 with unique tandem repeat and C-terminal region sequences, in Haemaphysalis hystricis ticks removed from free-ranging sheep in Hainan Province, China[J]. Microorganisms, 2019, 7(9): 369. DOI:10.3390/microorganisms7090369
[23]
MAHARA F. Japanese spotted fever: report of 31 cases and review of the literature[J]. Emerg Infect Dis, 1997, 3(2): 105-111. DOI:10.3201/eid0302.970203
[24]
JONGEJAN F, SU B L, YANG H J, et al. Molecular evidence for the transovarial passage of Babesia gibsoni in Haemaphysalis hystricis (Acari: Ixodidae) ticks from Taiwan: a novel vector for canine babesiosis[J]. Parasite Vector, 2018, 11(1): 134. DOI:10.1186/s13071-018-2722-y
[25]
YU Z J, WANG H, WANG T H, et al. Tick-borne pathogens and the vector potential of ticks in China[J]. Parasite Vector, 2015, 8: 24. DOI:10.1186/s13071-014-0628-x
[26]
SEKI M, IKARI N, YAMAMOTO S, et al. Severe Japanese spotted fever successfully treated with fluoroquinolone[J]. Intern Med, 2006, 45(22): 1323-1326. DOI:10.2169/internalmedicine.45.1831
[27]
徐律, 程天印. 褐黄血蜱卵蛋白质组分析[J]. 畜牧兽医学报, 2019, 50(3): 627-636.
XU L, CHENG T Y. Proteomics Analysis of Haemaphysalis flava eggs[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(3): 627-636. (in Chinese)
[28]
ABREU L A, VALLE D, MANSO P P A, et al. Proteolytic activity of Boophilus microplus Yolk pro-Cathepsin D (BYC) is coincident with cortical acidification during embryogenesis[J]. Insect Biochem Mol Biol, 2004, 34(5): 443-449. DOI:10.1016/j.ibmb.2004.01.006
[29]
ZHANG T T, QIU Z X, LI Y, et al. The mRNA expression and enzymatic activity of three enzymes during embryonic development of the hard tick Haemaphysalis longicornis[J]. Parasite Vector, 2019, 12(1): 96. DOI:10.1186/s13071-019-3360-8
[30]
POHL P C, SORGINE M H, LEAL A T, et al. An extraovarian aspartic protease accumulated in tick oocytes with vitellin-degradation activity[J]. Compar Biochem Phys B-Biochem Mol Biol, 2008, 151(4): 392-399. DOI:10.1016/j.cbpb.2008.08.008
[31]
SUGINO M, IMAMURA S, MULENGA A, et al. A serine proteinase inhibitor (serpin) from ixodid tick Haemaphysalis longicornis; cloning and preliminary assessment of its suitability as a candidate for a tick vaccine[J]. Vaccine, 2003, 21(21-22): 2844-2851. DOI:10.1016/S0264-410X(03)00167-1
[32]
MULENGA A, TSUDA A, ONUMA M, et al. Four serine proteinase inhibitors (serpin) from the brown ear tick, Rhiphicephalus appendiculatus; cDNA cloning and preliminary characterization[J]. Insect Biochem Mol Biol, 2003, 33(2): 267-276. DOI:10.1016/S0965-1748(02)00240-0
[33]
PREVOT P P, BESCHIN A, LINS L, et al. Exosites mediate the anti-inflammatory effects of a multifunctional serpin from the saliva of the tick Ixodes ricinus[J]. FEBS J, 2009, 276(12): 3235-3246. DOI:10.1111/j.1742-4658.2009.07038.x
[34]
RODRIGUEZ-Valle M, VANCE M, MOOLHUIJZEN P M, et al. Differential recognition by tick-resistant cattle of the recombinantly expressed Rhipicephalus microplus serine protease inhibitor-3 (RMS-3)[J]. Ticks Tick Borne Dis, 2012, 3(3): 159-169. DOI:10.1016/j.ttbdis.2012.03.002
[35]
YU Y F, CAO J, ZHOU Y Z, et al. Isolation and characterization of two novel serpins from the tick Rhipicephalus haemaphysaloides[J]. Ticks Tick Borne Dis, 2013, 4(4): 297-303. DOI:10.1016/j.ttbdis.2013.02.001
[36]
MOTOBU M, TSUJI N, MIYOSHI T, et al. Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis[J]. FEBS J, 2007, 274(13): 3299-3312. DOI:10.1111/j.1742-4658.2007.05852.x
[37]
BLISNICK A A, FOULON T, BONNET S I. Serine protease inhibitors in ticks: an overview of their role in tick biology and tick-borne pathogen transmission[J]. Front Cell Infect Microbiol, 2017, 7: 199. DOI:10.3389/fcimb.2017.00199
[38]
黄钰, 潘保良. 外寄生虫丝氨酸蛋白酶抑制剂的研究进展[J]. 中国兽医科学, 2021, 51(2): 219-225.
HUANG Y, PAN B L. Research advances in serine proteinase inhibitor of ectoparasite[J]. Chinese Veterinary Science, 2021, 51(2): 219-225. (in Chinese)
[39]
WAXMAN L, CONNOLLY T M, et al. Isolation of an inhibitor selective for collagen-stimulated platelet aggregation from the soft tick Ornithodoros moubata[J]. J Biol Chem, 1993, 268(8): 5445-5449. DOI:10.1016/S0021-9258(18)53341-X
[40]
CHMELAR J, OLIVEIRA C J, REZACOVA P, et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation[J]. Blood, 2011, 117(2): 736-744. DOI:10.1182/blood-2010-06-293241
[41]
YAMAJI K, TSUJI N, MIYOSHI T, et al. Hlcyst-1 and Hlcyst-2 are potential inhibitors of HlCPL-A in the midgut of the ixodid tick Haemaphysalis longicornis[J]. J Vet Med Sci, 2010, 72(5): 599-604. DOI:10.1292/jvms.09-0561
[42]
LIMA C A, SASAKI S D, TANAKA A S. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus[J]. Biochem Biophys Res Commun, 2006, 347(1): 44-50. DOI:10.1016/j.bbrc.2006.06.018
[43]
DIEHL P, AESCHLIMANN A, OBENCHAIN F. Tick reproduction: oogenesis and oviposition[J]. Phys Ticks, 1982, 1(9): 277-350.
[44]
KLUCK G E G, CARDOSO L S, DE CICCO N N T, et al. A new lipid carrier protein in the cattle tick Rhipicephalus microplus[J]. Ticks Tick Borne Dis, 2018, 9(4): 850-859. DOI:10.1016/j.ttbdis.2018.03.010
[45]
CAMPOS E, MORAES J, FAÇANHA A R, et al. Kinetics of energy source utilization in Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae) embryonic development[J]. Vet Parasitol, 2006, 138(3-4): 349-357. DOI:10.1016/j.vetpar.2006.02.004
[46]
XU L, LIU L, CHENG T Y. Cloning and expression profile of glyceraldehyde-3-phosphate dehydrogenase in Haemaphysalis flava (Acari: Ixodidae)[J]. Journal of Medical Entomology, 2019, 56(2): 569-575. DOI:10.1093/jme/tjy200
[47]
ZHAO J, ZHONG C J. A review on research progress of transketolase[J]. Neurosci Bull, 2009, 25(2): 94-99. DOI:10.1007/s12264-009-1113-y
[48]
NASCIMENTO M C L, LEAL A T, DAFFRE S, et al. BYC, an atypical aspartic endopeptidase from Rhipicephalus (Boophilus) microplus eggs[J]. Compar Biochem Phys B-Biochem Mol Biol, 2008, 149(4): 599-607. DOI:10.1016/j.cbpb.2007.12.007
[49]
SEIXAS A, LEAL A T, NASCIMENTO-SILVA M C L, et al. Vaccine potential of a tick vitellin-degrading enzyme (VTDCE)[J]. Vet Immunol Immunopathol, 2008, 124(3-4): 332-340. DOI:10.1016/j.vetimm.2008.04.001

(编辑   白永平)