随着畜禽业的快速发展,抗生素被普遍用来提高肉鸡生产效率。但是,其副作用影响了肉产品质量,对人类健康也存在潜在危害[1]。为了获得优质、无污染的肉鸡,研究者发现,益生菌可作为一种新型无污染的添加剂来替代抗生素[2]。
益生菌是一种或多种能够维持正常胃肠道菌群活动的有益微生物[3]。益生菌可抵抗病原菌增殖,包括刺激宿主的免疫系统和清除有益肠道菌群的抑制物质。其机制可能包括营养物质和肠上皮黏附受体的竞争[4-5]。益生菌可以改善胃肠道黏膜的完整性和营养物质的消化能力,从而提高动物的性能[6]。“健康三益菌”(干酪乳杆菌、嗜酸乳杆菌与双歧杆菌)是常用的益生菌[7]。有研究表明,饮用含有1×109 cfu的益生菌溶液时,干酪乳杆菌可在胃肠道中存活并停留3 d,表现出益生菌保卫肠道时对胃液、水解酶和胆汁酸的高耐受性[8]。发酵乳酸杆菌在(2×106~1×107)cfu·mL-1范围内时,不仅可以提高肉鸡的生长性能,而且对测定小肠绒毛组织形态有益[9]。乳酸杆菌在食品基质中产生的乳酸和醋酸盐,可直接刺激肠道上皮细胞生长和改善肠道屏障功能[10]。乳酸菌可通过降低细菌酶活性和增加消化酶活性来改善饲料养分的摄入、消化和最终吸收,增加肠道代谢率[11]。益生菌的类型很多,近年来研究结果显示,多菌株协同作用要优于单一菌株的功效。因此,研究趋势逐渐转向益生菌复合制剂。
能量摄取是动物机体发育和器官功能实现的必要条件,这依赖于消化道对养分的吸收。单糖是所有动物必需的营养和关键的能量,由食物经消化酶作用产生的营养物质转化而成。胃肠道消化器官中的空肠是食物消化吸收的关键部位,超过98%的葡萄糖被空肠末端吸收[12]。单糖由特定转运子进行转运,如溶质载体家族中的GLUT2,又名葡萄糖转运蛋白2,它可将单糖转运到肠基膜,以供肠细胞吸收[13-14]。GLUT2是葡萄糖在肝和血液之间转移的主要转运蛋白,能促进单糖通过肠基底膜流入肝。在肝中,所有的单糖都转化为葡萄糖,释放到血液中,然后分布到全身并加以利用[15-16]。转运蛋白编码基因的上调表达可增加营养物质的转运能力,促进营养物质流入肠上皮细胞进而流入机体[17]。GLUT2可作用于肾来重吸收葡萄糖,其含量可能是小肠葡萄糖吸收能力的决定性因素。
“健康三益菌”对肠道消化有益。然而,3种益生菌的混合物对改善肉鸡生长性能和肠道消化吸收的作用机制尚不清楚,我国在益生菌添加剂对肉鸡肠道糖转运蛋白影响的相关研究甚少。因此,本研究以幼龄肉鸡为试验对象,研究益生菌互作对肉鸡生长性能、肠道消化吸收及相关糖转运蛋白的影响,旨在推广“健康三益菌”调控肉鸡采食量和饲料转换率的新型生物技术,探讨益生菌在肉鸡生长发育中的有益作用,进而提高养殖产业的利润。
1 材料与方法 1.1 试验材料本试验菌种(干酪乳杆菌、嗜酸乳杆菌、双歧杆菌)购自上海丹尼斯克添加剂有限公司,“健康三益菌”分别按比例(2:1:1、1:2:1、1:1:2)牛乳发酵成复合菌乳制品。所有复合菌制剂的有效活菌数均大于3.4×109cfu·g-1。
1.2 试验设计与动物饲养管理200只1日龄雄性爱拔益加肉雏鸡被随机分为4组,每组5个重复,每个重复10只。对照组正常饮水(control组),益生菌Ⅰ组(混合比例为2:1:1)、Ⅱ组(混合比例为1:2:1)、Ⅲ组(混合比例为1:1:2)补充1%复合菌乳制品于饮用水中,各组皆饲喂基础日粮,配方见表 1。为保证益生菌有效性,将发酵乳于4 ℃冰箱冷藏,定时更换重新配制。整个试验饲养周期为42 d,每21 d为一个阶段。
试验肉仔鸡按规定接种疫苗,采用3层立笼式喂养,每天08:00和20:00早、晚饲喂,鸡舍整洁且第一周温度维持在35 ℃,光照23 h,黑暗1 h。1周后温度缓慢降至22 ℃,光照时间下降至18 h,直至试验结束。每天记录各组肉鸡生长状况和采食量。
1.3 试验样品采集与分析1.3.1 生长性能和屠宰性能的测定 在空腹12 h并自由饮水情况下,以重复单位称量肉鸡。根据试验期间的记录,计算各个阶段肉鸡的平均日增重(ADG)、平均日采食量(ADFI)和料重比(FCR=ADG/ADFI)。
在21和42日龄时,对每组20只抽样肉仔鸡进行屠宰性能与消化器官指数的测定,测定方法参照文献[18]进行。
1.3.2 取材与肠切片制作观察 21和42日龄时,解剖样本并提取部分含内容物的空肠组织,两端用棉线捆绑,内容物于液氮保存待用。收集小肠各区段样本,部分肠段低温保存用于后续分子试验;剩余肠段冲洗净后取样1 cm2于4%甲醛溶液中,低温固定24 h,乙醇与二甲苯处理后的标本包埋于石蜡中,6 μm横切后进行HE染色。测定小肠组织的肠绒毛高度(VH)、隐窝深度(CD)、绒毛高度与隐窝深度比值(V/C)等形态学变化。
1.3.3 免疫组织化学定位空肠GLUT2 二甲苯和乙醇对4 μm的空肠组织切片进行处理,3%过氧化氢封闭15 min。加入封闭液(18 μL Triton X-100,5.7 mL PBS,0.3 g牛血清蛋白混合液)在37 ℃下封闭特异性抗原10 min,抑制非特异性染色。组织切片用稀释(1:300)的一抗(Bioss,bs-0351r)在4 ℃孵育过夜。次日用PBS清洗组织,并将其保存在含HRP标识的抗兔二级抗体(Servicebio,GB23303)的1:200稀释液中室温下静置1 h。蒸馏水冲洗后,DAB显色,对细胞核进行苏木精染色20 s,再次用酒精与二甲苯处理后,封片镜检,每张切片选择3个400 ×视野相同背景光下拍照。
1.4 ELISA测定肠道消化酶活性将待测的空肠内容物标本低温融化,取2 g内容物加入18 mL PBS(pH 7.4)匀浆器充分匀浆制成10%匀浆液,3 000 g低温离心20 min后取上清。操作步骤遵循说明书(mlbio,ELISA kit)。
1.5 空肠中总RNA提取与qRT-PCR检测GLUT2表达Trizol法提取空肠总RNA,NanoDrop 2000检测RNA浓度与纯度。TaKaRa逆转录试剂盒获得cDNA。qRT-PCR使用SYBR green (TaKaRa, SYBR Premix Ex TaqTM II Kit)检测GLUT2 mRNA水平的相对表达量。按照最优PCR方案,在95 ℃时,热循环方案持续5 min,随后在退火和延伸过程中进行40个循环(95 ℃ 5 s,60 ℃ 35 s,72 ℃ 20 s),每个样品3个重复。所有基因表达的定量按照公式P=2-△△CT进行计算分析。由NCBI获得基因序列,使用Primer 3.0设计引物,熔解曲线分析确定引物特异性。所用引物见表 2。
利用Excel 2018处理数据,SPSS 24.0统计软件进行ANOVA分析,采用Duncan’s检验来确定各处理间的差异。运用GraphPad Prism 8进一步分析并制作柱状图。
2 结果 2.1 益生菌互作对肉鸡生长和屠宰性能的影响从表 3可知,在整个生长期间,与Control组相比,饮水饲喂1%混合益生菌对肉鸡的ADFI无显著影响,对FCR有降低趋势(P≥0.05),但可显著增加肉鸡ADG(P < 0.05)。益生菌Ⅰ组促进肉鸡生产性能的作用更为显著(P < 0.05)。
由表 4可知,在整个生长期间,与Control组相比,饮水饲喂1%混合益生菌对肉鸡的屠宰性能无显著影响(P>0.05)。肉鸡的全净膛率皆超过60%,半净膛率为78%~84%。在21 d时,各组消化器官指数无显著差异(P>0.05);在42 d时,与Control组相比,益生菌Ⅰ组腺胃指数显著上升(P < 0.05),益生菌Ⅱ组与Ⅲ组有上升趋势(P>0.05)。
如图 1所示,在21 d时,益生菌处理组的消化酶(AMY、LPS、TPS)活性皆显著高于Control组(P < 0.05);其中,AMY与TPS的活性均为Ⅲ组中最高(P < 0.05),AMY活性在Ⅰ组、Ⅱ组内无统计学差异(P>0.05,图 1A),Ⅰ组的TPS活性显著高于Ⅱ组(P < 0.05,图 1C);LPS的活性在益生菌组间未见显著差异(P>0.05,图 1B)。在42 d时,与Control组相比,AMY的活性在Ⅱ组最高,Ⅲ组次之, 皆达到显著水平(P < 0.05),Ⅰ组有增高趋势但不显著(P>0.05,图 1A)。益生菌组LPS的活性皆显著高于Control组(P < 0.05),但益生菌组间无显著差异(P>0.05,图 1B);TPS的活性在Ⅰ组中最高,且显著高于Control组(P < 0.05),Ⅱ组、Ⅲ组间无显著差异(P>0.05,图 1C)。
如图 2所示,在整个生长期间,与Control组相比,益生菌组均显著提高了小肠VH与V/C值,降低了隐窝深度(P < 0.05)。在21 d时,各益生菌组相比,Ⅰ组显著降低十二指肠的CD,提高其V/C值,Ⅱ组显著提高空肠的VH,Ⅲ组显著提高十二指肠与回肠的VH,并降低小肠后段(空肠和回肠)的CD,提高其V/C值(P < 0.05,图 2A、2C、2E);在42 d时,各益生菌组相比,Ⅰ组显著提高小肠前段(十二指肠和空肠)的VH、V/C值和降低小肠后段的CD,Ⅱ组显著提高回肠的VH与V/C值和降低十二指肠的CD,Ⅰ、Ⅱ组对小肠形态的有益效应显著高于Ⅲ组(P < 0.05,图 2B、2D、2F)。
如图 3所示,在所有图片中,细胞核均被苏木精染为蓝色,GLUT2免疫反应性为棕褐色。箭头所指处可见在细胞核的外围形成一个棕褐色的圆圈状,可知空肠中GLUT2阳性表达于小肠上皮细胞外膜。
如图 4所示,在21 d时,与Control组相比,Ⅰ、Ⅲ组空肠GLUT2 mRNA过表达(P < 0.05),GLUT2 mRNA表达量在Ⅰ组与Ⅲ组间、Ⅱ组与Control组间无显著差异(P>0.05)。在42 d时,与Control组相比,GLUT2 mRNA表达量在Ⅰ组中最高,Ⅲ组次之,皆达到显著水平(P < 0.05),Ⅱ组表达有上调趋势(P>0.05)。
生产性能被普遍认为是评价肉鸡特定经济价值的方法。本试验结果显示,益生菌互作对肉鸡的屠宰性能无显著影响。但试验肉鸡的全净膛率皆在60%以上,半净膛率皆在78%~84%之间,且较稳定,表明肉鸡产肉性能较好且益生菌互作不会对其产生不利影响;益生菌互作可影响生长期肉鸡的生长性能,提高ADG和饲料利用率,对肉鸡的ADFI无显著影响,这与许多研究结果一致。董佳楠等[19]发现,乳酸菌和酵母菌的混合培养物具有正协同作用,且混合比例为0.8% + 1.8%、1.2% + 1.35%时分别对提高肉鸡ADG和增强营养物质的消化吸收效果最佳。郝志敏等[20]在快大型黄羽肉鸡饲养全程投喂乳酸菌为主的复合菌,发现益生菌可以显著提高肉仔鸡的ADG与饲料转化率,改善生产性能。刘淑娇等[21]发现,饲料添加0.6%的乳酸菌复合制剂也有相同效应。然而,也有一些研究报道显示,使用益生菌补充饲料对肉鸡的性能没有积极的效果。江琳琳等[22]和Makled等[23]研究表明,日粮中添加1%乳酸培养物(活菌密度≥ 1×108cfu·g-1)对肉鸡活体重和屠宰率无显著影响。Lee等[24]将8株不同种枯草芽孢杆菌混合成一株多菌种产品(活菌密度=107 cfu·mL-1)饮水饲喂肉鸡21 d,发现单菌株或多菌株产品对肉鸡日增重皆无显著影响。这表明,益生菌对肉鸡生长性能的影响不一致,这种结果可能与多种因素有关,如益生菌菌株、益生菌剂量、饲料成分和环境、肉鸡特征(年龄、品种和生产阶段)等。本试验中,益生菌Ⅰ组对42 d肉鸡腺胃指数有显著影响,其余益生菌组影响不显著,表明不同比例的混合益生菌对内分泌腺生长发育的影响具有差异性。这种差异可能是由于益生菌在肉鸡肠内生存能力的变化和用于肉鸡的益生菌剂量的变化造成的。
由于消化酶具有种类和年龄特异性、敏感性及短潜伏期等特点,被认为是反映个体营养状况的可靠指标。肠道内较高的消化酶活性可提高饲料利用率和吸收能力。近年来,关于益生菌对消化酶影响的研究结果存在差异。Gong等[25]发现,芽孢杆菌(活菌密度为108 cfu·g-1)能刺激十二指肠中AMY、TPS、LPS的活性,且蜡样芽孢杆菌对TPS、LPS的刺激作用显著。Wang和Gu[26]的研究表明,益生菌凝固剂NJ 0516增加了十二指肠内AMY的活性,对LPS的活性没有显著影响。Rajput等[27]发现,补充布拉酵母菌能增加肉鸡空肠内LPS的活性,但对AMY活性没有显著改善。而在本研究中,益生菌能刺激空肠内容物中AMY、LPS、TPS的特异性活性,且刺激效果存在生长时期、益生菌种类的差异。益生菌可以增强消化酶的活性,可能是由于其能降低肠道pH,产生消化维生素、酶和抗菌活性物质,保护肠道完整性,增强酶的活性;也可能是益生菌能够在动物的肠道中促进酶原转化,直接产生消化酶,益生菌与消化酶一起促进小肠吸收养分,进而促进肉鸡生长[28]。
肠绒毛高度和隐窝深度是重要的形态学参数,被认为是反映肠功能的最佳指标。绒毛高度越高,隐窝深度越浅,V/C值越高表明成熟肠上皮细胞数量越多,成熟度越高,消化酶的合成和分泌加快,肠功能增强[29-30]。已有研究表明,饮食中添加益生菌对肉鸡肠道形态学参数有积极的影响。Abdel-Moneim等[31]在鸡胚中注射双歧杆菌,发现可显著提高肉鸡回肠VH和V/C值,且生长性能、肠道的健康、功能、完整性与肠道内益生菌数量增加呈正相关。Bogucka等[32]的研究表明,在肉鸡日粮中添加1%益生菌制剂(乳酸菌、干酪乳杆菌、酿酒酵母)可改善10日龄肉鸡的小肠绒毛的形态参数。He等[33]发现,500 mg·kg-1复合菌(芽孢杆菌和酿酒酵母,活菌密度>109cfu·g-1)可增加十二指肠V/C值。这与本试验结果相符。在本试验中,益生菌互作可有效改善小肠绒毛组织形态发育,且改善效果与益生菌制剂配比、添加时期有关。在肉鸡生长期间(0~42 d),益生菌Ⅰ组对肉鸡肠绒毛组织发育作用效果最佳,益生菌Ⅲ组在肉鸡生长初期(0~21 d)作用效果显著,而益生菌Ⅱ组的最佳效应表现在生长后期(22~42 d)。近年来,益生菌已被证明可黏附在肠上皮,耐酸性环境,并能拮抗和竞争性消除体内某些病原体。益生菌促进小肠绒毛生长发育的机理可能与其抑制肠道有害微生物,减少黏膜感染,改善小肠内环境,保持肠道结构和功能完整,利于肠上皮细胞生长发育有关[34]。
在幼雏发育初期,从食物中吸收的单糖是机体最重要的营养来源,单糖的吸收依赖于肠上皮细胞刷状缘膜上的转运蛋白。在肠上皮细胞的基底外侧膜上,GLUT2能够将单糖运输出细胞进入血液,满足肉鸡孵化后早期生长对营养物质的需求[35]。Kaminski和Wong[36]发现,公鸡体内GLUT2 mRNA表达量高于母鸡,且差异仅局限于孵化期,火鸡的结果与之相反。Awad等[37]研究表明,食用受污染的饲料会损害肉鸡肠道功能,进而降低细胞水平的营养和能量的可获得性。Wang等[38]研究发现,饲料中添加2.5 g·kg-1的细菌素能够使空肠中GLUT2高表达,增加肠道对葡萄糖的吸收。Gilbert等[39]研究表明,饲粮蛋白质量和饲料限制会影响小肠中糖转运体以及消化酶的mRNA丰度,且这种影响与年龄有关,转运蛋白的表达在第7天下降,在第14天上升。Hayat等[40]发现,0.15 mg·kg-1的Cr3+能促使营养转运蛋白基因在肠道不同部位的高表达,对生长性能有良好的影响。大量研究表明,肠道内营养转运蛋白的表达可能受多种因素的影响,包括年龄、品种、饲料组成。本研究中,益生菌互作能够促进空肠中GLUT2 mRNA的表达,且不同比例的混合益生菌促进效果存在差异,整个生长期内益生菌Ⅰ组与Ⅲ组促进营养吸收的效果最佳。益生菌使GLUT2过表达的原因可能还与其提高动物日增重,改善体内与摄食和营养相关的肠道形态参数、消化酶类水平以及降低肉鸡FCR有关。目前,益生菌对营养转运蛋白具体影响机制的相关研究甚少,还需进一步研究。
4 结论综上所述,益生菌互作能够增强消化酶活性、改善消化道结构、上调营养转运蛋白表达,提高养分的消化率及能量吸收有效性,从而提高肉鸡的生产性能;且当干酪乳杆菌、嗜酸乳杆菌和双歧杆菌的混合配比为2:1:1时,复合益生菌制剂对肉鸡的作用效果较好。
[1] | STANTON T B. A call for antibiotic alternatives research[J]. Trends Microbiol, 2013, 21(3): 111–113. DOI: 10.1016/j.tim.2012.11.002 |
[2] |
付丽, 赵巍, 李立佳, 等. 乳酸菌培养物对肉鸡生长性能及免疫功能的影响[J]. 中国畜牧兽医, 2015, 42(9): 2337–2344.
FU L, ZHAO W, LI L J, et al. Effects of lactic acid bacteria cultures on growth performance and immunity function of broilers[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(9): 2337–2344. (in Chinese) |
[3] | OHIMAIN E I, OFONGO R T S. The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: a review[J]. Int J Anim Vet Adv, 2012, 4(2): 135–143. |
[4] | SHANMUGASUNDARAM R, MARKAZI A, MORTADA M, et al. Research Note:effect of synbiotic supplementation on caecal Clostridium perfringens load in broiler chickens with different necrotic enteritis challenge models[J]. Poult Sci, 2020, 99(5): 2452–2458. DOI: 10.1016/j.psj.2019.10.081 |
[5] | DE CESARE A, SALA C, CASTELLANI G, et al. Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome[J]. PLoS One, 2020, 15(1): e0228338. DOI: 10.1371/journal.pone.0228338 |
[6] | PEREIRA R, BORTOLUZZI C, DURRER A, et al. Performance and intestinal microbiota of chickens receiving probiotic in the feed and submitted to antibiotic therapy[J]. J Anim Physiol Anim Nutr (Berl), 2019, 103(1): 72–86. DOI: 10.1111/jpn.13004 |
[7] |
曾娟娟, 赵迪, 王磊, 等.干酪乳杆菌对脂多糖刺激仔猪抗氧化能力的影响[C]//第七届中国饲料营养学术研讨会论文集.郑州: 中国畜牧兽医学会动物营养学分会, 2014: 177.
ZENG J J, ZHAO D, WANG L, et al.Effect of Lactobacillus casei on the antioxidant capacity of piglets stimulated by lipopolysaccharide[C]//Proceeding of the 7th China Academic Symposium of Feed Nutrition.Zhengzhou: Animal Nutrition Branch of Chinese Animal Husbandry and Veterinary Association, 2014: 177.(in Chinese) |
[8] | RADICIONI M, KOIRALA R, FIORE W, et al. Survival of L. casei DG® (Lactobacillus paracasei CNCMI1572) in the gastrointestinal tract of a healthy paediatric population[J]. Eur J Nutr, 2019, 58(8): 3161–3170. DOI: 10.1007/s00394-018-1860-5 |
[9] |
郭元晟, 闫素梅, 史彬林, 等. 发酵乳酸杆菌对肉鸡小肠绒毛形态的影响[J]. 动物营养学报, 2011, 23(7): 1194–1200.
GUO Y S, YAN S M, SHI B L, et al. Effects of Lactobacillus fermentum supplementation on the small intestinal villus structure of broilers[J]. Chinese Journal of Animal Nutrition, 2011, 23(7): 1194–1200. (in Chinese) |
[10] | IRAPORDA C, ERREA A, ROMANIN D E, et al. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells[J]. Immunobiology, 2015, 220(10): 1161–1169. DOI: 10.1016/j.imbio.2015.06.004 |
[11] | HIGGINS J P, HIGGINS S E, VICENTE J L, et al. Temporal effects of lactic acid bacteria probiotic culture on Salmonella in neonatal broilers[J]. Poult Sci, 2007, 86(8): 1662–1666. DOI: 10.1093/ps/86.8.1662 |
[12] | CHUKWUMA C I, ISLAM S. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake:a multi-mode study[J]. Food Funct, 2015, 6(3): 955–962. DOI: 10.1039/C4FO00994K |
[13] | BRÖER S. Amino acid transport across mammalian intestinal and renal epithelia[J]. Physiol Rev, 2008, 88(1): 249–286. |
[14] | MUECKLER M, THORENS B. The SLC2 (GLUT) family of membrane transporters[J]. Mol Aspects Med, 2013, 34(2-3): 121–138. DOI: 10.1016/j.mam.2012.07.001 |
[15] | SALEH A A, EL-FAR A H, ABDEL-LATIF M A, et al. Exogenous dietary enzyme formulations improve growth performance of broiler chickens fed a low-energy diet targeting the intestinal nutrient transporter genes[J]. PLoS One, 2018, 13(5): e0198085. DOI: 10.1371/journal.pone.0198085 |
[16] | MANGIAN H F, TAPPENDEN K A. Butyrate increases GLUT2 mRNA abundance by initiating transcription in Caco2-BBe cells[J]. JPEN J Parenter Enteral Nutr, 2009, 33(6): 607–617. DOI: 10.1177/0148607109336599 |
[17] | RUHNKE I, RÖHE I, GOODARZI BOROOJENI F, et al. Feed supplemented with organic acids does not affect starch digestibility, nor intestinal absorptive or secretory function in broiler chickens[J]. J Anim Physiol Anim Nutr (Berl), 2015, 99(S1): 29–35. |
[18] |
王冬群, 丁雪梅, 白世平, 等. 不同非淀粉多糖复合酶在肉鸡玉米-豆粕型饲粮中的应用效果[J]. 动物营养学报, 2013, 25(10): 2459–2473.
WANG D Q, DING X M, BAI S P, et al. Application effects of different non-starch polysaccharide complex enzymes on corn-soybean meal diets for broilers[J]. Chinese Journal of Animal Nutrition, 2013, 25(10): 2459–2473. (in Chinese) |
[19] |
董佳楠, 易晓菲, 张维刚, 等. 乳酸菌和酵母菌复合培养物对肉仔鸡生长性能的影响[J]. 饲料工业, 2019, 40(6): 17–22.
DONG J N, YI X F, ZHANG W G, et al. Effect of compound culture of lactic acid bacteria and yeast on growth performance of broilers[J]. Feed Industry, 2019, 40(6): 17–22. (in Chinese) |
[20] |
郝志敏, 蔡晶晶, 潘晓花, 等. 益生菌对快大黄羽肉鸡生产性能的影响[J]. 中国饲料添加剂, 2011(11): 22–27.
HAO Z M, CAI J J, PAN X H, et al. Effects of probiotics on the production performance of fast-large-scale yellow-feathered chicken[J]. China Feed Additive, 2011(11): 22–27. (in Chinese) |
[21] |
刘淑娇, 张东旭, 刘丽敏. 复合益生菌制剂对肉仔鸡生产性能、血清生化指标和免疫功能的影响[J]. 中国饲料, 2019(2): 34–38.
LIU S J, ZHANG D X, LIU L M. Effects of compound probiotics on growth performance, serum biochemical indexes and immunity function of broilers[J]. China Feed, 2019(2): 34–38. (in Chinese) |
[22] |
江琳琳, 姚学强, 张毅峰, 等. 添加乳酸杆菌和链球菌培养物对肉鸡生产性能影响[J]. 北方牧业, 2019(1): 28.
JIANG L L, YAO X Q, ZHANG Y F, et al. Effect of adding Lactobacillus and Streptococcus cultures on broiler performance[J]. Beifang Muye, 2019(1): 28. (in Chinese) |
[23] | MAKLED M N, ABOUELEZZ K F M, GAD-ELKAREEM A E G, et al. Comparative influence of dietary probiotic, yoghurt, and sodium butyrate on growth performance, intestinal microbiota, blood hematology, and immune response of meat-type chickens[J]. Trop Anim Health Prod, 2019, 51(8): 2333–2342. DOI: 10.1007/s11250-019-01945-8 |
[24] | LEE K W, LEE S H, LILLEHOJ H S, et al. Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens[J]. Poult Sci, 2010, 89(2): 203–216. |
[25] | GONG L, WANG B K, MEI X Q, et al. Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers[J]. Anim Sci J, 2018, 89(11): 1561–1571. DOI: 10.1111/asj.13089 |
[26] | WANG Y B, GU Q. Effect of probiotic on growth performance and digestive enzyme activity of Arbor Acres broilers[J]. Res Vet Sci, 2010, 89(2): 163–167. DOI: 10.1016/j.rvsc.2010.03.009 |
[27] | RAJPUT I R, LI Y L, XU X, et al. Supplementary effects of Saccharomyces boulardii and Bacillus subtilis B10 on digestive enzyme activities, antioxidation capacity and blood homeostasis in broiler[J]. Int J Agric Biol, 2013, 15: 231–237. |
[28] | ZHANG L, ZHANG L L, ZHAN X A, et al. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88[J]. J Anim Sci Biotechnol, 2016, 7: 3. DOI: 10.1186/s40104-016-0061-4 |
[29] |
王凯英, 鲍坤, 徐超, 等. 饲料酸化剂对水貂小肠绒毛形态、营养物质消化率和N、P环境排放的影响[J]. 畜牧兽医学报, 2015, 46(4): 665–671.
WANG K Y, BAO K, XU C, et al. Effect of acidifier on intestinal villus morphology, nutrient digestibility, N, P excretion of growing mink[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(4): 665–671. (in Chinese) |
[30] | BROOM L J. Organic acids for improving intestinal health of poultry[J]. World Poultry Sci J, 2015, 71(4): 630–642. DOI: 10.1017/S0043933915002391 |
[31] | ABDEL-MONEIM A M E, ELBAZ A M, KHIDR R E S, et al. Effect of in ovo inoculation of Bifidobacterium spp. on growth performance, thyroid activity, ileum histomorphometry, and microbial enumeration of broilers[J]. Probiotics Antimicrob Prot, 2019. DOI: 10.1007/s12602-019-09613-x |
[32] | BOGUCKA J, RIBEIRO D M, BOGUSŁAWSKA-TRYK M, et al. Microstructure of the small intestine in broiler chickens fed a diet with probiotic or synbiotic supplementation[J]. J Anim Physiol Anim Nutr (Berl), 2019, 103(6): 1785–1791. DOI: 10.1111/jpn.13182 |
[33] | HE T F, LONG S F, MAHFUZ S, et al. Effects of probiotics as antibiotics substitutes on growth performance, serum biochemical parameters, intestinal morphology, and barrier function of broilers[J]. Animals, 2019, 9(11): 985. DOI: 10.3390/ani9110985 |
[34] | SINGH A K, TIWARI U P, BERROCOSO J D, et al. Effects of a combination of xylanase, amylase and protease, and probiotics on major nutrients including amino acids and non-starch polysaccharides utilization in broilers fed different level of fibers[J]. Poult Sci, 2019, 98(11): 5571–5581. DOI: 10.3382/ps/pez310 |
[35] | WU Y P, XU H, CAO X F, et al. Bacillus amyloliquefaciens ameliorates H2O2-induced oxidative damage by regulating transporters, tight junctions, and apoptosis gene expression in cell line IPEC-1[J]. Probiotics Antimicrob Prot, 2020, 12(2): 649–656. DOI: 10.1007/s12602-019-09538-5 |
[36] | KAMINSKI N A, WONG E A. Differential mRNA expression of nutrient transporters in male and female chickens[J]. Poult Sci, 2018, 97(1): 313–318. |
[37] | AWAD W A, GHAREEB K, ZENTEK J. Mechanisms underlying the inhibitory effect of the feed contaminant deoxynivalenol on glucose absorption in broiler chickens[J]. Vet J, 2014, 202(1): 188–190. DOI: 10.1016/j.tvjl.2014.06.012 |
[38] | WANG H T, YU C, HSIEH Y H, et al. Effects of albusin B (a bacteriocin) of Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorption of broiler chickens—its potential role as an alternative to feed antibiotics[J]. J Sci Food Agric, 2011, 91(13): 2338–2343. DOI: 10.1002/jsfa.4463 |
[39] | GILBERT E R, LI H F, EMMERSON D A, et al. Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks[J]. J Nutr, 2008, 138(2): 262–271. DOI: 10.1093/jn/138.2.262 |
[40] | HAYAT K, BODINGA B M, HAN D, et al. Effects of dietary inclusion of chromium propionate on growth performance, intestinal health, immune response and nutrient transporter gene expression in broilers[J]. Sci Total Environ, 2020, 705: 135869. DOI: 10.1016/j.scitotenv.2019.135869 |