2. 广东省水禽健康养殖重点实验室, 广州 510225
2. Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
2000年,Tsutsui等[1]在鹌鹑下丘脑中发现了一种重要神经肽类激素,命名为促性腺激素抑制激素(gonadotropin inhibitory hormone,GnIH)。GnIH神经肽由12个氨基酸组成,其氨基酸序列为:Ser-Ile-Lys-Pro-Ser-Ala-Tyr-Leu-Pro-Leu-Arg-Phe,在中枢神经系统以及许多周边器官中均有分布[2]。动物的繁殖活动主要受到下丘脑-垂体-性腺轴(HPG轴)调控。研究认为,GnIH能直接或间接通过抑制下丘脑促性腺激素释放激素(GnRH)的分泌,抑制垂体促黄体激素(LH)和促卵泡激素(FSH)的合成与分泌,实现对动物繁殖的调控[3]。近年来研究发现,GnIH不仅可调控动物神经内分泌功能,抑制生殖行为,还影响和调控鸟类和哺乳动物的其他行为,比如性行为和攻击性行为[4-5]。
家禽的产卵受到卵泡发育的影响,而卵泡发育与颗粒细胞密切相关[6]。研究发现,颗粒细胞在FSH和LH的刺激下合成雌二醇和孕酮以调节卵泡的成熟和排卵[7-8],GnIH可抑制FSH和LH的合成和释放,调控卵泡的成熟和性腺的发育[9-10]。研究发现,GnIH及其受体GPR147在性腺组织也有表达,GnIH可直接与卵泡膜细胞和颗粒细胞上的结合位点相结合,进而调控细胞增殖、凋亡和类固醇的合成与分泌[11-13]。外周注射一定剂量的GnIH可降低小鼠的卵巢活性并抑制卵泡的发育,也可降低猪卵巢颗粒细胞中增殖相关蛋白ERK1/2、CyclinB1和PCNA的表达量[14],进而促进颗粒细胞的凋亡和抑制颗粒细胞的增殖[15]。这表明,GnIH通过调节HPG轴来调控动物繁殖性能,还可直接影响卵泡颗粒细胞的增殖和激素的分泌[16]。而在家禽上,GnIH在性腺层面如何通过直接调控卵泡颗粒细胞来调控卵泡发育的机理尚不清楚。
本试验通过研究不同浓度GnIH对体外培养鸭颗粒细胞周期、增殖及相关基因表达的影响,以探究其对颗粒细胞的直接调控作用。研究结果有助于揭示GnIH在性腺层面对家禽繁殖的直接调控机制。
1 材料与方法 1.1 试验动物试验动物为20只180日龄、体重1.5~1.6 kg的健康山麻鸭,来源于仲恺农业工程学院钟村教学科研基地。山麻鸭在实验室按动物福利原则处死后,取等级卵泡分离颗粒细胞用于细胞原代培养。
1.2 主要试剂M199(C11150500BT)、胎牛血清(FBS)、胰酶(25200)、青链霉素(15140122)均购自美国Gibco公司;卵泡刺激素FSH(F4021)、雄烯二酮(A-084-1ML)均购自美国Sigma公司;4%多聚甲醛购自中国Biosharp公司;Trizol细胞裂解液(15596026)购自美国Ambion公司;Ⅱ型胶原酶(17101-015)购自中国Biosharp公司;细胞周期试剂盒(JX17-50T)、EdU细胞增殖检测试剂盒(C10310-1/-2/-3)均购自广州锐博生物科技有限公司。鸭GnIH多肽序列(SIKPIANMPLRF)由生工生物工程(上海)股份有限公司合成。
1.3 颗粒细胞的分离与培养采集山麻鸭的等级卵泡,置于装有PBS缓冲液(含2%双抗)的无菌烧杯中,然后转移到细胞房超净台内,剥净卵泡表面结缔组织,用镊子撕开膜层,倒置在培养皿上剥离颗粒层。将颗粒层收集到15 mL离心管后加入5 mL培养基反复吹打,随后600 r·min-1离心3 min,收集上清液备用。再向离心管内加入5 mL 0.1% Ⅱ型胶原酶,重悬沉淀,置于37 ℃恒温水浴锅中消化20 min,每5 min震荡1次。消化结束后加入5 mL M199完全培养基(含10% FBS),用70 μm细胞筛过滤(同时过滤上清液)至50 mL离心管,1 000 r·min-1离心10 min,弃上清,沉淀用M199洗1次,1 000 r·min-1室温离心10 min后加入3 mL的M199完全培养基(含10% FBS及2%双抗),重悬后以每孔1×106个细胞的密度接种于6孔细胞培养板,置于39 ℃、5% CO2的培养箱内静置培养。培养液含不同浓度GnIH(0、0.1、1、10和100 ng·mL-1)、5% FBS、2%双抗、终浓度为1 ng·mL-1的FSH、终浓度为0.1 μmol·mL-1的雄烯二酮。
1.4 细胞周期检测将分离到的颗粒细胞以每孔5×105个细胞的密度接种于12孔板,用不同浓度GnIH(0、0.1、1、10和100 ng·mL-1)处理24 h后进行细胞周期检测。用胰酶消化吹打细胞,制备单细胞悬液, 用1.5 mL离心管收集细胞,1 000 r·min-1离心5 min后弃上清,细胞沉淀用1 mL预冷的PBS重悬后1 000 r·min-1离心5 min,弃上清,细胞沉淀用1 mL预冷的75%乙醇轻轻混匀,-20 ℃固定过夜。固定细胞后加入1 mL PBS室温水合15 min。离心收集细胞,弃上清,每管加入500 μL碘化丙啶染色液,37 ℃避光条件下孵育30 min。以标准程序用流式细胞仪检测,一般计数2万~3万个细胞,结果用FlowJo 7.6软件分析细胞周期。
1.5 EdU细胞增殖检测将分离到的颗粒细胞以每孔5×105个细胞的密度接种于12孔板,用不同浓度GnIH(0、0.1、1、10和100 ng·mL-1)处理24 h后进行EdU细胞增殖检测。每孔加入1 mL 50 μmol·L-1 EdU培养基孵育2 h,弃培养基,PBS清洗细胞2次,每次5 min。然后加入500 μL细胞固定液室温孵育30 min,弃固定液。再加入500 μL甘氨酸(2 mg·mL-1),脱色摇床孵育5 min后用PBS清洗5 min。添加1 mL渗透剂(0.5% TritonX-100的PBS)脱色摇床孵育10 min后用PBS清洗5 min,每孔加入1 mL的Apollo®染色反应液,避光、室温、脱色摇床孵育30 min。然后,加入1 mL渗透剂脱色摇床清洗3次,每次10 min。每孔加入1 mL Hoechst33342反应液,避光、室温、脱色摇床孵育30 min后用PBS清洗2次。最后,每孔加入1 mL PBS,在倒置荧光显微镜下观察细胞。
1.6 增殖相关基因表达的检测取不同浓度GnIH(0、0.1、1、10和100 ng·mL-1)处理24 h后的6孔板细胞,弃培养液后用Trizol试剂从颗粒细胞中提取总RNA,根据东洋纺反转录试剂盒ReverTra Ace qPCR RT Master Mix with gDNA Remover说明书进行反转录,获得颗粒细胞cDNA。荧光定量检测增殖相关基因IGF-2、IGFBP-2、CyclinD1、CDK6、p27kip1的基因序列从NCBI获得,利用软件Primer 5.0设计引物,引物序列见表 1,由生工生物工程(上海)股份有限公司合成。荧光定量使用Power UPTM SYBR® Green Master Mix试剂,反应体系为20 μL:Mix 10 μL,水8.6 μL,上、下游引物各0.2 μL,cDNA 1 μL。反应条件:95 ℃预变性10 min;95 ℃变性15 s,60 ℃退火1 min,共40个循环。以GAPDH为内参基因,每个样品进行3次重复,检测结果用2-△△CT法进行统计分析。
![]() |
表 1 qRT-PCR相关引物 Table 1 The related primers of qRT-PCR |
数据处理采用GraphPad Prism 7.0的单因素方差分析,不同处理间的显著性检验采用Tukey式多重比较。数据结果采用“Mean±SEM”表示(n=3),P < 0.05表示差异显著,P>0.05表示差异不显著。
2 结果 2.1 不同浓度GnIH对颗粒细胞生长状态的影响在倒置荧光显微镜下观察不同浓度GnIH处理后颗粒细胞的生长状态。结果显示(图 1),各GnIH处理组细胞形态正常,细胞轮廓清晰,视野内有极少量细胞碎片化,呈漂浮死亡状态;随着GnIH处理浓度的升高,死亡细胞的数量增加,但组间差异不显著(P>0.05)。
![]() |
A.对照组(400×);B. 0.1 ng·mL-1 GnIH处理组(400×);C. 1 ng·mL-1 GnIH处理组(400×);D. 10 ng·mL-1 GnIH处理组(400×);E. 100 ng·mL-1 GnIH处理组(400×);F.视野区域内死细胞个数。红色箭头指死细胞 A. Control group (400×); B. 0.1 ng·mL-1 GnIH treatment group (400×); C. 1 ng·mL-1 GnIH treatment group (400×); D. 10 ng·mL-1 GnIH treatment group (400×); E. 100 ng·mL-1 GnIH treatment group (400×); F. The number of dead cells in visual field. The red arrows indicate dead cells 图 1 不同浓度GnIH对颗粒细胞生长状态的影响 Fig. 1 Effects of different concentrations of GnIH on growth of granulosa cells |
用流式细胞术检测不同浓度GnIH处理对颗粒细胞周期的影响。结果显示(图 2),与对照组相比,各GnIH处理组细胞在G1期的比例有所下降,其中,1 ng·mL-1 GnIH处理组细胞在G1期的比例显著降低(P < 0.05);在0.1和1 ng·mL-1 GnIH处理组,细胞在G2期的比例显著升高(P < 0.05);各GnIH处理组细胞在S期的比例均无显著差异(P>0.05)。
![]() |
A.对照组流式细胞术结果图;B. 0.1 ng·mL-1 GnIH处理组流式细胞术结果图;C. 1 ng·mL-1 GnIH处理组流式细胞术结果图;D. 10 ng·mL-1 GnIH处理组流式细胞术结果图;E. 100 ng·mL-1 GnIH处理组流式细胞术结果图;F. GnIH处理组处于不同周期细胞所占百分比。不同小写字母表示差异显著(P < 0.05),相同小写字母表示差异不显著(P>0.05),下同 A. The flow cytometry results of control group; B. The flow cytometry results of 0.1 ng·mL-1 GnIH treatment group; C. The flow cytometry results of 1 ng·mL-1 GnIH treatment group; D. The flow cytometry results of 10 ng·mL-1 GnIH treatment group; E. The flow cytometry results of 100 ng·mL-1 GnIH treatment group; F. The percentage of cells in different cell cycles in GnIH treatment groups. Different lowercase letters indicate significant differences (P < 0.05), and the same lowercase letter indicates no significant differences (P>0.05), the same as below 图 2 不同浓度GnIH对颗粒细胞周期的影响 Fig. 2 Effects of different concentrations of GnIH on cycle of granulosa cells |
用EdU方法检测不同浓度GnIH处理对颗粒细胞增殖的影响。结果显示(图 3),与对照组相比,随着GnIH处理浓度的升高,EdU阳性细胞所占的百分比逐步降低;在1、10和100 ng·mL-1 GnIH处理组中EdU阳性细胞率显著降低(P < 0.05)。
![]() |
A.从各GnIH处理组中随机选择5张合并图像(400×);B.从荧光图像中获得EdU阳性细胞数,计算EdU相对阳性率 A.Five merged images randomly selected from each GnIH treanment group(400×); B. The number of EdU-positive cells obtained from the fluorescence image, and the relative positive rate of EdU was calculated 图 3 不同浓度GnIH对颗粒细胞增殖的影响 Fig. 3 Effects of different concentrations of GnIH on proliferation of granulosa cells |
用qRT-PCR方法检测不同浓度GnIH处理对颗粒细胞增殖相关基因表达的影响。结果显示(图 4),与对照组相比,在0.1和1 ng·mL-1 GnIH处理组中,CDK6、CyclinD1、IGF-2、IGFBP-2和p27kip1基因的相对表达量均下降,但差异不显著(P>0.05);在10和100 ng·mL-1 GnIH处理组中,CyclinD1、IGFBP-2和p27kip1基因的相对表达量均显著上升(P < 0.05)。
![]() |
图 4 不同浓度GnIH对颗粒细胞增殖相关基因表达的影响 Fig. 4 Effects of different concentrations of GnIH on proliferation-associated genes expression in granulosa cells |
GnIH及其同源物RFRP-3是一种重要的神经肽类激素,可抑制性腺激素的产生和影响生殖细胞的分化与成熟[17-19]。研究表明,GnIH可直接或间接通过下丘脑GnRH调控垂体促性腺激素的分泌,对禽类繁殖性能发挥重要调控作用,并且在下丘脑能与褪黑素、kisspeptin等生殖相关神经肽互作共同调节动物的生殖活性[20-21]。除了在垂体层面, GnIH可降低垂体前叶LH和FSH的分泌[22],有研究显示,在性腺层面,GnIH可直接抑制卵泡颗粒细胞中类固醇激素E2和T的分泌水平,对动物卵泡发育、闭锁及排卵等发挥重要作用[23-25]。但目前在家禽上,关于GnIH直接在性腺层面调控卵泡发育及闭锁的机理仍不清楚。因此,本试验在体外培养条件下,研究了不同浓度GnIH对卵泡发育紧密相关的颗粒细胞周期、增殖及相关基因表达的影响,所得结果一定程度上揭示了GnIH通过调节颗粒细胞影响卵泡发育的机理。
细胞周期进程对家禽卵泡颗粒细胞的增殖有至关重要的影响。研究表明,在细胞增殖过程中,周期蛋白依赖性蛋白激酶(CDKs)对细胞周期产生重要的调控作用[26],其中CyclinD1与CDK6在G1期形成复合物促使细胞由G1期进入S期,进而促进细胞的增殖[27]。CKI家族因子p27kip1对CDK则具有广谱的抑制作用,与CDK-Cyclin复合物结合来调控细胞周期进程[28]。本研究中,用外源性GnIH处理鸭颗粒细胞后,EdU阳性细胞所占百分比下降,细胞死亡数增多,G2期细胞所占百分比增加,结果表明,GnIH处理导致鸭颗粒细胞增殖受到抑制,且细胞凋亡增多,其中主要原因是GnIH处理将细胞周期阻滞在G2期。检测与细胞周期紧密相关基因的表达发现,GnIH处理导致细胞周期促进因子CDK6和CyclinD1的表达降低,细胞周期抑制因子p27kip1的表达升高。这揭示了GnIH处理是通过影响与细胞周期紧密相关因子CDK6、CyclinD1和p27kip1的表达来抑制鸭颗粒细胞的细胞周期以及增殖。本结果在相关研究中得到进一步验证,有研究表明,GnIH处理猪卵巢颗粒细胞后降低了细胞周期相关基因的表达,并导致细胞周期阻滞在G2/M期[29];也有研究证实,GnIH能降低颗粒细胞活力,并调控周期蛋白CyclinB1、PCNA以及其他多种周期因子的表达来阻滞细胞周期进程,影响颗粒细胞的增殖和分化[30-31]。此外,细胞增殖相关基因IGFBP-2属于IGFBPs家族的重要成员之一,能直接或间接地影响IGF-2的功能,进而影响细胞的有丝分裂和增殖[32]。有研究报道,在猪卵泡颗粒细胞上,IGF-2和IGFBP-2基因表达的上调会促进颗粒细胞的增殖[33]。本研究中,GnIH处理下调了鸭颗粒细胞中IGF-2和IGFBP-2的表达,且变化趋势与CDK6和CyclinD1一致,结果与国内外相关的研究报道一致。这进一步揭示,IGF-2和IGFBP-2参与了颗粒细胞增殖的调控。另外,在本研究中,高浓度GnIH处理组会导致鸭颗粒细胞中部分增殖相关基因表达的上升,其中原因还不得而知。一方面可能是与本研究在体外培养条件下开展有关,另一方面可能与这种高剂量外源性GnIH所引起的一些细胞内非正常作用有关,具体原因还需进一步研究。
动物的繁殖行为和能力受多种环境因素的影响,但环境因子都需要通过神经-内分泌信号传导影响HPG轴来调控动物繁殖活性。而GnIH作为下丘脑重要的内分泌激素,通过生殖轴对禽类繁殖行为发挥重要调控作用[34]。GnIH不仅在生殖轴上游的下丘脑和垂体通过抑制促性腺激素的分泌调控动物繁殖活性,而且还可以在性腺层面直接调控禽类卵泡发育。大量研究表明,外周注射GnIH可抑制成年鸡的性腺活性,诱导睾丸细胞凋亡,降低睾丸的生精活性[35-36];在鹅的繁殖调控中,GnIH在繁殖后期维持高水平表达,促进鹅由繁殖期向休产期转变[37-38];在鹌鹑繁殖期中,GnIH与褪黑素具有协同作用,能降低血浆睾酮水平,影响繁殖性能[39-40];GnIH处理还可引起成年小鼠精子发生的剂量依赖性组织学变化,如生殖细胞增殖、存活标志物下降、睾丸凋亡标志物增加[41-42]。本研究结果也表明,在体外培养条件下,GnIH处理能通过影响周期相关因子的表达来抑制鸭颗粒细胞周期和增殖。因此,GnIH作为禽类生殖调控的重要因子,系统揭示了GnIH在生殖轴3个层面的作用机制,对深入了解禽类繁殖机理和开发提高禽类繁殖性能的技术均具有积极意义。
4 结论在体外培养的鸭颗粒细胞中,添加外源性GnIH能降低细胞周期促进因子CDK6、CyclinD1、IGF-2、IGFBP-2的表达,提高细胞周期抑制因子p27kip1的表达,并且将细胞周期阻滞在G2期,降低EdU阳性细胞百分率,进而抑制颗粒细胞的增殖。本结果对GnIH在性腺层面通过影响颗粒细胞调控禽类繁殖性能机理的研究具有积极意义。
[1] | TSUTSUI K, SAIGOH E, UKENA K, et al. A novel avian hypothalamic peptide inhibiting gonadotropin release[J]. Biochem Biophys Res Commun, 2000, 275(2): 661–667. DOI: 10.1006/bbrc.2000.3350 |
[2] | TSUTSUI K. A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH):Biosynthesis, mode of action and functional significance[J]. Prog Neurobiol, 2009, 88(1): 76–88. DOI: 10.1016/j.pneurobio.2009.02.003 |
[3] | WANG X Y, LI X, HU C H. Distribution of gonadotropin-inhibitory hormone (GnIH) in male Luchuan piglets[J]. Gene Expr Patterns, 2018, 28: 42–53. DOI: 10.1016/j.gep.2018.02.004 |
[4] | TSUTSUI K, UBUKA T. How to contribute to the progress of neuroendocrinology:Discovery of GnIH and progress of GnIH research[J]. Front Endocrinol (Lausanne), 2018, 9: 662. DOI: 10.3389/fendo.2018.00662 |
[5] | SON Y L, UBUKA T, TSUTSUI K. Molecular mechanisms of gonadotropin-inhibitory hormone (GnIH) actions in target cells and regulation of GnIH expression[J]. Front Endocrinol (Lausanne), 2019, 10: 110. DOI: 10.3389/fendo.2019.00110 |
[6] | JAIN A, JAIN T, KUMAR P, et al. Follicle-stimulating hormone-induced rescue of cumulus cell apoptosis and enhanced development ability of buffalo oocytes[J]. Domest Anim Endocrinol, 2016, 55: 74–82. DOI: 10.1016/j.domaniend.2015.10.007 |
[7] | BRAMBILLASCA F, GUGLIELMO M C, COTICCHIO G, et al. The current challenges to efficient immature oocyte cryopreservation[J]. J Assist Reprod Genet, 2013, 30(12): 1531–1539. DOI: 10.1007/s10815-013-0112-0 |
[8] |
李鹏飞, 岳文斌, 庞钰莹, 等. FSH和胰岛素对绵羊卵巢卵泡颗粒细胞体外培养的影响[J]. 畜牧兽医学报, 2013, 44(9): 1386–1391.
LI P F, YUE W B, PANG Y Y, et al. Effects of FSH and insulin on sheep ovarian follicular granulosa cells in vitro culture[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(9): 1386–1391. (in Chinese) |
[9] | UBUKA T, SON Y L, BENTLEY G E, et al. Gonadotropin-inhibitory hormone (GnIH), GnIH receptor and cell signaling[J]. Gen Comp Endocrinol, 2013, 190: 10–17. DOI: 10.1016/j.ygcen.2013.02.030 |
[10] | SINGH P, KRISHNA A, TSUTSUI K. Effects of gonadotropin-inhibitory hormone on folliculogenesis and steroidogenesis of cyclic mice[J]. Fertil Steril, 2011, 95(4): 1397–1404. DOI: 10.1016/j.fertnstert.2010.03.052 |
[11] | MADDINENI S R, OCÓN-GROVE O M, KRZYSIK-WALKER S M, et al. Gonadotropin-inhibitory hormone (GnIH) receptor gene is expressed in the chicken ovary:potential role of GnIH in follicular maturation[J]. Reproduction, 2008, 135(2): 267–274. DOI: 10.1530/REP-07-0369 |
[12] | SINGH P, KRISHNA A, SRIDARAN R, et al. Immunohistochemical localization of GnRH and RFamide-related peptide-3 in the ovaries of mice during the estrous cycle[J]. J Mol Histol, 2011, 42(5): 371–381. DOI: 10.1007/s10735-011-9340-8 |
[13] |
董霞.鹅等级前卵泡发育研究及GnIH在等级前卵泡中的表达分析[D].雅安: 四川农业大学, 2013.
DONG X.The development study of geese pre-hierarchical follicles and the analysis of GnlH expression in pre-hierarchical follicles[D].Ya'an: Sichuan Agricultural University, 2013.(in Chinese) |
[14] | LI X, SU J, FANG R, et al. The effects of RFRP-3, the mammalian ortholog of GnIH, on the female pig reproductive axis in vitro[J]. Mol Cell Endocrinol, 2013, 372(1-2): 65–72. DOI: 10.1016/j.mce.2013.03.015 |
[15] |
甘超.鹅GnIH及其受体基因的克隆、组织表达以及在颗粒细胞中的研究[D].雅安: 四川农业大学, 2014.
GAN C.Cloning of goose GnIH and its receptor, the gene expression and research in granulosa cells[D].Ya'an: Sichuan Agricultural University, 2014.(in Chinese) |
[16] | BENTLEY G E, TSUTSUI K, KRIEGSFELD L J. Recent studies of gonadotropin-inhibitory hormone (GnIH) in the mammalian hypothalamus, pituitary and gonads[J]. Brain Res, 2010, 1364: 62–71. DOI: 10.1016/j.brainres.2010.10.001 |
[17] | ULLAH R, SHEN Y, ZHOU Y D, et al. Expression and actions of GnIH and its orthologs in vertebrates:Current status and advanced knowledge[J]. Neuropeptides, 2016, 59: 9–20. DOI: 10.1016/j.npep.2016.05.004 |
[18] | TSUTSUI K, UBUKA T, SON Y L, et al. Contribution of GnIH research to the progress of reproductive neuroendocrinology[J]. Front Endocrinol (Lausanne), 2015, 6: 179. |
[19] | ANJUM S, KRISHNA A, TSUTSUI K. Possible role of GnIH as a mediator between adiposity and impaired testicular function[J]. Front Endocrinol (Lausanne), 2016, 7: 6. |
[20] | RIZWAN M Z, POLING M C, CORR M, et al. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action[J]. Endocrinology, 2012, 153(8): 3770–3779. DOI: 10.1210/en.2012-1133 |
[21] | KHAN A R, KAUFFMAN A S. The role of kisspeptin and RFamide-related peptide-3 neurones in the circadian-timed preovulatory luteinising hormone surge[J]. J Neuroendocrinol, 2012, 24(1): 131–143. DOI: 10.1111/j.1365-2826.2011.02162.x |
[22] | UBUKA T, TSUTSUI K. Gonadotropin-inhibitory hormone inhibits aggressive behavior of male quail by increasing neuroestrogen synthesis in the brain beyond its optimum concentration[J]. Gen Comp Endocrinol, 2014, 205: 49–54. DOI: 10.1016/j.ygcen.2014.03.014 |
[23] | LI X, SU J, LEI Z H, et al. Gonadotropin-inhibitory hormone (GnIH) and its receptor in the female pig:cDNA cloning, expression in tissues and expression pattern in the reproductive axis during the estrous cycle[J]. Peptides, 2012, 36(2): 176–185. DOI: 10.1016/j.peptides.2012.05.008 |
[24] | BENTLEY G E, WILSTERMAN K, ERNST D K, et al. Neural versus gonadal GnIH:Are they independent systems? A mini-review[J]. Integr Comp Biol, 2017, 57(6): 1194–1203. DOI: 10.1093/icb/icx085 |
[25] | TSUTSUI K, BENTLEY G E, BEDECARRATS G, et al. Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function[J]. Front Neuroendocrinol, 2010, 31(3): 284–295. DOI: 10.1016/j.yfrne.2010.03.001 |
[26] | KING K L, CIDLOWSKI J A. Cell cycle regulation and apoptosis[J]. Annu Rev Physiol, 1998, 60: 601–617. DOI: 10.1146/annurev.physiol.60.1.601 |
[27] | HOLLEY S L, HEIGHWAY J, HOBAN P R. Induced expression of human CCND1 alternative transcripts in mouse Cyl-1 knockout fibroblasts highlights functional differences[J]. Int J Cancer, 2005, 114(3): 364–370. DOI: 10.1002/ijc.20750 |
[28] | BACHS O, GALLASTEGUI E, ORLANDO S, et al. Role of p27Kip1 as a transcriptional regulator[J]. Oncotarget, 2018, 9(40): 26259–26278. DOI: 10.18632/oncotarget.25447 |
[29] | WANG X Y, LI X, HU C H. RFRP-3, the mammalian ortholog of GnIH, induces cell cycle arrest at G2/M in porcine ovarian granulosa cells[J]. Peptides, 2018, 101: 106–111. DOI: 10.1016/j.peptides.2018.01.006 |
[30] |
李昀.GnIH对猪卵巢颗粒细胞增殖和MAPKs信号通路活化的影响[D].南宁: 广西大学, 2017.
LI Y.Effects of GnIH on proliferation of porcine ovarian granulosa cells and activation of MAPKs signaling pathway[D]. Nanning: Guangxi University, 2017.(in Chinese) |
[31] |
汪瑶, 李珣, 李敏婕, 等. GnIH对母猪生殖调控的研究[J]. 中国农业科学, 2014, 47(18): 3716–3724.
WANG Y, LI X, LI M J, et al. Regulation of GnIH on reproduction of female pig[J]. Scientia Agricultura Sinica, 2014, 47(18): 3716–3724. DOI: 10.3864/j.issn.0578-1752.2014.18.020 (in Chinese) |
[32] |
赵秀华. 胰岛素样生长因子结合蛋白-2基因研究进展[J]. 中国家禽, 2014, 36(5): 38–39.
ZHAO X H. The research progress of IGFBP-2 gene[J]. China Poultry, 2014, 36(5): 38–39. DOI: 10.3969/j.issn.1004-6364.2014.05.010 (in Chinese) |
[33] |
果双双, 李辉, 施振旦, 等. 脂多糖对体外培养猪颗粒细胞增殖、凋亡和雌二醇分泌的影响[J]. 畜牧兽医学报, 2016, 47(4): 693–699.
GUO S S, LI H, SHI Z D, et al. Effects of lipopolysaccharide on proliferation, apoptosis and estradiol secretion of in vitro cultured porcine granulosa cells[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(4): 693–699. (in Chinese) |
[34] | BENTLEY G E, UBUKA T, MCGUIRE N L, et al. Gonadotropin-inhibitory hormone and its receptor in the avian reproductive system[J]. Gen Comp Endocrinol, 2008, 156(1): 34–43. DOI: 10.1016/j.ygcen.2007.10.003 |
[35] | UBUKA T, UKENA K, SHARP P J, et al. Gonadotropin-inhibitory hormone inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and release in male quail[J]. Endocrinology, 2006, 147(3): 1187–1194. DOI: 10.1210/en.2005-1178 |
[36] | MCGUIRE N L, KANGAS K, BENTLEY G E. Effects of melatonin on peripheral reproductive function:Regulation of testicular GnIH and testosterone[J]. Endocrinology, 2011, 152(9): 3461–3470. DOI: 10.1210/en.2011-1053 |
[37] | KUO Y M, SHIUE Y L, CHEN C F, et al. Proteomic analysis of hypothalamic proteins of high and low egg production strains of chickens[J]. Theriogenology, 2005, 64(7): 1490–1502. DOI: 10.1016/j.theriogenology.2005.03.020 |
[38] |
张克山, 胡彦竞科, 韩笑哲, 等. 鹅不同繁殖时期GnRH和GnIH基因表达和激素浓度变化分析[J]. 畜牧兽医学报, 2016, 47(8): 1720–1726.
ZHANG K S, HU Y J K, HAN X Z, et al. Analysis of the serum concentrations and mRNA expression levels of GnRH and GnIH in geese during different reproductive periods[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(8): 1720–1726. (in Chinese) |
[39] | KADOKAWA H, SHIBATA M, TANAKA Y, et al. Bovine C-terminal octapeptide of RFamide-related peptide-3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines[J]. Domest Anim Endocrinol, 2009, 36(4): 219–224. DOI: 10.1016/j.domaniend.2009.02.001 |
[40] | UBUKA T, SON Y L, TSUTSUI K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin- inhibitory hormone[J]. Gen Comp Endocrinol, 2016, 227: 27–50. DOI: 10.1016/j.ygcen.2015.09.009 |
[41] | ANJUM S, KRISHNA A, SRIDARAN R, et al. Localization of gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin and GnRH receptor and their possible roles in testicular activities from birth to senescence in mice[J]. J Exp Zool A Ecol Genet Physiol, 2012, 317(10): 630–644. |
[42] | ANJUM S, KRISHNA A, TSUTSUI K. Inhibitory roles of the mammalian GnIH ortholog RFRP3 in testicular activities in adult mice[J]. J Endocrinol, 2014, 223(1): 79–91. DOI: 10.1530/JOE-14-0333 |