畜牧兽医学报  2020, Vol. 51 Issue (9): 2197-2206. DOI: 10.11843/j.issn.0366-6964.2020.09.017    PDF    
蒸汽爆破、复合菌剂及其联合处理对不同收获期柠条纤维降解的影响
黄晓瑜, 张小强, 张宇, 邢晓南, 赵雷云, 李博, 杨晨, 张恩平     
西北农林科技大学动物科技学院, 杨凌 712100
摘要:旨在研究蒸汽爆破、复合菌发酵及其联合处理对柠条纤维组分降解的影响。在开花期(4月)、结实期(7月)及落叶期(11月)采集全株柠条,测定其常规营养成分;按照试验内容分为3个部分:1)研究3个不同压强(0.8、1.1和1.4 MPa)下蒸汽爆破处理对柠条粉纤维组分的降解作用;2)研究复合菌剂发酵对柠条纤维组分降解的影响;3)研究蒸汽爆破+复合菌剂发酵对柠条纤维组分降解的影响。每项试验内容中柠条的3个生育期均作为固定因素,所有处理仅与同期未处理柠条做比较,每个处理3个重复。测定每个处理柠条的中性洗涤纤维、酸性洗涤纤维、木质素、半纤维素和纤维素含量及发酵底物中羧甲基纤维素酶和木聚糖酶活性。结果表明:1)从主要营养成分含量方面综合判断,结实期柠条饲用价值较高。2)与未爆破组相比,随着蒸汽爆破压强的增大,开花期与结实期柠条中性洗涤纤维、酸性洗涤纤维、木质素(仅开花期)及纤维素含量先升高后降低(P < 0.05),半纤维素线性降低(P < 0.01),中性洗涤可溶物先降低后升高(P < 0.05)。3)与同期发酵前相比,复合菌发酵后柠条中性洗涤纤维(P < 0.01)、酸性洗涤纤维(P < 0.01)及纤维素(P < 0.01)含量显著下降,其中开花期与落叶期半纤维素显著降低(P < 0.05),中性洗涤可溶物含量显著增加(P < 0.01)。4)与同期未爆破发酵组相比,经蒸汽爆破预处理后进行复合菌剂发酵的开花期和落叶期柠条,随着爆破压强的增大,其中开花期与结实期纤维素(P < 0.01)含量显著降低,中性洗涤纤维(P < 0.001)、酸性洗涤纤维(P < 0.05)、半纤维素(P < 0.001)含量显著下降,中性洗涤可溶物含量显著升高(P < 0.001),开花期及结实期柠条木质素含量先降低后升高(P < 0.05),落叶期柠条木质素含量显著下降(P < 0.01)。5)与同期未爆破发酵组相比,蒸汽爆破预处理后发酵的开花期和落叶期柠条,随着蒸汽压强增大,羧甲基纤维素酶活性先降低后升高(P < 0.001),而结实期羧甲基纤维素酶活性显著升高(P < 0.001);开花期、结实期及落叶期柠条发酵基质中木聚糖酶活性随着蒸汽压强增大呈线性升高趋势(P < 0.001)。结果表明,通过蒸汽爆破、复合菌剂及其联合处理能够显著降低不同收获期柠条的纤维组分含量,其中蒸汽爆破和复合菌剂联合处理的效果最佳。本研究为有效评估不同处理对柠条的营养价值及其在畜牧养殖过程中的应用提供科学依据和数据支撑。
关键词柠条    蒸汽爆破    复合菌发酵    纤维降解    
Steam Explosion, Bacterial Complex and Their Combination Effect on Fiber Degradation of Caragana Harvested from Different Seasons
HUANG Xiaoyu, ZHANG Xiaoqiang, ZHANG Yu, XING Xiaonan, ZHAO Leiyun, LI Bo, YANG Chen, ZHANG Enping     
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Abstract: The purpose of this study was to investigate the effect of steam explosion pretreatments, compound bacteria fermentation and their combined treatment on the degradation of fiber in Caragana. In flowering stage (April), fructicative stage (July) and dormancy stage (November), the whole plant of Caragana was collected and its general nutrients were determined. According to the research content, the experiment was divided into 3 parts: 1)Degradation of fiber components in Caragana powder was studied under 3 different steam explosion pressures (0.8、1.1 and 1.4 MPa). 2)The effect of compound bacteria fermentation on the degradation of Caragana powder fiber component was determined. 3) The effect of steam explosion + compound bacteria fermentation on the degradation of Caragana powder fiber component was studied. The 3 growth periods of Caragana powder in each experiment were regarded as fixed factors. All treatments were compared with untreated Caragana powder in the same period, and each treatment was repeated 3 times. The neutral detergent fiber, acid detergent fiber, lignin, hemicellulose and cellulose, and the activity of carboxymethyl cellulase and xylanase were detected in each treatment. The results showed that: 1) According to the nutrient component, Caragana had the highest feeding value at the fructicative stage. 2) Compared with the control group, the content of neutral detergent fiber, acid detergent fiber, lignin (only in flowering stage) and cellulose increased first and then decreased (P < 0.05), Hemicellulose decreased linearly (P < 0.01), and the content of neutral detergent solute decreased first and then increased (P < 0.05) as steam explosion pressureincreasedat flowering and fructicative stage. 3) Compared with the same period before fermentation, the content of neutral detergent fiber (P < 0.01), acid detergent fiber (P < 0.01) and cellulose (P < 0.01) decreased significantly and neutral detergent solute (P < 0.01) increased significantly after fermentation. The hemicellulose decreased significantly at flowering and dormancy stage (P < 0.01). 4) After steam explosion pretreatment and fermentation, the content of neutral detergent fiber (P < 0.001), acid detergent fiber (P < 0.05) and hemicellulose (P < 0.001) decreased significantly, the content of cellulose decreased significantly at flowering and fructicative stage (P < 0.01), and the content of neutral detergent solute (P < 0.001) increased significantly with the increase of steam explosion pressure at the flowering stage and dormancy stage, and the content of lignin (P < 0.05) decreased first and then increased at flowering and fructicative stage, and decreased significantly at dormancy stage (P < 0.01) with the increase of steam explosion pressure, compared with the same period without steam explosion pretreatment. 5) After steam explosion pretreatment and fermentation, carboxymethyl cellulase activity (P < 0.001) first decreased and then increased at the flowering anddormancy stage, while carboxymethyl cellulase activity (P < 0.001) significantly increased in the fructicative stage with the increase of steam explosion pressure; the xylanase activity (P < 0.001) increased linearly with the increase of steam explosion pressure in the three periods. The results indicated that the fiber content of Caragana at different harvest time could be significantly reduced by steam explosion, compound bacteria and their combined treatment, among which the effect of combined treatment was the best. This study provides scientific basis and data support for the effective evaluation of the nutritional value of Caragana and its application in animal husbandry.
Key words: Caragana    steam explosion    fermentation of complex bacteria    fiber degradation    

优质粗饲料缺乏是制约我国反刍动物养殖产业高质量发展的关键因素。柠条属豆科锦鸡儿属植物[1-2],灌木,根系发达,具根瘤菌,是我国荒漠、半荒漠及风沙草滩地带营造防风固沙林、水土保持林的重要树种。平茬复壮是柠条林管护的常用手段,一般每隔3~5年平茬一次。平茬的柠条植株生物量大,单丛生物量可达0.45 kg·m-2,粗蛋白含量较多年生柠条高4%[3],可作为反刍动物饲料来源。但随着柠条生长发育,植株老化,纤维含量增加,植物细胞壁木质化程度逐渐增加,从而降低反刍动物对其的消化利用[4];合理高效利用柠条能降低动物生产成本。蒸汽爆破处理是一种破坏纤维素结构,并将半纤维素水解为可溶性糖的物理过程[5]。Yue等[6]发现,蒸汽爆破预处理芦苇2 min,中性洗涤纤维降低了23%,其中半纤维素降低了90%,可溶性糖增加25%。柠条青贮能改善适口性,可提高羔羊消化吸收率达73.45%[7]。微生物在纤维素消化过程中起着重要的作用,枯草芽孢杆菌和酵母菌都有降解木质素和纤维素的能力。包文庆等[8]报道,枯草芽孢杆菌能高效分泌纤维素酶,可降解饲料中的纤维素,进入肠道后能调节菌群平衡,促进家禽生长和提高饲料利用率[9]。酵母菌能部分降解木质素进而提高纤维素消化率。金加明和吴宝霞[10]发现,饲喂酵母菌处理过的小麦秸秆,育肥期小尾寒羊的日增重提高了68.2%。乳酸菌在发酵过程中产生乳酸,降低pH,抑制有害菌增殖,增加饲料发酵品质[11],提高发酵终产物必需氨基酸水平[12]。目前,利用复合菌发酵降低粗饲料纤维是一种有效的手段。郭萌萌等[13]利用复合菌发酵米糠,中性洗涤纤维降低30.84%。因此,利用复合菌发酵降低柠条纤维组分,提高其饲用品质,也是一种可行的方式。

本试验以开花期、结实期、落叶期3个生育期整株柠条为材料,研究不同采收期柠条主要营养成分变化以及蒸汽爆破与复合菌剂(枯草芽孢杆菌、酵母菌、乳酸菌)发酵及其联合处理对柠条纤维组分降解的影响,为高效利用柠条饲料资源提供参考。

1 材料与方法 1.1 试验材料

1.1.1 柠条   在陕北榆林毛乌素沙漠选择平茬后生长4年的柠条林,分别在开花期(4月)、结实期(7月)及落叶期(11月)从主茎距地面15 cm处刈割,整株植株带回实验室,65 ℃干燥, 粉碎,过0.5 mm筛,柠条粉室温储存。

1.1.2 复合菌剂   菌种采用本实验室分离培养的枯草芽孢杆菌、酵母菌及乳酸菌。单个菌种从-80 ℃冰箱中取出活化后,在37 ℃恒温培养箱中富集培养,活菌数大于8×108 CFU·mL-1,按乳酸菌:酵母菌:枯草芽孢杆菌=3:5:1制成复合菌剂。

1.2 试验设计

1.2.1 蒸汽爆破试验   以相同生育期柠条粉为对照,研究0.8、1.1和1.4 MPa三个不同压强蒸汽爆破处理对柠条粉纤维组分的降解作用。

1.2.2 复合菌剂发酵   以相同生育期柠条粉调制后发酵基质为对照组,研究复合菌剂发酵对柠条纤维组分降解的影响。

1.2.3 蒸汽爆破+复合菌剂发酵   以相同生育期柠条粉为对照组,研究蒸汽爆破+复合菌剂发酵对柠条纤维组分降解的影响。

以上试验中柠条的3个生育期均作为固定因素,所有处理仅与同期未处理柠条作比较。所有试验每个处理设3个重复。

1.3 测定指标和方法

称取2 g发酵样品于装有20 mL蒸馏水的50 mL离心管中震荡30 min,5 000 r·min-1离心10 min,吸取上清液,参考Lowe等[14]的方法测定羧甲基纤维素酶(CMCase)及木聚糖酶的活性。水分、粗蛋白(CP)及粗脂肪(EE)的测定分别参照GB/T 6435—2014[15]、GB/T 6432—1994[16]与GB/T 6433—2006[17]进行,中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)分别按GB/T 20806—2006[18]、NY/T 1459—2007[19]在ANKOM 200i半自动纤维仪测定,木质素按GB/T 20805—2006[20]的方法进行。其中NDF与ADF之差为半纤维素,ADF与木质素之差为纤维素。NDF、ADF、木质素、纤维素及半纤维素的降解率参照Li等[21]的方法进行计算。降解率(%)=(A-B)/A×100,A为发酵前底物成分含量,B为发酵后底物成分含量。

1.4 数据处理与统计分析

数据以“平均值±标准误”表示,用Excel 2013整理,应用SPSS21.0统计软件ANOVA模型分析,并采用Duncan’s法进行多重比较,以P < 0.05表示差异显著,P < 0.01表示差异极显著。

2 结果 2.1 不同生育期柠条营养成分

平茬后生长4年的柠条不同生育期(开花期(4月)、结实期(7月)及落叶期(11月))柠条植株营养成分测定结果见表 1。由表 1可知,结实期柠条CP、EE、NDS等营养成分含量高于开花期和落叶期,综合评价,结实期柠条饲用价值最高。

表 1 不同生长时期柠条营养成分(风干基础) Table 1 Nutrient of Caragana at different growth stages(air-dry basis) 
2.2 不同压强条件下蒸汽爆破处理对柠条纤维组分降解的影响

不同压强蒸汽爆破对柠条纤维组分的影响见表 2。由表 2可知,与对照组相比,随着蒸汽压强增大,开花期和结实期柠条蒸汽爆破后,NDF(P < 0.001)、ADF(P < 0.05)及纤维素(P < 0.05)含量先升高后降低, 其中0.8 MPa最高(除ADF结实期外),木质素(P < 0.05)呈现升高趋势,半纤维素(P < 0.001)呈降低趋势,中性洗涤可溶物(P < 0.05)先降低后升高;柠条落叶期,NDF(P < 0.001)、ADF(P < 0.001)、木质素(P < 0.001)及半纤维素(P < 0.001)显著降低,纤维素(P=0.14)含量变化不显著,中性洗涤可溶物(P < 0.001)呈升高趋势。结果提示,对落叶期柠条采用蒸汽爆破处理能显著降低柠条纤维组分。

表 2 不同压强蒸汽爆破预处理对柠条纤维组分降解的影响 Table 2 Effect of different pressure steam explosion pretreatment on the degradation of Caragana fiber components 
2.3 复合菌发酵处理对柠条纤维组分降解的影响

复合菌发酵对柠条纤维组分的影响见表 3。由表 3可知,与同生育期的柠条发酵前相比,复合菌发酵后,NDF(P < 0.001)、ADF(P < 0.001)及纤维素(P < 0.001)含量显著下降,中性洗涤可溶物(P < 0.001)显著上升,其中开花期与落叶期半纤维素含量显著下降(P < 0.05)。结果提示,在任何时期刈割,复合菌剂发酵均可显著提高柠条的饲用价值。

表 3 复合菌发酵对柠条纤维组分降解的影响 Table 3 The effect of complex bacteria fermentation on the degradation of Caragana fiber components 
2.4 蒸汽爆破、复合菌剂及其联合处理对柠条纤维组分降解及羧甲基纤维素与木聚糖酶活的影响

蒸汽爆破、复合菌剂及其联合处理对柠条纤维组分降解及羧甲基纤维素酶与木聚糖酶活性的影响见表 4。由表 4可知,随着蒸汽压强增大,与同生育期未爆破发酵组相比,经蒸汽爆破预处理后进行复合菌剂发酵的开花期和落叶期柠条,随着爆破压强的增大,NDF(P < 0.05)、ADF(P < 0.05)、半纤维素(P < 0.001)及纤维素(P < 0.01)含量显著下降,中性洗涤可溶物含量(P < 0.05)显著升高,CMCase活性(P < 0.01)先降低后升高,而结实期CMCase活性(P < 0.01)显著升高;开花期、结实期及落叶期柠条发酵基质中木聚糖酶活性(P < 0.01)随着蒸汽压强增大呈线性升高趋势;开花期及结实期柠条木质素含量(P < 0.05)先降低后升高,落叶期柠条木质素含量显著下降(P < 0.01)。该结果提示,蒸汽爆破,对不同生育期柠条发酵饲用品质不同指标的影响不一致。

表 4 蒸汽爆破、复合菌剂及其联合处理对柠条纤维组分降解及羧甲基纤维素酶与木聚糖酶活性的影响 Table 4 Steam explosion, bacterial complex and their combination effect on fiber degradation and carboxymethylcellulase activity and xylanase activity of Caragana 
3 讨论 3.1 不同压强蒸汽爆破预处理对柠条纤维组分降解的影响

蒸汽爆破预处理主要通过断裂半纤维素之间化学键,释放半纤维素[22]。Singh等[23]报道,蒸汽爆破处理能将半纤维素转化为单糖或者寡糖。Li等[24]发现,蒸汽爆破预处理玉米秸秆能促进玉米秸秆木质纤维素的降解进而提高甲烷转化率。本试验中,柠条生长期中,结实期柠条NDF和ADF较开花期与落叶期低,结实期为柠条旺盛生长期,嫩枝量和叶量大,与吕建明[25]研究结果相一致。周静静等[26]发现,结实期柠条萌枝长增量可达0.19 cm·d-1。本试验中,蒸汽爆破预处理不同柠条生育期,半纤维素随着压强的升高显著降低(P < 0.001),与王永淼等[27]研究结果一致。Wang等[28]发现,蒸汽爆破预处理胡枝子茎,木质素降解率随着蒸汽压强增大而增大,且断裂了碳水化合物与木质素之间的化学键,导致半纤维素明显减少。在本研究中,随着压强增大,NDS的增加主要是由于半纤维素的降解与转化,与Zhao等[29]结果一致,而NDF、ADF在开花期、结实期呈现先升高后降低的变化趋势,结实期呈现线性降低趋势,我们推测可能与柠条生育期营养动态变化有关。黄帅等[30]报道,柠条在开花期、结实期的NDF显著低于落叶期,NDS显著高于落叶期。本试验中,0.8 MPa处理组,NDF、ADF显著高于其它试验组。Chang等[31]研究发现,蒸汽爆破预处理玉米秸秆增加了木质素含量,主要是蒸汽断开了木质素与半纤维素之间化学键,导致木质素含量增加。本试验中,随着压强增大,开花期与结实期木质素含量增加,与Chang等[31]的研究结果相一致。

3.2 复合菌发酵对柠条纤维组分降解的影响

发酵微生物能分泌纤维素酶降解纤维素。茹婷等[32]发现,单株酵母菌J3发酵玉米秸秆,粗蛋白与纤维降解率没有显著变化,作为玉米秸秆发酵剂开发潜力不大。李茂等[33]发现,添加乳酸菌和纤维素酶处理王草,能显著降低NDF,增加粗蛋白,提高王草青贮品质。王尧悦等[34]报道,将枯草芽孢杆菌液与发酵基质以1:50接种,37 ℃培养24 h能明显降低饲料中纤维素水平。郭萌萌等[13]发现,利用饲用复合菌发酵玉米皮-米糠9 d,NDF、ADF分别降低了30.84%和24.25%,还原性糖增加了171.05%。本试验中,复合菌发酵柠条从开花期到落叶期,中性洗涤纤维分别降低28.51%,12.18%及37.12%,酸性洗涤纤维分别从47.03%、44.34%、62.98%降至32.68%、37.71%及35.07%。Cheng等[35]研究发现,厌氧菌具有很强的降解能力,尤其对半纤维素的降解。厌氧菌可以利用从半纤维素中分解释放出来的单糖维持生命活动。本试验中,利用复合菌先有氧后厌氧发酵,柠条从开花期到落叶期,半纤维素分别从16.49%、16.72%和20.10%降至13.73%、15.91%及15.91%。

3.3 蒸汽爆破、复合菌剂及其联合处理对柠条纤维组分降解及羧甲基纤维素酶与木聚糖酶活性的影响

蒸汽爆破能断裂木质素与纤维素之间的化学键,利于纤维素酶消化。由于植物细胞结构复杂性,使其具有抵抗微生物消化的能力。Mulat等[36]发现,蒸汽爆破处理桦木后再经微生物发酵能显著提高甲烷气体产量。Yi等[37]发现,蒸汽爆破预处理生物质能提高厌氧微生物降解木质纤维素进而提高生物能源产量。本试验中,复合菌发酵蒸汽爆破未处理组柠条从开花期到落叶期,压强为0.8 MPa,中性洗涤纤维降解率分别为9.40%,19.95%和20.40%,酸性洗涤纤维降解率6.40%,15.49%和18.14%。Sasaki等[38]认为,蒸汽爆破预处理能降低生物质纤维素含量,增加NDS含量,有利于促进微生物发酵对纤维素的降解。本试验中,复合菌发酵蒸汽爆破处理组柠条从开花期到落叶期,NDF降解率最大为落叶期1.4 MPa达58.26%,ADF降解率最大为落叶期1.4 MPa达54.46%,显著高于对照组。同时,纤维素降解率显著高于对照组,主要是蒸汽爆破断开了纤维素之间的化学键[36],更有利于纤维素酶与之结合,进而提高纤维消化率。羧甲基纤维素酶及木聚糖酶的活性影响纤维素、半纤维素的降解[39-40]。研究发现,羧甲基纤维素酶及木聚糖酶活性高则纤维素和半纤维素降解率高,低则其降解率低[41-42]。Barichievich和Calza[43]表明,厌氧菌分泌的纤维素酶活很大程度受到底物含量的影响,特别是编码碳水化合物基因的降解酶受底物含量的调节[44]。研究表示,蒸汽爆破能促进半纤维素溶解进而转化为NDS,主要是单糖和寡糖的转化[24],便于厌氧菌快速消化利用。本试验中,羧甲基纤维素酶活及木聚糖酶活有随着压强增大而显著增大的趋势,进而增加了柠条纤维组分的降解。

4 结论

不同生育期的柠条饲用价值不同,结实期刈割饲用价值最高;蒸汽爆破处理对不同生长期柠条纤维组分的含量影响不同;复合菌剂发酵可显著提高柠条饲用品质;蒸汽爆破预处理+复合菌发酵处理柠条,从纤维组分降解方面效果更佳。

参考文献
[1] 冯龙. 柠条在养畜业中的应用及其种植关键技术[J]. 现代畜牧科技, 2017(9): 58.
FENG L. Application of Caragana in animal husbandry and its key planting technology[J]. Modern Animal Husbandry Science and Technology, 2017(9): 58. (in Chinese)
[2] 卫永太, 宋旭东. 柠条资源化利用及栽培管理措施[J]. 现代农业科技, 2016(16): 147.
WEI Y T, SONG X D. Resource utilization and cultivation management measures of Caragana Korshinskii Kom[J]. Modern Agricultural Science and Technology, 2016(16): 147. (in Chinese)
[3] 李生荣. 柠条平茬更新的生物量调查及综合利用[J]. 青海科技, 2007, 14(5): 12–13.
LI S R. Biomass investigation and comprehensive utilization of Caragana in the flat stubble regeneration[J]. Qinghai Science and Technology, 2007, 14(5): 12–13. (in Chinese)
[4] 王珍喜.柠条对牛、羊饲用价值的研究[D].太谷: 山西农业大学, 2004.
WANG Z X.A study on the feeding value of Caragana to cattle and sheep[D].Taigu: Shanxi Agricultural University, 2004.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10113-2005114705.htm
[5] BALAT M. Production of bioethanol from lignocellulosic materials via the biochemical pathway:Areview[J]. Energy Conv Manag, 2011, 52(2): 858–875. DOI: 10.1016/j.enconman.2010.08.013
[6] YUE Z B, LIU R H, YU H Q, et al. Enhanced anaerobic ruminal degradation of bulrush through steam explosion pretreatment[J]. Ind Eng Chem Res, 2008, 47(16): 5899–5905. DOI: 10.1021/ie800202c
[7] 徐志军, 胡燕, 董宽虎. 不同精粗比柠条青贮日粮对羔羊生产性能和消化代谢的影响[J]. 草地学报, 2015, 23(3): 586–593.
XU Z J, HU Y, DOND K H. Effect of Different concentrate to forage ratios of Caragana korshinskii silage on lamb performance, digestion, and metabolism[J]. Acta Agrestia Sinica, 2015, 23(3): 586–593. (in Chinese)
[8] 包文庆, 罗学刚, 杨圣. 超富集植物体降解菌枯草芽孢杆菌BS-C3产纤维素酶条件研究[J]. 中国农学通报, 2017, 33(19): 80–85.
BAO W Q, LUO X G, YANG S. The Cellulase producing conditions of hyperaccumulation plant degradation bacterium Bacillus subtilis BS-C3[J]. Chinese Agricultural Science Bulletin, 2017, 33(19): 80–85. (in Chinese)
[9] SEN S, INGALE S L, KIM Y W, et al. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology[J]. Res Vet Sci, 2012, 93(1): 264–268. DOI: 10.1016/j.rvsc.2011.05.021
[10] 金加明, 吴宝霞. 纤维素酶和酵母菌处理小麦秸秆喂育肥羊试验[J]. 饲料研究, 2007(9): 45–46.
JIN J M, WU B X. Feeding trial on wheat straw treated with cellulase and yeast in fattening sheep[J]. Feed Research, 2007(9): 45–46. (in Chinese)
[11] DJUKIĆ-VUKOVIĆ A P, MOJOVIĆ L V, SEMENČENKO V V, et al. Effective valorisation of distillery stillage by integrated production of lactic acid and high quality feed[J]. Food Res Int, 2015, 73: 75–80.
[12] 刘磊, 冉玉兵, 张名位, 等. 乳酸菌发酵对脱脂米糠营养成分的影响[J]. 中国食品学报, 2020, 20(1): 118–126.
LIU L, RAN Y B, ZHANG M W, et al. Effect of lactic acid bacteria fermentation on nutritional component of defatted rice bran[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1): 118–126. (in Chinese)
[13] 郭萌萌, 曹锡, 吴义, 等. 饲用复合菌剂降解玉米皮-米糠混合原料中粗纤维的效果研究[J]. 动物营养学报, 2019, 31(10): 4893–4900.
GUO M M, CAO X, WU Y, et al. Evaluation effects of feed compound probiotics to degrade crude fiber in corn husk-rice bran mixed raw materials[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4893–4900. (in Chinese)
[14] LOWE S E, THEODOROU M K, TRINCI A P J. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, holocellulose, cellulose, and xylan[J]. Appl Environ Microbiol, 1987, 53(6): 1216–1223. DOI: 10.1128/AEM.53.6.1216-1223.1987
[15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 6435-2014饲料中水分的测定[S].北京: 中国标准出版社, 2014.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.GB/T 6435-2014 Determination of moisture in feedstuffs[S].Beijing: Standards Press of China, 2014.(in Chinese)
[16] 中华人民共和国国家技术监督局.GB/T 6432-1994饲料中粗蛋白测定方法[S].北京: 中国标准出版社, 1994.
General Administration of Quality Supervision.GB/T 6432-1994 Method for the determination of crude protein in feedstuffs[S].Beijing: Standards Press of China, 1994.(in Chinese)
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 6433-2006饲料中粗脂肪的测定[S].北京: 中国标准出版社, 2006.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.GB/T 6433-2006 Determination of crude fat in feeds[S].Beijing: Standards Press of China, 2006.(in Chinese)
[18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 20806-2006饲料中中性洗涤纤维(NDF)的测定[S].北京: 中国标准出版社, 2006.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China.GB/T 20806-2006 Determination of neutral detergent fiber in feedstuffs[S].Beijing: China Standards Press, 2006.(in Chinese)
[19] 中华人民共和国农业部.NY/T 1459-2007饲料中酸性洗涤纤维的测定[S].北京: 农业出版社, 2007.
Ministry of Agriculture of the People's Republic of China.NY/T 1459-2007 Determination of acid detergent fiber in feedstuff (ADF)[S].Beijing: Agricultural Press, 2007.(in Chinese)
[20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 20805-2006饲料中酸性洗涤木质素(ADL)的测定[S].北京: 中国标准出版社, 2006.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration.GB/T 20805-2006 Determination of acid detergent lignin in feedstuffs[S].Beijing: China Standards Press, 2006.(in Chinese)
[21] LI Y F, JIN W, MU C L, et al. Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate[J]. J Basic Microbiol, 2017, 57(11): 933–940. DOI: 10.1002/jobm.201700132
[22] DU C M, NAN X M, WANG K, et al. Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermentation, sugar yield and microbial structure in vitro[J]. RSC Adv, 2019, 9(7): 41775–41782.
[23] SINGH J, SUHAG M, DHAKA A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods:A review[J]. Carbohydr Polym, 2015, 117: 624–631. DOI: 10.1016/j.carbpol.2014.10.012
[24] LI J H, ZHANG R H, SIDDHU M A H, et al. Enhancing methane production of corn stover through a novel way:Sequent pretreatment of potassium hydroxide and steam explosion[J]. Bioresour Technol, 2015, 181: 345–350. DOI: 10.1016/j.biortech.2015.01.050
[25] 吕建明. 柠条不同平茬时期的营养成分测定[J]. 现代农业科技, 2013(12): 141, 145.
LV J M. Determination of nutrient components of Caragana korshinskii in different flat stubble periods[J]. Modern Agricultural Science and Technology, 2013(12): 141, 145. (in Chinese)
[26] 周静静, 马红彬, 蔡育蓉, 等. 平茬时期与留茬高度对宁夏荒漠草原柠条营养成分和再生的影响[J]. 西北农业学报, 2017, 26(2): 287–293.
ZHOU J J, MA H B, CAI Y R, et al. Effects of stubble period and stubble height on nutrient mass fraction and regeneration of Caragana korshinskii in desert steppe of Ningxia[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(2): 287–293. (in Chinese)
[27] 王永淼, 吉骊, 孙达峰, 等. 蒸汽爆破预处理对柠条组成结构及其酶解影响研究[J]. 广州化工, 2015, 43(18): 36–38, 65.
WANG Y M, JI L, SUN D F, et al. Study on cellulosic structure, composition and enzymatic hydrolysis of stream-exploded Caragana Korshinskii Kom Stalk[J]. Guangzhou Chemical Industry, 2015, 43(18): 36–38, 65. (in Chinese)
[28] WANG K, JIANG J X, XU F, et al. Influence of steaming pressure on steam explosion pretreatment of Lespedeza stalks (Lespedeza cyrtobotrya).Ⅱ.Characteristics of degraded lignin[J]. J Appl Polym Sci, 2010, 116(3): 1617–1625.
[29] ZHAO X B, ZHANG L H, LIU D H. Biomass recalcitrance.Part Ⅰ:the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose[J]. Biofuels Bioprod Biorefining, 2012, 6(4): 465–482. DOI: 10.1002/bbb.1331
[30] 黄帅, 王荣斌, 白玉恒, 等. 柠条营养动态分析及山羊瘤胃降解特性的研究[J]. 中国农学通报, 2018, 34(4): 137–142.
HUANG S, WANG R B, BAI Y H, et al. Nutrients dynamic change and rumen degradation characteristics of Caragana korshinskii in Goat[J]. Chinese Agricultural Science Bulletin, 2018, 34(4): 137–142. (in Chinese)
[31] CHANG J, CHENG W, YIN Q Q, et al. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover[J]. Bioresour Technol, 2012, 104: 587–592. DOI: 10.1016/j.biortech.2011.10.070
[32] 茹婷, 纪亿, 赵丽梅, 等. 益生菌发酵处理玉米秸秆效果研究[J]. 畜牧与饲料科学, 2015, 36(11): 25–26.
RU T, JI Y, ZHAO L M, et al. Effect of fermentation by probiotics on nutritive value of corn stalk[J]. Animal Husbandry and Feed Science, 2015, 36(11): 25–26. (in Chinese)
[33] 李茂, 字学娟, 吕仁龙, 等.添加乳酸菌和纤维素酶对王草青贮品质和瘤胃降解率的影响[J/OL].中国畜牧杂志, 2020: 1-9[2020-01-19].
LI M, ZI X J, LV R L, et al.Effects of Lactobacillus and cellulase on the quality and rumen degradation rate of Wangcao silage[J/OL].Chinese Journal of Animal Husbandry, 2020: 1-9[2020-01-19].(in Chinese)
[34] 王尧悦, 曹平华, 陈玉林, 等. 一株纤维素降解菌的鉴定及其对饲料粗纤维的降解效果[J]. 西北农林科技大学学报:自然科学版, 2016, 44(7): 16–24.
WANG Y Y, CAO P H, CHEN Y L, et al. Identification of a cellulose-decomposing strain and its application for degrading different cellulosic materials[J]. Journal of Northwest A & F University:Natural Science Edition, 2016, 44(7): 16–24. (in Chinese)
[35] CHENG Y F, SHI Q C, SUN R L, et al. The biotechnological potential of anaerobic fungi on fiber degradation and methane production[J]. World J Microbiol Biotechnol, 2018, 34(10): 155. DOI: 10.1007/s11274-018-2539-z
[36] MULAT D G, HUERTA S G, KALYANI D, et al. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii[J]. Biotechnol Biofuels, 2018, 11(1): 19.
[37] YI Z, JIA Z, XU F Q, et al. Pretreatment of lignocellulosic biomass for enhanced biogas production[J]. Prog Energ Combust Sci, 2014, 42: 35–53. DOI: 10.1016/j.pecs.2014.01.001
[38] SASAKI C, SUMIMOTO K, ASADA C, et al. Direct hydrolysis of cellulose to glucose using ultra-high temperature and pressure steam explosion[J]. Carbohydr Polym, 2012, 89(1): 298–301. DOI: 10.1016/j.carbpol.2012.02.040
[39] CHIRAYIL C J, JOY J, MATHEW L, et al. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant[J]. Ind Crops Prod, 2014, 59: 27–34. DOI: 10.1016/j.indcrop.2014.04.020
[40] 桑羽希, 张昊琳, 高晓静, 等. 草菇菇渣栽培双孢蘑菇过程中的理化性状和木质纤维素分解利用研究[J]. 中国农学通报, 2019, 35(8): 152–157.
SANG Y X, ZHANG H L, GAO X J, et al. Physicochemical properties and lignocellulose decomposition of Agaricus bisporus compost cultivated with Volvariella volvacea mushroom residue[J]. Chinese Agricultural Science Bulletin, 2019, 35(8): 152–157. (in Chinese)
[41] 李晓博, 李晓, 李玉. 双孢蘑菇生产中木质素、纤维素和半纤维素的降解及利用研究[J]. 食用菌, 2009, 31(2): 6–8, 10.
LI X B, LI X, LI Y. Study on the degradation and utilization of Lignin Cellulose and Hemicellulose during the cultivation of A garicus bisporus[J]. Edible Fungi, 2009, 31(2): 6–8, 10. (in Chinese)
[42] 秦改娟, 王晓, 陈青君, 等. 不同配方培养料生产双孢蘑菇过程中主要木质纤维素降解酶及物料组分的变化[J]. 应用与环境生物学报, 2017, 23(6): 1035–1041.
QIN G J, WANG X, CHEN Q J, et al. Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus[J]. Chinese Journal of Applied & Environmental Biology, 2017, 23(6): 1035–1041. (in Chinese)
[43] BARICHIEVICH E M, CALZA R E. Supernatant protein and cellulase activities of the anaerobic ruminal fungus Neocallimastix frontalis EB188[J]. Appl Environ Microbiol, 1990, 56(1): 43–48.
[44] COUGER M B, YOUSSEF N H, STRUCHTEMEYER C G, et al. Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp.strain C1A[J]. Biotechnol Biofuels, 2015, 8(1): 208.