近年来,因江、河、湖泊等水体富营养化日益加重所导致的蓝藻水华(cyanobacteria bloom)频繁爆发已引起公众的广泛关注,尤其是由富营养化水体中蓝藻所产生的次生代谢产物-微囊藻毒素(microcystins, MCs),分布范围广,结构稳定,且毒性作用强,可对动物及人类健康造成严重威胁[1-4]。MCs极易溶于水,耐热且化学性质稳定,现有手段很难将其从饮用水源中去除[5]。MCs可通过受污染的饮用水、水产品、农作物及饲料等途径进入动物机体,并通过食物链累积效应使动物机体积累更高浓度的MCs,对机体肝、肾、生殖、神经等组织器官产生毒性作用[6-8]。在目前已知的200多种MCs异构体中[4],微囊藻毒素-LR (MC-LR)是分布最广,且毒性作用最强的一种微囊藻毒素[9-11]。已有研究表明,MC-LR对动物肝、肾等多种组织器官均具有明显的毒性损伤作用[12-15]。
近年来研究发现,动物性腺也是MC-LR重要的靶器官之一[13, 16],MC-LR不仅可以在肝、肾等多种组织中积聚,也会在动物的性腺中积累,并产生毒性损伤,影响动物的生殖功能[17-20]。研究表明,长期接触MC-LR会导致雄性小鼠精子数量减少、活力降低,并使血清睾酮水平明显下降[21];可引起大鼠睾丸间质细胞活性氧(ROS)激增,致使细胞发生凋亡[22]。在对雌性动物的研究中发现,MC-LR可导致小鼠卵巢内高质量卵泡数量减少、血清激素水平紊乱,并导致发情周期异常[23];还可使中国仓鼠卵巢颗粒细胞发生氧化应激,破坏细胞骨架,致使细胞周期阻滞,并最终诱导细胞凋亡[24-25]。这些结果初步揭示了MC-LR对动物生殖也具有潜在的毒性作用。
本试验以体外成熟培养的猪卵母细胞为研究对象,通过免疫荧光结合激光共聚焦成像等技术分析不同浓度MC-LR对猪卵母细胞成熟过程中细胞骨架、氧化应激以及早期凋亡的影响,探究MC-LR对动物卵母细胞的毒性损伤作用,为后续进一步研究MC-LR的生殖毒性作用及其机制提供试验依据。
1 材料与方法 1.1 试剂微囊藻毒素-LR (MC-LR)购自普瑞邦生物工程有限公司;TCM 199购自Gibico公司;鼠抗α-tubulin-FITC单克隆抗体购自Sigma-Aldrich公司;活性氧(ROS)试剂盒和Annexin V-FITC细胞凋亡检测试剂盒均购自碧云天生物技术有限公司;谷胱甘肽过氧化物酶(GSH-Px)测定试剂盒购自南京建成生物有限公司;Trizol购自Invitrogen公司;PrimeScriptTM RT Master Mix、TB Green® Premix Ex TaqTM购自TaKaRa公司。其他试剂若无特殊标注均为Sigma-Aldrich公司产品。
1.2 猪卵母细胞培养与处理猪卵巢样品购自南京元润食品有限公司屠宰场,置于37 ℃生理盐水中,2 h内运至实验室。选取卵巢上直径约为3~6 mm的卵泡,抽取其中的卵丘-卵母细胞复合体(cumulus oocyte complexes, COCs),在体视显微镜下挑捡胞质均匀、且包被3层以上卵丘细胞的COCs。根据试验设计,将所收集的COCs随机分为4组,分别置于已添加不同浓度MC-LR (0、20、40和60 μg·mL-1)的TCM199培养液中进行体外成熟培养。在体外成熟培养44 h后收集COCs,经0.1%透明质酸酶消化,去除卵丘细胞后,分别进行第一极体(first polar body,Pb Ⅰ)镜检、免疫荧光染色及RT-qPCR等检测。
1.3 间接免疫荧光染色将所收集的卵母细胞样品,用4%多聚甲醛室温固定1 h后转入1%的TritonX-100中于饱和湿度的湿盒中室温通透8 h,再用1%的牛血清白蛋白(bovine serum albumin, BSA)于湿盒中室温封闭1 h,之后与异硫氰酸荧光素(fluorescein isothiocyanate, FITC)标记的抗α-tubulin-FITC抗体(1:200)在室温孵育2 h,最后用10 μg·mL-1的Hoechst33342避光染色15 min后进行封片,置于激光共聚焦荧光显微镜下进行观察分析。
1.4 卵母细胞内ROS水平检测试验前用TCM 199成熟培养液将DCFH-DA稀释成10 μmol·L-1工作液,置于培养箱中平衡30 min。将去除卵丘细胞的卵母细胞移入PBS中清洗3次后置于工作液中,于培养箱中避光孵育30 min。孵育完成并经PBS清洗3次后,在激光共聚焦扫描显微镜下观察。
1.5 卵母细胞内谷胱甘肽含量测定将去除卵丘细胞的卵母细胞移入PBS中洗3次,再移入含1 mL PBS的离心管中,按照谷胱甘肽过氧化物酶(GSH-Px)测定试剂盒说明书介绍的方法对各组卵母细胞GSH-Px酶活力进行测定。
1.6 Annexin V-FITC细胞凋亡检测将去除卵丘细胞的卵母细胞移入PBS中清洗3次,按照Annexin V-FITC凋亡检测盒说明书介绍的方法,将卵母细胞置于含5% Annexin-V-FITC的PBS缓冲液中,在37 ℃培养箱避光孵育10 min,最后在激光共聚焦显微镜下观察分析。
1.7 氧化应激和凋亡相关基因RT-qPCR测定每组收集100枚卵母细胞样品,按Trizol试剂盒说明书提取细胞总RNA。用反转录试剂盒将总RNA反转录成cDNA,-80 ℃保存备用。按照TB Green qPCR试剂盒说明书检测mRNA的表达水平,反应产物经熔解曲线检测特异性。用2-ΔΔCT法计算各基因mRNA的相对表达水平。引物序列见表 1。
![]() |
表 1 荧光定量PCR引物序列 Table 1 The primer sequences used for real-time PCR |
每组试验重复3次以上,且每组卵母细胞不少于30枚。使用Image J软件对卵母细胞的免疫荧光及ROS平均光密度值进行分析统计。所有数据采用GraphPad Prism 8.0软件进行单因素方差分析(analysis of variance, ANOVA)。结果以“平均数±标准误(X±SE)”表示,P < 0.05表示差异显著。
2 结果 2.1 MC-LR对猪卵母细胞体外成熟的影响卵母细胞成熟培养液中添加不同浓度MC-LR(0、20、40、60 μg·mL-1)对猪卵母细胞Pb Ⅰ排出影响的试验结果见图 1。随着MC-LR毒素浓度增加,卵母细胞Pb Ⅰ排出率呈明显的下降趋势,并具有剂量依赖性。与对照组(73.20%)相比,20 μg·mL-1 MC-LR试验组的Pb Ⅰ排出率(69.59%)略有下降,并无显著差异(P>0.05);当MC-LR作用浓度分别达到40和60 μg·mL-1时,卵母细胞Pb Ⅰ排出率分别极显著下降至59.96% (P < 0.01)与51.64% (P < 0.001)。这一研究结果表明,当MC-LR作用浓度达到40 μg·mL-1及以上时,猪卵母细胞Pb Ⅰ排出受到极显著抑制,导致卵母细胞成熟进程受阻。
![]() |
A. MC-LR处理导致猪卵母细胞第一极体(Pb Ⅰ)排出失败; B. MC-LR处理导致卵母细胞Pb Ⅰ排出率显著下降:n表示卵母细胞样本数。**.P < 0.01, ***.P < 0.001。下图同 A. Oocytes failed to extrude the first polar bodies (PbI) after MC-LR treatment; B. The PbI extrusion rate was significantly reduced after MC-LR treatment: n. Sample number. **. P < 0.01, ***. P < 0.001. The same as below 图 1 MC-LR对猪卵母细胞体外成熟的影响 Fig. 1 Effect of MC-LR on the maturation in vitro of porcine oocytes |
为探究MC-LR抑制猪卵母细胞Pb Ⅰ排出的原因,本研究采用间接免疫荧光染色与激光共聚焦成像技术检查并分析了MC-LR(60 μg·mL-1)处理后卵母细胞纺锤体及染色体的形态结构与动态分布的变化情况。由图 2A可见,经44 h体外成熟培养,对照组卵母细胞的微管蛋白α-tubulin组装成典型的纺锤体结构,且染色体整齐排列在赤道板上;而处理组卵母细胞的微管蛋白α-tubulin分布紊乱,纺锤体结构异常,染色体也随之无规律排列。由图 2B可见,与对照组(25.13%)相比,MC-LR处理组的纺锤体异常率极显著升高(62.52%,P < 0.001)。这一结果提示,MC-LR对猪卵母细胞的纺锤体结构具有明显的毒性损伤作用。
![]() |
A. MC-LR处理导致猪卵母细胞纺锤体结构异常(绿色:纺锤体; 蓝色:染色体); B. MC-LR处理导致卵母细胞锤体结构异常率显著升高 A. MC-LR treatment resulted in abnormal spindle structure of porcine oocytes (Green: Spindle; Blue: Chromosome); B. MC-LR treatment resulted in a significant increase in spindle structure abnormality rate of porcine oocytes 图 2 MC-LR对猪卵母细胞纺锤体结构的影响 Fig. 2 Effect of MC-LR treatment on the spindle structure of porcine oocytes |
为进一步研究MC-LR处理导致猪卵母细胞成熟失败的原因,利用荧光探针DCFH-DA检测了MC-LR(60 μg·mL-1)处理后卵母细胞ROS水平的变化情况,结果见图 3。MC-LR处理组卵母细胞的ROS平均荧光强度极显著高于对照组(P < 0.01)。
![]() |
A.MC-LR处理导致卵母细胞ROS水平升高;B.MC-LR处理导致卵母细胞ROS平均荧光强度显著升高 A.MC-LR treatment resulted in higher ROS levels in oocytes; B. MC-LR treatment resulted in a significant increase in the average fluorescence intensity of ROS in oocytes 图 3 MC-LR对猪卵母细胞ROS水平的影响 Fig. 3 Effect of MC-LR treatment on ROS levels in porcine oocytes |
在检测卵母细胞ROS水平基础上,为进一步研究MC-LR处理对猪卵母细胞氧化应激的影响,检测分析了MC-LR作用对卵母细胞GSH-Px活力及抗氧化相关基因SOD1、SOD2、CAT和GSH-Px mRNA表达的影响,结果如图 4A所示,MC-LR处理组卵母细胞GSH-Px活力极显著降低(P < 0.01);从图 4B可知,MC-LR处理组卵母细胞,除SOD2无明显变化外,SOD1、CAT和GSH-Px的mRNA水平均极显著下降(P < 0.01)。说明,MC-LR处理导致猪卵母细胞在体外成熟过程中产生了明显的氧化应激,且卵母细胞的抗氧化能力显著下降。
![]() |
A.MC-LR处理导致卵母细胞GSH-Px活力显著降低;B.MC-LR处理对卵母细胞氧化应激相关基因表达的影响 A.MC-LR treatment resulted in lower GSH-Px levels in oocytes; B. Effect of MC-LR treatment on the expression of oxidative stress related genes in oocytes 图 4 MC-LR对猪卵母细胞GSH-Px活力及抗氧化相关基因表达的影响 Fig. 4 Effect of MC-LR treatment on GSH-Px activity and mRNA expression of oxidative stress related genes in porcine oocytes |
因氧化应激与细胞凋亡密切相关,在检测卵母细胞氧化应激的基础上,进一步通过Annexin-V染色检测MC-LR(60 μg·mL-1)处理后卵母细胞早期凋亡情况,结果如图 5所示,与对照组相比,MC-LR处理后卵母细胞发生早期凋亡的细胞比率从28.53%极显著升高至59.35%(P < 0.01)。
![]() |
A.MC-LR处理诱导了卵母细胞早期凋亡;B.MC-LR处理导致卵母细胞凋亡率显著升高 A.MC-LR treatment induced the early apoptosis of oocytes; B. MC-LR treatment resulted in a significant increase in the apoptosis rate of oocytes 图 5 MC-LR对猪卵母细胞早期凋亡的影响 Fig. 5 Effect of MC-LR treatment on the early-stage apoptosis of porcine oocytes |
为进一步研究MC-LR处理对猪卵母细胞凋亡的影响,应用RT-qPCR技术分析了MC-LR处理后卵母细胞凋亡相关基因Bax和Bcl2的mRNA表达,结果如图 6所示,MC-LR处理后,Bax mRNA表达显著上调(P < 0.05),Bcl2mRNA的表达极显著下调(P < 0.001),Bax/Bcl2的比值极显著升高(P < 0.001)。
![]() |
图 6 MC-LR对猪卵母细胞凋亡相关基因mRNA表达的影响 Fig. 6 Effect of MC-LR treatment on the mRNA expression of early apoptosis related genes in porcine oocytes |
MC-LR是所有微囊藻毒素中毒性最强的一类环状七肽,其结构稳定,分布广泛,可通过饮用水或受污染的食物进入动物体内,对多种组织器官产生毒性作用。已有研究表明,MC-LR可在卵巢中积累并产生生殖毒性[23],诱导颗粒细胞氧化应激,促进卵泡闭锁,致使小鼠不育[24-25]。MC-LR甚至还可以通过胎盘屏障影响胎儿肝、肾及大脑等组织器官的形成和发育[26-28]。这些结果表明,MC-LR对雌性动物的生殖发育具有潜在的毒性作用,但MC-LR是否会对哺乳动物卵母细胞产生毒性作用目前尚不明确。本研究以体外成熟培养的猪卵母细胞为研究模型,探讨了不同浓度MC-LR对猪卵母细胞的毒性损伤作用,结果表明,MC-LR可显著抑制猪卵母细胞成熟,其毒性作用机制与诱导纺锤体结构损伤、引发氧化应激与早期细胞凋亡密切相关。
本研究首先发现,MC-LR对猪卵母细胞体外成熟具有明显的抑制作用,并具有剂量依赖性,当以40 μg·mL-1以上MC-LR处理猪卵母细胞时,其第一极体排出率会显著下降。在动物卵母细胞减数分裂过程中,纺锤体的正确组装与动态分布对于染色体的精确分离与极体的顺利排出等生物学事件起着至关重要的作用[29]。因此,本研究进一步通过激光共聚焦扫描技术对卵母细胞的纺锤体等亚细胞结构进行了分析,结果发现,MC-LR作用后卵母细胞的纺锤体结构发生严重缺陷,并伴随同源染色体分离的异常,导致卵母细胞第一极体排出失败。这一结果提示,MC-LR对猪卵母细胞的纺锤体结构具有明显的毒性损伤作用。已有的研究结果也证实,MC-LR可对其他多种细胞模型的细胞骨架结构造成损伤[30-31],Frangež等[32]在兔胚胎的研究中发现,用10 μmol·L-1的MC-LR处理胚胎细胞24 h,即可导致细胞的纺锤体微管在细胞核周围发生塌陷并重组,Chen等[33]以雄性大鼠为研究模型,进一步从基因转录水平研究发现,MC-LR可破坏睾丸组织细胞骨架相关基因转录的稳定性。这些研究结果表明,MC-LR可通过破坏细胞的纺锤体微管系统对细胞产生毒性损伤。在本研究中,MC-LR使卵母细胞纺锤体结构产生损伤,进而影响了同源染色体精确分离,最终导致卵母细胞第一极体无法排出。
已有研究表明,MC-LR的毒性作用机制主要是通过产生过量的ROS来诱导氧化应激,导致细胞功能障碍,引发细胞凋亡[34-35]。哺乳动物的卵母细胞和胚胎对ROS十分敏感,在卵母细胞减数分裂、胚胎发育及细胞死亡等生理过程中,ROS发挥着至关重要的作用,它和抗氧化剂之间的动态平衡确保了卵母细胞及胚胎正常发育[36-37]。为进一步验证MC-LR对猪卵母细胞的毒性作用机制是否与氧化损伤有关,本研究对MC-LR处理后卵母细胞的ROS水平及抗氧化相关基因SOD1、SOD2、CAT和GSH-Px的表达进行了检测分析,结果发现,卵母细胞的ROS水平显著增加,提示MC-LR处理导致卵母细胞发生了明显的氧化应激反应,与此同时,部分抗氧化酶基因(SOD1、CAT和GSH-Px)表达水平也明显下调,进一步说明MC-LR作用44 h后,卵母细胞的抗氧化能力已显著下降。因此推测,MC-LR诱导猪卵母细胞发生氧化应激,并破坏了细胞内抗氧化防御系统的平衡,导致卵母细胞发生氧化损伤。细胞的氧化损伤与凋亡密切相关,高水平的ROS会通过改变线粒体通透性破坏线粒体动力学,引起线粒体功能障碍,导致由线粒体介导的细胞凋亡[38-41]。本试验通过Annexin-V染色发现,经MC-LR处理的卵母细胞早期凋亡率显著增加,RT-qPCR结果也显示,凋亡相关基因Bax转录水平上调,Bcl2转录水平下调,Bax/Bcl2比值显著升高。因此推测,MC-LR通过诱导猪卵母细胞氧化应激,进一步导致细胞发生早期凋亡。
4 结论本研究结果证明,MC-LR对猪卵母细胞的纺锤体结构具有明显的损伤作用,致使第一极体无法排出,最终导致卵母细胞成熟失败;MC-LR对猪卵母细胞的毒性损伤作用机制与诱导氧化损伤及细胞凋亡密切相关。本研究结果为深入探讨MC-LR对哺乳动物卵母细胞的毒性作用及其机制提供了试验依据。
[1] | IBELINGS B W, CHORUS I. Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health:a review[J]. Environ Pollut, 2007, 150(1): 177–192. DOI: 10.1016/j.envpol.2007.04.012 |
[2] | CHEN J, ZHANG D W, XIE P, et al. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms[J]. Sci Total Environ, 2009, 407(10): 3317–3322. DOI: 10.1016/j.scitotenv.2009.02.005 |
[3] | HUISMAN J, CODD G A, PAERL H W, et al. Cyanobacterial blooms[J]. Nat Rev Microbiol, 2018, 16(8): 471–483. DOI: 10.1038/s41579-018-0040-1 |
[4] | BOUAÏCHA N, MILES C O, BEACH D G, et al. Structural diversity, characterization and toxicology of Microcystins[J]. Toxins (Basel), 2019, 11(12): 714. DOI: 10.3390/toxins11120714 |
[5] | MEREL S, WALKER D, CHICANA R, et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins[J]. Environ Int, 2013, 59: 303–327. |
[6] | REZAITABAR S, SARI A E, BAHRAMIFAR N, et al. Transfer, tissue distribution and bioaccumulation of microcystin LR in the phytoplanktivorous and carnivorous fish in Anzali wetland, with potential health risks to humans[J]. Sci Total Environ, 2017, 575: 1130–1138. DOI: 10.1016/j.scitotenv.2016.09.199 |
[7] | MACHADO J, CAMPOS A, VASCONCELOS V, et al. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems:a review of their relevance for agricultural plant quality and public health[J]. Environ Res, 2017, 153: 191–204. DOI: 10.1016/j.envres.2016.09.015 |
[8] | GREER B, MENEELY J P, ELLIOTT C T. Uptake and accumulation of Microcystin-LR based on exposure through drinking water:an animal model assessing the human health risk[J]. Sci Rep, 2018, 8(1): 4913. DOI: 10.1038/s41598-018-23312-7 |
[9] | GUPTA N, PANT S C, VIJAYARAGHAVAN R, et al. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice[J]. Toxicology, 2003, 188(2-3): 285–296. DOI: 10.1016/S0300-483X(03)00112-4 |
[10] | PUDDICK J, PRINSEP M R, WOOD S A, et al. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners[J]. Mar Drugs, 2014, 12(11): 5372–5395. DOI: 10.3390/md12115372 |
[11] | CHERNOFF N, HILL D, LANG J, et al. The comparative toxicity of 10 microcystin congeners administered orally to mice:clinical effects and organ toxicity[J]. Toxins (Basel), 2020, 12(6): 403. DOI: 10.3390/toxins12060403 |
[12] | CHEN J, XIE P. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China[J]. Toxicon, 2005, 45(5): 615–625. DOI: 10.1016/j.toxicon.2005.01.003 |
[13] | WANG Q, XIE P, CHEN J, et al. Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection[J]. Toxicon, 2008, 52(6): 721–727. DOI: 10.1016/j.toxicon.2008.08.004 |
[14] | YI X P, XU S S, HUANG F Y, et al. Effects of chronic exposure to microcystin-LR on kidney in mice[J]. Int J Environ Res Public Health, 2019, 16(24): 5030. DOI: 10.3390/ijerph16245030 |
[15] | LIN W, GUO H H, WANG L K, et al. Parental transfer of microcystin-LR-induced innate immune dysfunction of zebrafish:a cross-generational study[J]. Environ Sci Technol, 2020, 54(2): 1014–1023. DOI: 10.1021/acs.est.9b04953 |
[16] | HOU J, LI L, XUE T, et al. Damage and recovery of the ovary in female zebrafish i.p.-injected with MC-LR[J]. Aquat Toxicol, 2014, 155: 110–118. DOI: 10.1016/j.aquatox.2014.06.010 |
[17] | ZHAO Y Y, XIE L Q, YAN Y Y. Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system[J]. Chemosphere, 2015, 120: 115–122. DOI: 10.1016/j.chemosphere.2014.06.028 |
[18] | CHEN L, CHEN J, ZHANG X Z, et al. A review of reproductive toxicity of microcystins[J]. J Hazard Mater, 2016, 301: 381–399. DOI: 10.1016/j.jhazmat.2015.08.041 |
[19] | LIU W J, ZHAN C H, ZHANG T Z, et al. Microcystin-LR influences the in vitro oocyte maturation of zebrafish by activating the MAPK pathway[J]. Aquat Toxicol, 2019, 215: 105261. DOI: 10.1016/j.aquatox.2019.105261 |
[20] | QIAO Q, DJEDIAT C, HUET H, et al. Subcellular localization of microcystin in the liver and the gonads of medaka fish acutely exposed to microcystin-LR[J]. Toxicon, 2019, 159: 14–21. DOI: 10.1016/j.toxicon.2018.12.006 |
[21] | DING X S, LI X Y, DUAN H Y, et al. Toxic effects of Microcystis cell extracts on the reproductive system of male mice[J]. Toxicon, 2006, 48(8): 973–979. DOI: 10.1016/j.toxicon.2006.07.039 |
[22] | HUANG H, LIU C R, FU X L, et al. Microcystin-LR induced apoptosis in rat sertoli cells via the mitochondrial caspase-dependent pathway:role of reactive oxygen species[J]. Front Physiol, 2016, 7: 397. |
[23] | WU J, SHAO S J, ZHOU F, et al. Reproductive toxicity on female mice induced by microcystin-LR[J]. Environ Toxicol Pharmacol, 2014, 37(1): 1–6. DOI: 10.1016/j.etap.2013.10.012 |
[24] | LIU H H, ZHANG X F, ZHANG S S, et al. Oxidative stress mediates microcystin-LR-induced endoplasmic reticulum stress and autophagy in KK-1 cells and C57BL/6 mice ovaries[J]. Front Physiol, 2018, 9: 1058. DOI: 10.3389/fphys.2018.01058 |
[25] | WU J, YUAN M M, SONG Y F, et al. MC-LR exposure leads to subfertility of female mice and induces oxidative stress in granulosa cells[J]. Toxins (Basel), 2015, 7(12): 5212–5223. DOI: 10.3390/toxins7124872 |
[26] | BU Y Z, LI X Y, ZHANG B J, et al. Microcystins cause embryonic toxicity in mice[J]. Toxicon, 2006, 48(8): 966–972. DOI: 10.1016/j.toxicon.2006.07.038 |
[27] | ZHAO S J, LI G Y, CHEN J. A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring[J]. J Proteomics, 2015, 114: 197–213. DOI: 10.1016/j.jprot.2014.11.015 |
[28] | ZHAO S J, ZHONG S Z, WANG F, et al. Microcystin-LR exposure decreased the fetal weight of mice by disturbance of placental development and ROS-mediated endoplasmic reticulum stress in the placenta[J]. Environ Pollut, 2020, 256: 113362. DOI: 10.1016/j.envpol.2019.113362 |
[29] | ZHANG Z X, CHEN C C, MA L Y, et al. Plk1 is essential for proper chromosome segregation during meiosis I/meiosis Ⅱ transition in pig oocytes[J]. Reprod Biol Endocrinol, 2017, 15(1): 69. DOI: 10.1186/s12958-017-0289-7 |
[30] | HUANG X, CHEN L, LIU W J, et al. Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells[J]. Aquat Toxicol, 2015, 165: 41–50. DOI: 10.1016/j.aquatox.2015.05.009 |
[31] | MCLELLAN N L, MANDERVILLE R A. Toxic mechanisms of microcystins in mammals[J]. Toxicol Res (Camb), 2017, 6(4): 391–405. DOI: 10.1039/C7TX00043J |
[32] | FRANGEŽ R, ŽUŽEK M C, MRKUN J, et al. Microcystin-LR affects cytoskeleton and morphology of rabbit primary whole embryo cultured cells in vitro[J]. Toxicon, 2003, 41(8): 999–1005. DOI: 10.1016/S0041-0101(03)00072-2 |
[33] | CHEN L, ZHANG X Z, ZHOU W S, et al. The interactive effects of cytoskeleton disruption and mitochondria dysfunction lead to reproductive toxicity induced by microcystin-LR[J]. PLoS One, 2013, 8(1): e53949. DOI: 10.1371/journal.pone.0053949 |
[34] | WENG D, LU Y, WEI Y N, et al. The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice[J]. Toxicology, 2007, 232(1-2): 15–23. DOI: 10.1016/j.tox.2006.12.010 |
[35] | MA J G, LI Y Y, DUAN H Y, et al. Chronic exposure of nanomolar MC-LR caused oxidative stress and inflammatory responses in HepG2 cells[J]. Chemosphere, 2018, 192: 305–317. DOI: 10.1016/j.chemosphere.2017.10.158 |
[36] | AGARWAL A, GUPTA S, SHARMA R. Oxidative stress and its implications in female infertility-a clinician's perspective[J]. Reprod Biomed Online, 2005, 11(5): 641–650. DOI: 10.1016/S1472-6483(10)61174-1 |
[37] | TRUONG T, GARDNER D K. Antioxidants improve IVF outcome and subsequent embryo development in the mouse[J]. Hum Reprod, 2017, 32(12): 2404–2413. DOI: 10.1093/humrep/dex330 |
[38] | ZHONG S Z, LIU Y, WANG F, et al. Microcystin-LR induced oxidative stress, inflammation, and apoptosis in alveolar type Ⅱ epithelial cells of ICR mice in vitro[J]. Toxicon, 2020, 174: 19–25. DOI: 10.1016/j.toxicon.2019.12.152 |
[39] | FU W Y, CHEN J P, WANG X M, et al. Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro[J]. Toxicon, 2005, 46(2): 171–177. DOI: 10.1016/j.toxicon.2005.03.021 |
[40] | LIU H H, ZHANG S S, LIU C R, et al. Resveratrol ameliorates microcystin-LR-induced testis germ cell apoptosis in rats via SIRT1 signaling pathway activation[J]. Toxins, 2018, 10(6): 235. DOI: 10.3390/toxins10060235 |
[41] | YUAN L, LIU H H, LIU X H, et al. Epigenetic modification of H3K4 and oxidative stress are involved in MC-LR-induced apoptosis in testicular cells of SD rats[J]. Environ Toxicol, 2020, 35(2): 277–291. DOI: 10.1002/tox.22865 |