畜牧兽医学报  2020, Vol. 51 Issue (9): 2312-2318. DOI: 10.11843/j.issn.0366-6964.2020.09.029    PDF    
1株猪源H9N2亚型流感病毒的分子特征
赵玉仲1,2,3, 丁国飞1,2,3, 刘家琪1,2,3, 李莉1,2,3, 李英超1,2,3, 王彬1,2,3, 邵清源1,2,3, 冯剑1,2,3, 郭丽红1,2,3, 刘思当1,2,3, 肖一红1,2,3     
1. 山东农业大学动物科技学院, 泰安 271018;
2. 山东农业大学动物医学院基础兽医学系, 泰安 271018;
3. 山东农业大学山东省动物生物技术与疾病预防控制重点实验室, 泰安 271018
摘要:旨在进一步了解山东省猪流感的流行情况及其病原特征,笔者于2019年春季,在山东省泰安某屠宰场采集130份猪鼻拭子,进行病毒分离鉴定;并对分离病毒进行全基因组测序和分子特征分析;用禽H9N2亚型标准抗原联合血凝抑制方法检测2018—2019年从山东省8个地区猪场采集的1 527份猪血清样品中的猪流感病毒抗体。结果显示:分离到1株H9N2亚型流感病毒,命名为A/swine/Shandong/TA009/2019(H9N2)。分离病毒与A/environment-air/Kunshan/NIOSH-BL20/2018(H9N2)和A/environment-air/Kunshan/NIOSH-BL25/2018(H9N2)遗传关系最近,其基因片段的核苷酸相似性均在99.5%以上。分离病毒的HANA基因属于Y280-like分支,PB2和M基因属于G1-like分支,PB1、PANPNS基因属于SH/F98-like分支。分离病毒HA蛋白裂解位点处的氨基酸序列为“PSRSSR/GL”,符合低致病性禽流感病毒的分子生物学特性。HA蛋白的216位为L,具有结合人源唾液酸α 2,6-Gal的能力。血清学分析结果显示,9份血清中H9N2抗体呈阳性,其总阳性率为0.59%。综上:本研究分离到1株猪源H9N2亚型流感病毒,并在猪血清中检测到H9N2抗体,提示应加强对猪流感的流行情况及其病原特征的持续监测。
关键词猪流感病毒    H9N2    分子特征    血清学    
Molecular Characterization of a H9N2 Subtype Swine Influenza Virus
ZHAO Yuzhong1,2,3, DING Guofei1,2,3, LIU Jiaqi1,2,3, LI Li1,2,3, LI Yingchao1,2,3, WANG Bin1,2,3, SHAO Qingyuan1,2,3, FENG Jian1,2,3, GUO Lihong1,2,3, LIU Sidang1,2,3, XIAO Yihong1,2,3     
1. College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China;
2. Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China;
3. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
Abstract: The objective of this study was to explore the epidemic situation and pathogenic characteristics of swine influenza virus (SIV) in Shandong Province. In the spring of 2019, 130 swine nasal swab samples were collected from a slaughterhouse in Tai'an city, Shandong Province for virus isolation and identification. The whole genome of isolated virus was sequenced and analyzed. Meanwhile, 1 527 swine serum samples were collected from swine farms in 8 regions of Shandong province and their anti-SIV antibody were detected by HI assay using standard avian H9N2 antigen. The results showed that a H9N2 subtype influenza virus strain was isolated and named as A/swine/Shandong/TA009/2019(H9N2). The homology analysis showed that the isolated virus had close genetic relationship with A/environment-air/Kunshan/NIOSH-BL20/2018(H9N2) and A/environment-air/Kunshan/NIOSH-BL25/2018(H9N2), and the nucleotide homology of the gene fragments were above 99.5%. Phylogenetic analysis results demonstrated that HA and NA genes of the isolated virus belong to the Y280-like lineage, PB2 and M genes belong to the G1-like lineage, and PB1, PA, NP and NS genes belong to the SH/F98-like lineage. The cleavage site in HA protein is "PSRSSR/GL", which was in accordance with the molecular biological characteristics of low pathogenic avian influenza virus.The position 216 of HA protein is L, and it has the ability to bind human-derived sialic acid α 2, 6-Gal. The results of HI showed that 9 among 1 527 serum samples were positive with a positive rate of 0.59%. The isolated virus was swine-derived H9N2 virus, and serological investigations revealed that H9N2 subtype virus infection was present in swine herds in Shandong Province. The results of this study suggest that continuous surveillance of the SIV epidemiological situation and its pathogenic characteristics should be strengthened.
Key words: swine influenza virus    H9N2    molecular characterization    serology    

猪流感(swine influenza, SI)是由猪流感病毒(swine influenza virus, SIV)引起的一种急性、传染性的呼吸道疾病,临床症状包括厌食、发热、流鼻涕、咳嗽、呼吸困难和引起怀孕母猪的繁殖障碍[1-4]。由于猪呼吸道上皮细胞表面具有禽流感病毒(avian influenza virus, AIV)的受体唾液酸α-2,3半乳糖苷(SA-α-2,3-Gal)和人流感病毒的受体唾液酸α-2,6半乳糖苷(SA-α-2,6-Gal),因此, 猪可以同时被人、猪和禽流感病毒感染,而在猪体内产生具有大流行潜力的重排毒株[5-8]。目前,在世界猪群中主要存在H1N1、H1N2和H3N2亚型流感病毒[9-12],也有从猪体内分离到H3N1、H4N6、H4N8、H5N1、H7N2和H9N2等亚型流感病毒的报道[13-18]

在中国,1998年在香港报道了从猪中分离出的H9N2亚型流感病毒,病毒全基因组属于Y280-like谱系[19]。此后,猪中偶尔检测到不同谱系的H9N2亚型流感病毒[20-22]。最新的研究发现,中国屠宰场H9N2亚型流感病毒的抗体流行率为4.9%和15.6%[23-24]。说明H9N2亚型流感病毒在猪的感染率正呈现上升趋势。为了及时掌握SI的流行特点及SIV的分子特征,2019年春季,在山东省泰安生猪屠宰场采集130份猪鼻拭子,分离到1株H9N2亚型SIV。为了进一步了解H9N2亚型流感的流行情况,对实验室在2018—2019年收集的来自山东省8个地区猪场1 527份猪血清样品中的H9N2亚型流感病毒抗体进行检测。旨在了解SI疫情的变化情况,为揭示SIV遗传进化规律和SI防控提供参考依据。

1 材料与方法 1.1 样品的采集

2019年春季,从山东泰安地区的生猪屠宰场采集130份鼻拭子样品,将鼻拭子上清接种到10日龄的SPF级鸡胚的尿囊腔中进行病毒分离。2018年1月—2019年6月从山东省烟台、临沂、德州、泰安、济宁、潍坊、莱芜和聊城的规模化猪场采集1 527份猪血清样品,用于检测H9N2亚型流感病毒抗体。

1.2 病毒的分离及序列测定分析

分离病毒用H1、H3、H9、N1、N2亚型鉴定引物进行亚型鉴定。病毒基因片段经PCR扩增和纯化后,送至上海生工生物工程技术服务有限公司测序。从NCBI中在线Blast搜索同源序列作为参考,用DNASTAR软件包中的Seqman软件进行拼接。Megalign软件进行同源性比较和氨基酸特征分析。用MEGA7软件绘制进化树(算法为Neighbour-Joining,Bootstrap值为1 000)。潜在糖基化位点利用NetNGlyc 1.0 Server(网址:http://www.healthtech.dtu.dk in the future)进行预测。

1.3 血清检测及结果判定

根据GB/T 27535—2011规定[25],采用胰酶-加热-高碘酸盐方法处理血清,以去除血清中存在的非特异性抑制因子,测定标准抗原效价,配制4个凝血单位(HAU)的抗原,进行H9N2亚型流感病毒HI抗体检测。结果判定标准:待检猪血清经过处理后已作10倍稀释,如果血凝抑制有1个孔发生抑制,此时血清的效价即为1:10,判为阳性。

2 结果 2.1 病毒分离和鉴定

将鼻拭子样品接种到SPF级鸡胚中,并连续盲传3代,分离获得1株毒株为H9N2亚型SIV,命名为A/swine/Shandong/TA009/2019(H9N2),其全基因组序列提交到GenBank数据库中(具体登录号详见表 1)。

表 1 与分离株A/swine/Shandong/TA009/2019(H9N2)核苷酸相似性最高的毒株 Table 1 Strains sharing the highest homology with isolated strain A/swine/Shandong/TA009/2019(H9N2)
2.2 核苷酸序列的同源性分析

从GenBank中下载与分离病毒8个基因片段相似性最高病毒序列进行同源性分析。结果发现该分离病毒与江苏省昆山市环境中的分离毒株A/environment- air/Kunshan/NIOSH-BL20/2018(H9N2)和A/environment-air/Kunshan/NIOSH-BL25/ 2018 (H9N2)相似性最高,其核苷酸相似性均在99.5%以上(表 1)。

2.3 遗传进化分析

对8个基因片段的核苷酸序列进行遗传进化分析结果表明,分离病毒HANA基因属于Y280-like分支,PB2和M基因属于G1-like分支,PB1、PANPNS基因属于SH/F98-like分支。综上所述,该分离病毒为3种H9N2亚型流感病毒基因型之间的重配病毒。与A/environment-air/Kunshan/NIOSH-BL20/2018(H9N2)和A/environment-air/Kunshan/NIOSH-BL25/2018(H9N2)遗传关系最近(图 1)

图 1 A/swine/Shandong/TA009/2019(H9N2)的HA(A)和NA(B)基因与参考序列构建的基因进化树 Fig. 1 Phylogenetic relationship of HA and NA gene of A/swine/Shandong/TA009/2019(H9N2) with reference sequences
2.4 分子特征分析

HA蛋白切割位点处的氨基酸序列能够调节流感病毒的组织趋向性和传播性,影响其致病性[26]。该分离病毒HA蛋白裂解位点的氨基酸组成为“PSRSSR/GL”,符合低致病性禽流感病毒分子特征。HA蛋白的受体结合位点决定了流感病毒的受体结合特性,并与宿主特异性直接相关[27]。HA蛋白226位的L具有人流感病毒受体特异性,并对H9N2流感病毒在人呼吸道上皮细胞中的生长和在雪貂中的传播起重要作用[28]。该分离病毒HA蛋白的受体结合位点分别为183N、190V、226L、227M和228G,在226位为L,具备人流感病毒受体特异性。因此,对人类存在感染的可能性。该分离病毒HA蛋白糖基化位点分别为29NST、82NPS、141NVS、145NGT、298NTT、305NVS、313NCS和492NGT,在145位增加一个新的潜在糖基化位点,据报道该位点的变化使得病毒毒力增强,免疫原性发生改变[29]。根据相关报道,HA蛋白G90E、S145N、D153N、N167K、A168D、T200I和N201D位氨基酸突变与抗原性改变相关[30-31]。该分离病毒在这7个位点处氨基酸仅在145位发生了突变。分离病毒NA蛋白62—64位置出现3个氨基酸位点的缺失,该部位的缺失作为中国大陆H9N2亚型流感病毒谱系的进化标记[32]。有相关报道H9N2亚型AIV PB2蛋白E627K或D701N突变会提高病毒在哺乳动物细胞中的复制能力,从而提高其对哺乳动物的传播力和致病力[33]。该分离病毒627位和701位分别为E和D,表明分离病毒并没有提高对哺乳动物的致病力。N2蛋白的119和292位氨基酸作为流感病毒出现NAI耐药性的重要参考位点[34]。该分离病毒未出现这两个耐药性氨基酸突变,表明分离病毒对奥塞米韦等神经氨酸酶抑制剂敏感。M2蛋白跨膜区26、27、30、31和34位氨基酸可以作为出现金刚烷胺耐药性的参考位点[35]。该分离病毒出现了S31N的金刚烷胺耐药性突变,表明分离病毒具有金刚烷胺类M2离子通道抑制剂的耐药性。

2.5 血清学检测结果

2018年1月-2019年6月, 从山东省8个地区猪场采集1 527份血清样品检测H9N2亚型流感病毒抗体。结果显示:抗体阳性样品数为9份,总体阳性率为0.59%,2018年和2019年抗体阳性数分别为5份和4份,年平均抗体阳性率分别为0.48%~0.84%。检测8个市规模化猪场的血清样品,有5个市的规模猪场存在H9N2亚型流感病毒感染,抗体阳性率为0.52%~1.69%(表 2)。

表 2 2018—2019年山东省不同地区规模化猪场H9N2亚型流感病毒血清学检测 Table 2 Serological detection of H9N2 subtype influenza virus in large-scale pig farms in different regions of Shandong Province in 2018-2019
3 讨论

在我国,自H9N2亚型SIV于1998年首次从运输到香港的猪上分离以来[19],关于H9N2亚型流感病毒感染猪群的事例频繁发生。人们普遍认为流感适应新宿主需要一个长期的进化过程,但是AIV从家禽传播到猪是在自然条件下发生的[19, 36-38]。流感病毒跨物种传播增加了基因变异的可能性,这使得流感的防控变得更加复杂[39]。本研究分离病毒株8个基因片段核苷酸相似性与江苏省昆山市环境中的2株病毒相似性最高。推测该分离病毒是经过候鸟迁徙导致猪直接感染的。AIV能够在鸟类呼吸道和肠道的细胞中复制,并以高浓度随粪便排泄。因此,迁徙的水禽可在夏季和冬季栖息地之间携带并传播病毒[40]。山东省作为候鸟迁徙的途径地点,这意味着可能会发生流感病毒从鸟类宿主到猪的传播。遗传进化分析表明,分离病毒8个基因片段均来源于H9N2亚型AIV。因此,需要对从猪上分离到的H9N2亚型流感病毒进行及时监控。

猪在感染AIV的时候,通常仅会引起轻微或者无症状的感染。因此,很难在流感监测中发现。然而,通过血清学调查可以看出猪中存在AIV感染。在本研究中进行的血清学调查显示,存在0.59%的猪对H9N2亚型流感病毒呈血清阳性。因此,对SI进行及时监测,避免在猪体内产生更具适应性或传播性的流感病毒显得十分重要。

4 结论

2019年分离到1株猪源H9N2亚型SIV,基因组片段全部来源于AIV。血清学检测结果表明,我国猪群中存在的H9N2亚型流感病毒的感染。需要对猪H9N2亚型SIV进行及时监控。

参考文献
[1] POMORSKA-MÓL M, MARKOWSKA-DANIEL I, KWIT L, et al. Immune and inflammatory response in pigs during acute influenza caused by H1N1 swine influenza virus[J]. Arch Virol, 2014, 159(10): 2605–2614. DOI: 10.1007/s00705-014-2116-1
[2] KARASIN A I, OLSEN C W, ANDERSON G A. Genetic characterization of an H1N2 influenza virus isolated from a pig in Indiana[J]. J Clin Microbiol, 2000, 38(6): 2453–2456. DOI: 10.1128/JCM.38.6.2453-2456.2000
[3] ZHOU N N, SENNE D A, LANDGRAF J S, et al. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs[J]. J Virol, 1999, 73(10): 8851–8856. DOI: 10.1128/JVI.73.10.8851-8856.1999
[4] CHOI Y K, GOYAL S M, JOO H S. Prevalence of swine influenza virus subtypes on swine farms in the United States[J]. Arch Virol, 2002, 147(6): 1209–1220. DOI: 10.1007/s00705-002-0788-4
[5] RAJAO D S, VINCENT A L, PEREZ D R. Adaptation of human influenza viruses to swine[J]. Front Vet Sci, 2019, 5: 347. DOI: 10.3389/fvets.2018.00347
[6] YANG H L, CHEN Y, QIAO C L, et al. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses[J]. Proc Natl Acad Sci U S A, 2016, 113(2): 392–397. DOI: 10.1073/pnas.1522643113
[7] ZHAO N, MARTIN B E, YANG C K, et al. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans[J]. Sci Rep, 2015, 5: 15778. DOI: 10.1038/srep15778
[8] SUZUKI Y, ITO T, SUZUKI T, et al. Sialic acid species as a determinant of the host range of influenza A viruses[J]. J Virol, 2000, 74(24): 11825–11831. DOI: 10.1128/JVI.74.24.11825-11831.2000
[9] WANG L B, CHEN Q Y, WU X M, et al. Isolation of a reassortant H1N2 swine flu strain of type "swine-human-avian" and its genetic variability analysis[J]. Biomed Res Int, 2018, 2018: 1096079.
[10] BROWN I H. The epidemiology and evolution of influenza viruses in pigs[J]. Vet Microbiol, 2000, 74(1-2): 29–46. DOI: 10.1016/S0378-1135(00)00164-4
[11] WEBBY R J, SWENSON S L, KRAUSS S L, et al. Evolution of swine H3N2 influenza viruses in the United States[J]. J Virol, 2000, 74(18): 8243–8251. DOI: 10.1128/JVI.74.18.8243-8251.2000
[12] QI X, PAN Y N, QIN Y F, et al. Molecular characterization of avian-like H1N1 swine influenza a viruses isolated in Eastern China, 2011[J]. Virol Sin, 2012, 27(5): 292–298.
[13] 许程志, 吴运谱, 贾云慧, 等. 一株重配型H1N2猪流感病毒的进化分析及对小鼠的致病性[J]. 畜牧兽医学报, 2019, 50(4): 802–810.
XU C Z, WU Y P, JIA Y H, et al. Phylogenetic analysis and pathogenesis in mice of a novel reassortant H1N2 subtype swine influenza virus[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(4): 802–810. (in Chinese)
[14] BAUDON E, PEYRE M, PEIRIS M, et al. Epidemiological features of influenza circulation in swine populations:A systematic review and meta-analysis[J]. PLoS One, 2017, 12(6): e0179044. DOI: 10.1371/journal.pone.0179044
[15] ZHU H C, WEBBY R, LAM T T Y, et al. History of swine influenza viruses in Asia[J]. Curr Top Microbiol Immunol, 2013, 370: 57–68.
[16] CHOI Y K, PASCUA P N Q, SONG M S. Swine influenza viruses:an Asian perspective[J]. Curr Top Microbiol Immunol, 2013, 370: 147–172.
[17] KWON T Y, LEE S S, KIM C Y, et al. Genetic characterization of H7N2 influenza virus isolated from pigs[J]. Vet Microbiol, 2011, 153(3-4): 393–397. DOI: 10.1016/j.vetmic.2011.06.011
[18] SU S, QI W B, CHEN J D, et al. Complete genome sequence of an avian-like H4N8 swine influenza virus discovered in southern China[J]. J Virol, 2012, 86(17): 9542. DOI: 10.1128/JVI.01475-12
[19] PEIRIS J S M, GUAN Y, MARKWELL D, et al. Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China:potential for genetic reassortment?[J]. J Virol, 2001, 75(20): 9679–9686. DOI: 10.1128/JVI.75.20.9679-9686.2001
[20] CONG Y L, WANG C F, YAN C M, et al. Swine infection with H9N2 influenza viruses in China in 2004[J]. Virus Genes, 2008, 36(3): 461–469.
[21] YU H, HUA R H, WEI T C, et al. Isolation and genetic characterization of avian origin H9N2 influenza viruses from pigs in China[J]. Vet Microbiol, 2008, 131(1-2): 82–92. DOI: 10.1016/j.vetmic.2008.02.024
[22] YU H, ZHOU Y J, LI G X, et al. Genetic diversity of H9N2 influenza viruses from pigs in China:a potential threat to human health?[J]. Vet Microbiol, 2011, 149(1-2): 254–261. DOI: 10.1016/j.vetmic.2010.11.008
[23] LI S, ZHOU Y F, ZHAO Y X, et al. Avian influenza H9N2 seroprevalence among pig population and pig farm staff in Shandong, China[J]. Virol J, 2015, 12: 34. DOI: 10.1186/s12985-015-0265-9
[24] WANG J, WU M C, HONG W S, et al. Infectivity and transmissibility of avian H9N2 influenza viruses in pigs[J]. J Virol, 2016, 90(7): 3506–3514. DOI: 10.1128/JVI.02605-15
[25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 27535-2011猪流感HI抗体检测方法[S].北京: 中国标准出版社, 2012.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 27535-2011 Detection method of hemagglutination inhibition antibody against swine influenza[S]. Beijing: Standards Press of China, 2012. (in Chinese)
[26] MEDINA R A, GARCÍA-SASTRE A. Influenza A viruses:new research developments[J]. Nat Rev Microbiol, 2011, 9(8): 590–603. DOI: 10.1038/nrmicro2613
[27] BYRD-LEOTIS L, CUMMINGS R D, STEINHAUER D A. The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase[J]. Int J Mol Sci, 2017, 18(7): 1541. DOI: 10.3390/ijms18071541
[28] WAN H Q, SORRELL E M, SONG H C, et al. Replication and transmission of H9N2 influenza viruses in ferrets:evaluation of pandemic potential[J]. PLoS One, 2008, 3(8): e2923. DOI: 10.1371/journal.pone.0002923
[29] 孙王杨吉, 刘源, 刘子拓, 等. 一株H9N2亚型猪流感病毒的遗传进化和致病性分析[J]. 中国预防兽医学报, 2019, 41(5): 449–454, 461.
SUN W Y J, LIU Y, LIU Z T, et al. Genetic characterization and pathogenicity analysis of swine influenza H9N2 subtype virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(5): 449–454, 461. (in Chinese)
[30] WAN Z M, YE J Q, XU L L, et al. Antigenic mapping of the hemagglutinin of an H9N2 avian influenza virus reveals novel critical amino acid positions in antigenic sites[J]. J Virol, 2014, 88(7): 3898–3901. DOI: 10.1128/JVI.03440-13
[31] OKAMATSU M, SAKODA Y, KISHIDA N, et al. Antigenic structure of the hemagglutinin of H9N2 influenza viruses[J]. Arch Virol, 2008, 153(12): 2189–2195. DOI: 10.1007/s00705-008-0243-2
[32] 刘金华, 史为民, 吴清民, 等. 鸡源H9N2亚型流行性感冒病毒神经氨酸酶基因序列分析[J]. 病毒学报, 2004, 20(3): 237–241.
LIU J H, SHI W M, WU Q M, et al. Sequence analyses of neuraminidase genes of H9N2 influenza viruses isolated from chickens[J]. Chinese Journal of Virology, 2004, 20(3): 237–241. (in Chinese)
[33] DE GRAAF M, FOUCHIER R A M. Role of receptor binding specificity in influenza A virus transmission and pathogenesis[J]. EMBO J, 2014, 33(8): 823–841. DOI: 10.1002/embj.201387442
[34] MONTO A S, MCKIMM-BRESCHKIN J L, MACKEN C, et al. Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use[J]. Antimicrob Agents Chemother, 2006, 50(7): 2395–2402. DOI: 10.1128/AAC.01339-05
[35] HE G M, QIAO J, DONG C G, et al. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China[J]. Antiviral Res, 2008, 77(1): 72–76. DOI: 10.1016/j.antiviral.2007.08.007
[36] YOON S W, WEBBY R J, WEBSTER R G. Evolution and ecology of influenza A viruses[J]. Curr Top Microbiol Immunol, 2014, 385: 359–375.
[37] KATZ J M. The impact of avian influenza viruses on public health[J]. Avian Dis, 2003, 47(S3): 914–920. DOI: 10.1637/0005-2086-47.s3.914
[38] PEIRIS J S M, DE JONG M D, GUAN Y, et al. Avian influenza virus (H5N1):a threat to human health[J]. Clin Microbiol Rev, 2007, 20(2): 243–267.
[39] ZHANG R H, CUI H Y, XU M J, et al. Molecular characterization and pathogenicity of swine influenza H9N2 subtype virus A/swine/HeBei/012/2008/(H9N2)[J]. Acta Virol, 2011, 55(3): 219–226. DOI: 10.4149/av_2011_03_219
[40] MUNSTER V J, VEEN J, OLSEN B, et al. Towards improved influenza A virus surveillance in migrating birds[J]. Vaccine, 2006, 24(44-46): 6729–6733. DOI: 10.1016/j.vaccine.2006.05.060