畜牧兽医学报  2020, Vol. 51 Issue (9): 2293-2301. DOI: 10.11843/j.issn.0366-6964.2020.09.027    PDF    
基于LC-MS技术的患乳腺癌猫血清代谢组学分析
韦人月, 王峥, 周志新, 邓朝阳, 侯凯文, 郑家三     
黑龙江八一农垦大学动物科技学院, 大庆 163319
摘要:本试验旨在研究患乳腺癌猫与健康猫体内差异代谢物的变化情况,并探讨差异代谢物与猫乳腺癌发生之间的关系。本试验选取临床收集的经组织病理学确诊的猫乳腺癌血清样本6例作为试验组(T组),同时选取年龄相似,品种相同的健康猫血清6例作为对照组(C组)。运用超高效液相色谱质谱联用技术(liquid chromatography-mass spectrometry,LC-MS)对两组猫的血清样本进行检测,采用无监督的主成分分析(principal component analysis,PCA)、正交偏最小二乘法-判别分析(orthogonal projections to latent structures-discriminant analysis,OPLS-DA)及学生t检验(Student's t-test)筛选出差异代谢物,然后再对筛选出的差异代谢物进行层次聚类分析(hierarchical clustering analysis,HCA),并进行差异代谢物的KEGG注释及差异代谢物的代谢通路分析。结果表明,在两组样本中共定性到159种差异代谢物。与C组相比,在T组中有49种差异代谢物出现下调,110种差异代谢物出现上调。最终共筛选出5种与猫乳腺癌发生发展密切相关的差异代谢产物。与C组相比,T组中麦角硫因(ergothioneine,EGT)和肌酸(creatine)出现下调,吲哚乙酸(indolelactic acid,IAA)、胆碱(choline)和尿酸(uric acid)出现上调。这些差异代谢物表明,在猫乳腺癌的发生过程中,机体变化涉及了甘氨酸、丝氨酸和苏氨酸代谢、精氨酸和脯氨酸代谢、组氨酸代谢、色氨酸代谢、嘌呤代谢异常和甘油磷脂代谢等多个代谢途径,为今后深入研究猫乳腺癌的发病机制开辟了一个新的思路。
关键词    乳腺癌    LC-MS    差异代谢产物    
Serum Metabolomics Analysis of Feline Mammary Carcinomas Based on LC-MS Techniques
WEI Renyue, WANG Zheng, ZHOU Zhixin, DENG Chaoyang, HOU Kaiwen, ZHENG Jiasan     
College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
Abstract: The purpose of this study was to investigate the variation of differential metabolites in mammary carcinomas bearing cats and healthy cats, and to explore the relationship between differential metabolites and the occurrence of feline mammary carcinomas. In this study, 6 feline mammary carcinomas serum samples were selected as test (T) group. Meanwhile, 6 healthy cats with similar age and same breed were selected as control (C) group. Serum samples were detected by ultra-high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (LC-MS). Differential metabolites were screened by principal component analysis (PCA), orthogonal projections to latent structures-discriminant analysis (OPLS-DA) and Student's t-test. Then the hierarchical clustering analysis (HCA) was carried out for the screened differential metabolites. The KEGG annotation and the metabolic pathway of differential metabolites were analyzed. The results showed that a total of 159 differential metabolites were identified in the 2 groups. Compared with C group, 49 differential metabolites were down-regulated and 110 differential metabolites were up-regulated in T group. Finally, a total of 5 differential metabolites which closely related to feline mammary carcinomas were selected. Ergothioneine (EGT) and creatine in T group were down-regulated, while indolelactic acid (IAA), choline and uric acid were up-regulated compared to C group. These differential metabolites indicated that during the development of feline mammary carcinomas, the body changes involved multiple metabolic pathways, such as glycine, serine and threonine metabolism, arginine and proline metabolism, histidine metabolism, tryptophan metabolism, purine metabolism and glycerophospholipid metabolism. This study provides a new idea for further research of the pathogenesis of feline mammary carcinomas.
Key words: feline    mammary carcinomas    LC-MS    differential metabolites    

随着生活水平的不断提高,宠物健康受到了人们越来越多的关注。猫乳腺肿瘤约占所有猫科肿瘤的17%,具有转移率高、预后差的特点[1],常见的转移区域包括淋巴结(83%)、肺(83%)、肝(25%)和胸膜(22%)[2]。有研究表明,在6个月和1岁大的幼猫中,发生猫乳腺肿瘤的风险分别降低了91%和86%[3]。在所有品种的猫中,家养短毛猫是最易发病的品种,其次是暹罗猫和波斯猫[4],且在单变量分析中暹罗猫和波斯猫的预后较差[5],非纯种猫的发病率更高[6]。猫乳腺癌是猫乳腺肿瘤最常见的一种,恶性程度极高,且易随血液和淋巴发生转移[7]。因为猫乳腺癌与人类乳腺癌具有相同的组织学、分子和临床特征,所以猫乳腺癌也被认为是研究人类乳腺癌的合适动物模型[8-9]

代谢产物是基因表达的最终产物,可以直接显示出生物体的代谢状态。大量研究表明,在肿瘤发生时,机体物质代谢发生了剧烈变化,可以作为疾病诊断的生物标志物[10-11]。目前,关于猫乳腺癌的研究大部分侧重于对某一种物质在疾病发生过程中所起到的作用[12-16],而对于患乳腺癌猫的血清代谢组学研究却鲜有报道。血清样本在兽医临床诊断中易获取,是十分合适的代谢组学监测样本。本研究使用LC-MS非靶标代谢组学技术对患乳腺癌猫的血清进行检测,为猫乳腺癌的分子生物学研究提供了新的思路。

1 材料与方法 1.1 试验动物选择与分组

病料来源于黑龙江八一农垦大学动物医院收治的猫乳腺癌病例。选取6例经病理组织学鉴定确诊为乳腺癌的中华田园猫为试验组(T组),平均年龄为8.33岁。患猫均未进行化疗或放疗。同时,选择6例未绝育的且品种相同、年龄相仿的健康母猫作为对照组(C组),平均年龄为8.17岁。

1.2 样本采集

在对患猫进行肿瘤切除术之前,先进行颈静脉采血5~ 8 mL放入无抗凝剂的离心管中,两组样品均放置于4 ℃冰箱2 h,4 ℃ 3 000 r·min-1离心10 min,取上层血清分装于1.5 mL离心管中, 置于-80 ℃超低温冰箱内保存待检。

1.3 LC-MS检测

1.3.1 样品前处理   从每个样本中分别取100 μL血清,分别加入400 μL含有内标的提取液(甲醇和乙腈体积比为1:1, 内标浓度2 μg·mL-1),涡旋混匀30 s;冰水浴超声5 min,-20 ℃静置1 h;将样本在4 ℃下12 000 r·min-1离心15 min;小心地取出425 μL上清于EP管中;在真空浓缩器中干燥提取物;向干燥后的代谢物加入100 μL提取液(乙腈和水体积比为1:1)复溶;涡旋30 s,冰水浴超声10 min;将样本4 ℃ 12 000 r·min-1离心15 min;分别取出60 μL上清于2 mL进样瓶进行LC-MS检测。

1.3.2 LC-MS检测和数据处理   使用安捷伦1290超高效液相系统进行分析。色谱柱为Waters的UPLC BEH Amide色谱柱(1.7 μm*2.1*100 mm)。进样体积为1 μL。

质谱条件:ESI离子源参数设置雾化气压(GS1):60 Psi,辅助气压:60 Psi,气帘气压:35 Psi,温度:650 ℃,喷雾电压:5 000 V(POS模式)或-4 000 V(NEG模式)。

使用ProteoWizard软件将质谱原始数据转成mzXML格式。再使用XCMS做保留时间矫正、峰识别、峰提取、峰积分、峰对齐等工作,minfrac设为0.5,cutoff设为0.6。同时,使用R程序包和二级质谱数据库对峰进行物质鉴定。

1.3.3 数据分析   多元统计分析先采用PCA分析,PCA分析可以揭示数据的内部结构,从而更好地解释数据变量,便于观察各样本之间的总体分布情况。然后使用OPLS-DA分析过滤掉代谢物中与分类变量不相关的正交变量,并对非正交变量和正交变量分别分析,从而获取更加可靠的组间差异代谢物信息。单变量统计分析采用的是学生t检验。本试验结合学生t检验的P值及OPLS-DA模型第一主成分的变量投影重要度(variable importance in the projection, VIP)对差异代谢产物进行筛选,然后再对筛选出的差异代谢物进行HCA分析。

1.3.4 代谢通路分析   使用京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes, KEGG)数据库搜索差异代谢物的相关代谢通路。

2 结果 2.1 多元统计分析

首先对两组样本进行PCA分析,由图 1A可知,两组样本均位于95%置信区间内,组间分离显著。OPLS-DA得分图如图 1B所示,从OPLS-DA得分图的结果可以看出,两组样本区分非常显著,且样本全部处于95%置信区间内。

A.PCA得分图,其中横坐标PC[1]和纵坐标PC[2]分别表示排名第一和第二的主成分的得分,散点形状表示样本的试验分组;B.OPLS-DA得分图,其中横坐标t[1]P表示第一主成分的预测主成分得分,纵坐标t[1]O表示正交主成分得分,散点形状表示不同的试验分组 A.PCA score plots, the abscissa PC[1] and the ordinate PC[2] represent the scores of the principal components ranking the first and the second, respectively, and different shapes of the scattered points represent the different groups of the samples. B.OPLS-DA score plots, the abscissa t[1]P represents the predicted principal component score of the first principal component, the ordinate t[1]O represents the orthogonal principal component score, and different shapes of the scattered points represent the different groups of the samples 图 1 PCA(A)和OPLS-DA(B)得分图 Fig. 1 PCA (A)and OPLS-DA(B)score plots
2.2 差异代谢物的筛选

本试验使用的卡值标准为P<0.05,同时VIP>1,筛选结果见图 2,图中每个点代表一个代谢物,显著上调的代谢物以红色表示,显著下调的代谢物以蓝色表示,非显著差异的代谢物为灰色。

火山图中每个点代表一个代谢物,横坐标代表Fold change值(取以2为底的对数),纵坐标表示学生t检验的P-value(取以10为底对数的负数),散点大小代表OPLS-DA模型的VIP值,散点越大VIP值越大 Each point in the volcano plot represents a metabolite, the abscissa represents the Fold change value (take base 2 logarithm), the ordinate represents the P-value of student's t-test (take the negative number of base logarithm of 10), the scatter size represents the VIP value of OPLS-DA model, and the larger the scatter, the greater the VIP value 图 2 差异代谢物筛选火山图 Fig. 2 Differential metabolites screening volcano plot

通过对筛选出的差异代谢物进行定性,共定性到159种差异代谢物,与C组相比,T组中有49种下调,110种上调。通过以上分析得到的差异代谢物,在生物学上往往具有结果和功能相似性/互补性,或者受同一代谢通路的正调控/负调控,表现为在不同试验组间具有相似或相反的表达特征。对这类特征进行HCA分析,有助于将具有相同特征的代谢物归为一类,并发现代谢物在试验组间的变化特征。对每一组差异代谢物的定量值计算欧式距离矩阵(Euclidean distance matrix),以完全连锁方法对差异代谢物进行聚类,并以热力图进行展示,结果见图 3。从HCA分析结果可以看出,差异代谢物在两组样本中区分显著。

纵坐标代表不同试验分组,横坐标代表该组对比的差异代谢物,不同位置的色块代表对应位置代谢物的相对表达量 The ordinate represents different experimental groups, the abscissa represents different metabolites compared with the group, and the color blocks at different positions represent the relative expression of metabolites at corresponding positions 图 3 HCA热力图 Fig. 3 HCA heatmap

对定性到的全部159种差异代谢物的P值和VIP值进一步分析,本试验使用的卡值标准为P<0.05,同时VIP>1,这两个卡值标准之间并不存在优先级,但当差异代谢物能够同时满足的P值偏小且VIP值偏大时,则可以认为该物质的组间差异性极显著,推测是猫乳腺癌发生过程中的关键差异代谢物(表 1)。

表 1 猫乳腺肿癌关键差异代谢产物 Table 1 Key differential metabolites of feline mammary carcinomas
2.3 差异代谢物的代谢通路分析

代谢反应及其调控并不单独进行,往往会形成复杂的通路和网络,它们的相互影响和相互调控最终导致代谢组发生系统性的改变。KEGG数据库以基因和基因组的功能信息为基础,以代谢反应为线索,串联可能的代谢途径及对应的调控蛋白,以图解的方式展示细胞生理生化过程。将筛选出的全部差异代谢物对KEGG数据库进行映射,代谢通路气泡图见图 4。差异代谢产物主要参与甘氨酸、丝氨酸和苏氨酸的代谢、色氨酸代谢、嘌呤代谢、嘧啶代谢、苯丙氨酸代谢、甘油酯代谢、精氨酸和脯氨酸代谢、甘油磷脂代谢、组氨酸代谢和嘌呤代谢等生物代谢过程。

图中每一个气泡代表一个代谢通路,气泡所在横坐标和气泡大小表示该通路在拓扑分析中的影响程度,气泡越大影响越大;纵坐标和气泡颜色表示富集分析的P值(取负自然对数,即-lnP-value),颜色越深P值越小,富集程度越显著 Each bubble in the figure represents a metabolic pathway, the abscissa and the size of the bubble indicate the degree of influence of the pathway in the topology analysis, the larger the bubble, the greater the effect; The ordinate and bubble color indicate the P value of the enrichment analysis (take the negative natural logarithm, -lnP-value), the darker the color, the smaller the P value, the more significant the enrichment degree 图 4 差异代谢通路气泡图 Fig. 4 Bubble plots of differential metabolic pathways

对上述关键差异代谢物在猫乳腺癌发生过程中参与的代谢途径进行分析,根据关键差异代谢物所在代谢通路的影响程度和富集度以及其本身在猫乳腺癌发生过程中所起到的作用,最终筛选出5种与猫乳腺癌发生的分子机制密切相关的标志性差异代谢物,其中EGT和creatine出现下调,IAA、choline和uric acid出现上调。5种标志性差异代谢物之间的互作网络见图 5,5种标志性差异代谢产物通路归属结果见表 2

红色代表该物质在T组中出现上调,蓝色代表该物质在T组中出现下调,黄色代表代谢通路,其他为标志性差异代谢的上下游物质 Red means that the substance is up-regulated in group T, blue means that the substance is down-regulated in group T, yellow represents the metabolic pathway, and the others are the upstream and downstream substances that are differentially metabolized 图 5 5种标志性差异代谢物互作网络图 Fig. 5 Interaction network diagram of 5 biomarker differential metabolites
表 2 5种差异代谢产物代谢通路归属 Table 2 Metabolic pathways of 5 differential metabolites
3 讨论

代谢组学技术作为近些年新兴起的一种高通量检测技术,在各个领域的研究中,尤其是在疾病早期诊断及生物标志物筛选方面已经有了广泛的应用[17-18]。由于猫乳腺癌具有恶性程度高、侵袭性强的特点,近年来对猫乳腺癌发病机制的研究也越来越多。

麦角硫因(EGT)是一种天然抗氧化剂,除具有天然免疫增强功能外[19],还具有抗氧化、抗炎和细胞保护作用[20]。它可以清除自由基、维持DNA的生物合成及参与细胞免疫等,是一种重要的活性物质。氧化应激是癌细胞的显著特征,并且贯穿癌症发生发展的全过程。本试验T组中EGT含量显著下降,究其原因可能是EGT作为一种抗氧化剂在肿瘤发生过程中被大量消耗,从而导致本试验中T组EGT含量出现下调。

肌酸由精氨酸、甘氨酸和蛋氨酸以1~2 g·d-1的速率在肾、胰腺和肝内合成[21],它可以快速为细胞提供能量。在癌症发生过程中,癌细胞快速无限增殖,需要大量的三磷酸腺苷(ATP)参与。但ATP在机体内存储量较少,且合成速度较慢,因此需要消耗肌酸快速合成ATP参与癌细胞增殖,这可能就是导致本试验T组中肌酸含量出现下调的原因,人乳腺癌的研究也有肌酸下降的报道[22]。除此之外,肌酸的其他多种潜在作用也可以部分解释其抗癌作用。有证据表明,肌酸可促进抗炎作用[23-24],而且有研究显示,补充肌酸可以减缓大鼠的肿瘤生长,而不影响存活率[25]。未来也可以将肌酸作为一种潜在的抗癌药物进行研究。

吲哚乙酸(IAA)是一种普遍存在于植物体内的天然生长素,参与植物细胞的分裂、分化、生长及植物果实的生长等过程。辣根过氧化物酶(horseradish peroxidase, HRP)是一种特殊的植物过氧化物酶,参与IAA氧化过程。IAA在人体中耐受性较高,当HRP存在时IAA会被氧化,这一过程可以产生有毒的代谢产物,该物质只对癌细胞产生毒性作用,对正常组织没有危害[26]。这可能是导致本试验中T组吲哚乙酸含量出现上调的原因。在对胃癌患者尿液的检测中,IAA含量也出现了升高,IAA对人类胃癌的早期诊断有一定临床意义[27-28]。还有研究显示,血液中高浓度的IAA与前列腺癌患者体内的前列腺特异抗原和淋巴结进展显著相关[29]

胆碱是生物膜的组成成分,也是乙酰胆碱的前体。胆碱的代谢分为三个主要途径:1)磷酸化合成磷脂酰胆碱的CDP胆碱途径(也称为Kennedy途径);2)乙酰化合成神经递质乙酰胆碱;3)氧化生成甲基供体甜菜碱和S-腺苷蛋氨酸[30]。在癌细胞大量增殖过程中,机体需要大量的胆碱参与细胞增殖过程,这可能是本试验中T组胆碱含量出现上调的原因。有研究显示,在生理胆碱浓度下,癌细胞胆碱转运率是正常细胞的2倍[31]。在关于乳腺肿瘤、前列腺肿瘤和不同类型脑肿瘤的研究中,胆碱的含量也表现上调[32]

尿酸是嘌呤代谢的产物,是一种天然的抗氧化剂,可以参与氧化还原反应,起到抗氧化、抗DNA损伤的作用,也能够促进血管平滑肌增生、导致内皮功能紊乱等[33-34]。血液内尿酸堆积的主要原因是嘌呤代谢过程中所需物质出现了缺失,核酸分解速度加快以及嘌呤氧化产生尿酸增多。在恶性肿瘤增生期间细胞核酸分解过多,嘌呤代谢增强,尿酸生成量增加,从而导致本试验中T组尿酸含量出现上调。在人乳腺癌患者血浆代谢组学的研究中,尿酸在癌症患者血浆中也表现为增加[22]。也有研究显示,尿酸结晶盐可以激活固有免疫细胞活化细胞毒性T细胞,从而增强机体的免疫能力[35]。同时,尿酸结晶还可以增加共刺激分子CD80和CD86的表达而刺激滤泡树突状细胞成熟,继而激活CD8+T细胞,促进γ-干扰素释放,从而抑制癌细胞的生长[36]

4 结论

本试验应用LC-MS代谢组学技术对乳腺癌猫血清进行了检测,结合多元统计分析及单变量分析,共筛选出5种关键差异代谢产物。与健康猫相比,乳腺癌猫血清中麦角硫因和肌酸出现下调,吲哚乙酸、胆碱和尿酸出现上调。这些差异代谢物表明,猫乳腺癌发生过程中,机体代谢变化涉及了氧化应激、氨基酸代谢异常、嘌呤代谢异常等多个代谢途径,为今后猫乳腺肿瘤的研究开辟了一个新的思路。

参考文献
[1] CUNHA S, CORGOZINHO K, JUSTEN H, et al. Survival and disease-free interval of cats with mammary carcinoma treated with chain mastectomy[J]. Acta Sci Vet, 2016, 44(1): 1349.
[2] HAHN K A, BRAVO L, AVENELL J S. Feline breast carcinoma as a pathologic and therapeutic model for human breast cancer[J]. In Vivo, 1994, 8(5): 825–828.
[3] OVERLEY B, SHOFER F S, GOLDSCHMIDT M H, et al. Association between ovarihysterectomy and feline mammary carcinoma[J]. J Vet Intern Med, 2005, 19(4): 560–563. DOI: 10.1111/j.1939-1676.2005.tb02727.x
[4] HAYES H M JR, MILNE K L, MANDELL C P. Epidemiological features of feline mammary carcinoma[J]. Vet Rec, 1981, 108(22): 476–479. DOI: 10.1136/vr.108.22.476
[5] WEIJER K, HART A A. Prognostic factors in feline mammary carcinoma[J]. J Natl Cancer Inst, 1983, 70(4): 709–716.
[6] TOGNI M, MASUDA E K, KOMMERS G D, et al. A retrospective study of 207 cases of mammary tumors in queens[J]. Pesq Vet Bras, 2013, 33(3): 353–358. DOI: 10.1590/S0100-736X2013000300013
[7] 何柳, 吴文玉, 赵德明, 等. 猫乳腺单纯癌病理诊断报告病例[J]. 中国兽医杂志, 2013, 49(6): 62–63.
HE L, WU W Y, ZHAO D M, et al. A case report of pathological diagnosis of cat breast simple carcinoma[J]. Chinese Journal of Veterinary Medicine, 2013, 49(6): 62–63. (in Chinese)
[8] ZAPPULLI V, RASOTTO R, CALIARI D, et al. Prognostic evaluation of feline mammary carcinomas:a review of the literature[J]. Vet Pathol, 2015, 52(1): 46–60.
[9] SOARES M, MADEIRA S, CORREIA J, et al. Molecular based subtyping of feline mammary carcinomas and clinicopathological characterization[J]. Breast, 2016, 27: 44–51. DOI: 10.1016/j.breast.2016.02.016
[10] CUI P F, HUANG C H, GUO J Q, et al. Metabolic profiling of tumors, sera, and skeletal muscles from an orthotopic murine model of gastric cancer associated-cachexia[J]. J Proteome Res, 2019, 18(4): 1880–1892. DOI: 10.1021/acs.jproteome.9b00088
[11] LI W J, HONG B, LI Q, et al. An integrated serum and urinary metabonomic research of Rhizoma Curcumae-Rhizoma Sparganii drug pair in hysteromyoma rats based on UPLC-Q-TOF-MS analysis[J]. J Ethnopharmacol, 2019, 231: 374–385. DOI: 10.1016/j.jep.2018.11.033
[12] MANISCALCO L, GUIL-LUNA S, IUSSICH S, et al. Expression of the short form of RON/STK in feline mammary carcinoma[J]. Vet Pathol, 2019, 56(2): 220–229.
[13] CHANG Y C, CHUANG H L, YIN J H, et al. Signi-ficance of sphingosine kinase 1 expression in feline mammary tumors[J]. BMC Vet Res, 2019, 15: 155. DOI: 10.1186/s12917-019-1883-z
[14] DAGHER E, ABADIE J, LOUSSOUARN D, et al. Feline invasive mammary carcinomas:prognostic value of histological grading[J]. Vet Pathol, 2019, 56(5): 660–670. DOI: 10.1177/0300985819846870
[15] GUNDIM L F, WILSON T M, SOARES N P, et al. Her-2 expression in feline mammary lesions[J]. Acta Vet Brno, 2019, 88(1): 43–47. DOI: 10.2754/avb201988010043
[16] FERREIRA D, MARTINS B, SOARES M, et al. Gene expression association study in feline mammary carcinomas[J]. PLoS One, 2019, 14(8): e0221776. DOI: 10.1371/journal.pone.0221776
[17] CHEN E M, LU J, CHEN D Y, et al. Dynamic changes of plasma metabolites in pigs with GalN-induced acute liver failure using GC-MS and UPLC-MS[J]. Biomed Pharmacother, 2017, 93: 480–489. DOI: 10.1016/j.biopha.2017.06.049
[18] DE SOUSA E B, DOS SANTOS JUNIOR G C, DUARTE M E L, et al. Metabolomics as a promising tool for early osteoarthritis diagnosis[J]. Braz J Med Biol Res, 2017, 50(11): e6485. DOI: 10.1590/1414-431x20176485
[19] YOSHIDA S, SHIME H, FUNAMI K, et al. The anti-oxidant ergothioneine augments the immunomodulatory function of TLR agonists by direct action on macrophages[J]. PLoS One, 2017, 12(1): e0169360. DOI: 10.1371/journal.pone.0169360
[20] CHEAH I K, HALLIWELL B. Ergothioneine; antioxidant potential, physiological function and role in disease[J]. Biochim Biophys Acta, 2012, 1822(5): 784–793. DOI: 10.1016/j.bbadis.2011.09.017
[21] PERSKY A M, BRAZEAU G A, HOCHHAUS G. Pharmacokinetics of the dietary supplement creatine[J]. Clin Pharmacokinet, 2003, 42(6): 557–574. DOI: 10.2165/00003088-200342060-00005
[22] JOVÉ M, COLLADO R, QUILES J L, et al. A plasma metabolomic signature discloses human breast cancer[J]. Oncotarget, 2017, 8(12): 19522–19533. DOI: 10.18632/oncotarget.14521
[23] COOPER R, NACLERIO F, ALLGROVE J, et al. Creatine supplementation with specific view to exercise/sports performance:an update[J]. J Int Soc Sports Nutr, 2012, 9(1): 33–43. DOI: 10.1186/1550-2783-9-33
[24] DEMINICE R, ROSA F T, FRANCO G S, et al. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans[J]. Nutrition, 2013, 29(9): 1127–1132. DOI: 10.1016/j.nut.2013.03.003
[25] CAMPOS-FERRAZ P L, GUALANO B, DAS NEVES W, et al. Exploratory studies of the potential anti-cancer effects of creatine[J]. Amino Acids, 2016, 48(8): 1993–2001. DOI: 10.1007/s00726-016-2180-9
[26] 高宁.吲哚乙酸/辣根过氧化物酶对人涎腺腺样囊性癌发生发展作用的实验研究[D].郑州: 郑州大学, 2017.
GAO N.Experimental Study on the impact of indole acetic acid/horseradish peroxidase on the occurrence and development of salivary adenoid cystic carcinoma (SACC)[D]. Zhengzhou: Zhengzhou University, 2017.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10459-1018072407.htm
[27] 李万君. 尿中吲哚乙酸测定对诊断早期胃癌的探索[J]. 白求恩医科大学学报, 1979(3): 90–92.
LI W J. Detection of indoleacetic acid in urine for the diagnosis of early gastric cancer[J]. Journal of Norman Bethune University of Medical Science, 1979(3): 90–92. (in Chinese)
[28] 宁波市第二医院肿瘤科肿瘤实验室. 测定尿中吲哚乙酸对诊断胃癌的初步探讨[J]. 肿瘤防治研究, 1975, 3(2): 27–33.
Department of Oncology, Ningbo Second Hospital. Preliminary study on determination of indoleacetic acid in urine for diagnosis of gastric cancer[J]. Cancer Research on Prevention and Treatment, 1975, 3(2): 27–33. (in Chinese)
[29] ZONI E, MINOLI M, BOVET C, et al. Preoperative plasma fatty acid metabolites inform risk of prostate cancer progression and may be used for personalized patient stratification[J]. BMC Cancer, 2019, 19(1): 1216–1233. DOI: 10.1186/s12885-019-6418-2
[30] KATZ-BRULL R, MARGALIT R, DEGANI H. Differential routing of choline in implanted breast cancer and normal organs[J]. Magn Reson Med, 2001, 46(1): 31–38. DOI: 10.1002/mrm.1157
[31] KATZ-BRULL R, SEGER D, RIVENSON-SEGAL D, et al. Metabolic markers of breast cancer:enhanced choline metabolism and reduced choline-ether-phospholipid synthesis[J]. Cancer Res, 2002, 62(7): 1966–1970.
[32] ACKERSTAFF E, GLUNDE K, BHUJWALLA Z M. Choline phospholipid metabolism:a target in cancer cells?[J]. J Cell Biochem, 2003, 90(3): 525–533. DOI: 10.1002/jcb.10659
[33] 周建辉, 陈香美. 尿酸在临床疾病中的意义[J]. 实用医学杂志, 2004, 20(3): 337–338.
ZHOU J H, CHEN X M. The significance of uric acid in clinical diseases[J]. The Journal of Practical Medicine, 2004, 20(3): 337–338. (in Chinese)
[34] SPITSIN S, KOPROWSKI H. Role of uric acid in multiple sclerosis[J]. Curr Top Microbiol Immunol, 2008, 318: 325–342.
[35] MARTINON F, PÉTRILLI V, MAYOR A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome[J]. Nature, 2006, 440(7081): 237–241. DOI: 10.1038/nature04516
[36] WANG Y H, MA X L, SU C, et al. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine[J]. Sci Rep, 2015, 5: 16427–16437. DOI: 10.1038/srep16427