畜牧兽医学报  2020, Vol. 51 Issue (9): 2120-2129. DOI: 10.11843/j.issn.0366-6964.2020.09.009    PDF    
GIP/GIPR经Akt-TCF4-GIPR正反馈增强GIP效应
叶华琼1,2, 安翠平2, 张凯艺2, 谢宁2, 毕延震3, 杨述林2, 李升和1     
1. 安徽科技学院动物科学学院, 滁州 233100;
2. 中国农业科学院北京畜牧兽医研究所, 北京 100193;
3. 湖北省农业科学院畜牧兽医研究所, 武汉 430064
摘要:旨在从GIP/GIPR下游的Akt和PKA信号通路中筛选出调控GIPR表达的调控因子,并解析GIPR的表达调控机制。本研究以小鼠胰岛瘤细胞系Min6为试验材料,在Akt、PKA信号通路阻断的条件下,通过Western blot筛选出与GIPR表达相关的转录因子T细胞因子4(TCF4);利用双荧光素酶报告系统确定TCF4对GIPR表达调控的影响,再通过敲除或过表达TCF4进一步验证两者之间的调控关系;采用CCK8法检测TCF4介导的促增殖作用,ELISA检测胰岛素分泌能力。结果显示,GIP可激活Akt磷酸化,并促进GIPR表达;在GIP激活及Akt、PKA信号通路阻断时,GIPR蛋白表达趋势与TCF4始终一致;TCF4可与GIPR核心启动子区结合,进而调控其表达;TCF4过表达时,GIPR的mRNA和蛋白表达上调,并促进β细胞增殖及胰岛素分泌;干扰TCF4显著降低GIP作用下GIPR的mRNA和蛋白表达,抑制β细胞增殖。综上,GIP结合GIPR后,经Akt信号通路上调TCF4进而增强GIPR表达,形成正反馈加强GIP信号,提高β细胞增殖和胰岛素分泌的功能,维持血糖稳态。因此,在胰岛素抵抗阻断Akt及上游信号通路时,经转录因子TCF4增强GIPR表达可作为改善胰岛β细胞功能障碍的靶点。
关键词葡萄糖依赖性促胰岛素多肽受体    T细胞因子4    Akt信号通路    Min6细胞    
GIP/GIPR Enhanced GIP Effect by Positive Feedback of Akt-TCF4-GIPR
YE Huaqiong1,2, AN Cuiping2, ZHANG Kaiyi2, XIE Ning2, BI Yanzhen3, YANG Shulin2, LI Shenghe1     
1. College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China;
2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
3. Institute of Animal Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Abstract: The purpose of this study was to screen the regulatory factors that regulate the expression of GIPR from the downstream Akt and PKA signal pathways of GIP/GIPR, and to analyze the regulatory mechanism of GIPR expression. In this study, mouse insulinoma cell line Min6 was used as experimental material, under the condition of blocking Akt and PKA signal pathways, transcription factor T cytokine 4 (TCF4) related to GIPR expression was screened by Western blot, the effect of TCF4 on the regulation of GIPR expression was determined by double luciferase reporter system, and the relationship between TCF4 and GIPR was further verified by knockout or overexpression of TCF4. The proliferation-promoting effect mediated by TCF4 was detected by CCK8 method, and the ability of insulin secretion was detected by ELISA. The results showed that GIP could activate Akt phosphorylation and promote the expression of GIPR; when GIP was activated and Akt and PKA signal pathways were blocked, the expression trend of GIPR protein was consistent with that of TCF4; TCF4 could bind to the core promoter of GIPR and regulate its expression; when TCF4 was overexpressed, the mRNA and protein expression of GIPR were up-regulated, and β-cell proliferation and insulin secretion were promoted. Interfering with TCF4 significantly decreased the mRNA and protein expression of GIPR under the action of GIP, and inhibited the proliferation of β-cell. In conclusion, after GIP is combined with GIPR, TCF4 is upregulated through Akt signal pathway to enhance the expression of GIPR, which forms a positive feedback to enhance GIP signal, and enhance the function of β-cell proliferation and insulin secretion to maintain blood glucose homeostasis. Therefore, when insulin resistance blocks Akt and upstream signal pathway, the enhancement of GIPR expression by transcription factor TCF4 can be used as a target to improve islet β-cell dysfunction.
Key words: glucose dependent insulinotropic polypeptide receptor    T cell factor 4    Akt signal pathway    Min6 cell    

2019年底,国际糖尿病联盟的统计数据显示,全球糖尿病相关医疗支出高达7 600亿美元,直接因糖尿病死亡的人数超过420万[1]。糖尿病已成为严重危害人类健康的社会问题,不仅给世界各国医疗支出带来巨大负担,也是死亡率高的疾病。糖尿病患者中,90%以上为2型糖尿病,其主要致病因素是能量慢性富集导致外周组织脂质过氧化、氧化应激和系统性低度炎症等级联反应[2-4];糖脂毒性和淀粉样多肽沉积致β细胞凋亡[5-7];胰岛对肠促胰岛素的调控应答失调[8-9],以及肠道菌群代谢功能异常等[10]

肠促胰岛素主要包括胰高血糖素样肽-1(glucagons like peptide-1,GLP-1)和葡萄糖依赖性促胰岛素多肽(glucose dependent insulinotropic polypeptide,GIP),在营养物质作用下,分别由回肠L细胞和空肠K细胞分泌,作用于β细胞相应受体GLP-1R和GIPR,进而调控β细胞分化增殖、胰岛素合成与分泌等[11-13]。肠促胰岛素效应降低可能是糖耐量降低的主要原因[14-15],GLP-1类似物及其受体激动剂[16-18]是当前2型糖尿病治疗的主流药物。近年研究发现,在病理状态下,2型糖尿病患者营养刺激的GLP-1和GIP分泌正常,但其受体表达严重下调,基于肠促胰岛素的降糖药没有补充任何缺失[19]。在健康个体的口服糖耐量中,GIP占糖促胰岛素效应的60%~70%[20],GIP及其受体信号通路的重要性逐渐被重视[21],解析胰岛β细胞中GIPR的表达机制已成为当前研究热点。

GIP作用于胰岛β细胞发挥调控功能的主要机制是,G蛋白耦联受体活化cAMP,经PKA-CREB信号转导,促进钙离子内流,介导胰岛素基因的表达和胰岛素释放[22]。对脂肪等细胞的研究显示,GIP/GIPR信号还可通过MAPK、Akt和FoxO1通路降低caspase3和bax基因的活性,发挥促增殖和抗凋亡的作用[23]。GIPR低表达与胰岛素抵抗和肥胖保护相关[20],若直接增进GIP/GIPR轴效应,血糖降低的同时会引起肥胖[24]。病理状态下,FoxO1定位于细胞核内[25-26],转录调控氧化应激和促凋亡基因表达,抑制胰岛素信号通路相关基因PPARγ等的表达,并与TCF4竞争性结合β-Catenin,降低TCF4的转录结合能力[27]。GIP下游的Akt、PKA、MAPK 3条通路是否通过TCF4对GIPR进行表达调控,其作用机制仍不清楚。

本研究的目的是鉴定调控GIPR表达的转录因子及相关信号通路,为药物开发增进胰岛β细胞肠促胰岛素效应奠定基础。

1 材料与方法 1.1 材料

1.1.1 细胞株、质粒载体及激素   试验所用小鼠胰岛瘤Min6细胞购自上海子实生物科技有限公司;pcDNA3.1(+)-GFP载体及PRL SV4为本实验室王彦芳研究员惠赠;GIP激素的成熟肽序列由武汉百意欣生物技术有限公司合成。

1.1.2 试验试剂   小鼠胰岛素ELISA试剂盒(Mercodia,瑞典,cat:10-1247-01),双荧光素酶检测试剂盒(Progema),lipofectamine2000(Invitrogen),OPTI-MEM(Gibco),质粒提取试剂盒(天根),Akti(Akt抑制剂,CST),PKAi(PKA抑制剂,CST),CCK8细胞增殖及细胞毒性检测试剂盒(碧波生物),TCF4、GIPR、AKT、pAKT与GAPDH抗体(CST),KRBH(Panera)。

1.2 方法

1.2.1 GIP激素活性验证   将8~9周龄雄性C57BL/6J小鼠随机分为对照组(Control)和10、100 nmol·kg-1的GIP处理组,每组8个重复。小鼠禁食16 h,禁食期间正常饮水;称取小鼠体重及测定空腹基础血糖。小鼠适应30 min后,按2 g·kg-1体重注射20%葡萄糖溶液,然后按分组为其注射相应剂量的GIP或生理盐水,在15、30、60、90、120 min分别测定血糖。

1.2.2 GIPR表达调控相关筛选   Min6细胞饥饿过夜后,分别在对照组(第1组)、10 nmol·L-1GIP(第2组)、100 nmol·L-1GIP(第3组),5 μmol·L-1 Akti(第4组)、50 μmol·L-1 PKAi(第5组)、100 nmol·L-1 GIP+5 μmol·L-1 Akti(第6组)、5 μmol·L-1 Akti +50 μmol·L-1 PKAi(第7组)、100 nmol·L-1 GIP+5 μmol·L-1 Akti+50 μmol·L-1 PKAi(第8组)培养基中处理6 h,收取蛋白进行Western blot检测。

1.2.3 双荧光素酶检测   将Min6细胞铺到24孔板中,待细胞长至60%~70%,将含有GIPR不同长度启动子序列(3段序列分别为转录起始点上游1 904、1 442和607 bp)的pGL3-basic GIPR promoter、pcDNA3.1-GFP-TCF4质粒、海肾荧光pRL-SV40共转染。48 h后,吸去培养基,DPBS冲洗,加入PLB裂解细胞,室温15 min。在96孔板中加入混匀后的20 μL PLB裂解液,加入100 μL LARII,读取荧光素酶的活性值。再加入100 μL Stop&Glo Reagent,读取renilla内参荧光素酶活性值。样本的荧光素酶活性值=样本的萤火虫荧光素酶活性值/renilla内参荧光素酶活性值。

1.2.4 过表达载体构建   以Min6和小鼠cDNA为模板,分别用加上酶切位点和kozak序列的目的基因引物进行PCR扩增(上游引物:5′-CGGGATCCATGCATCACCAACAGCGAAT-3′,下游引物:5′-CCGCTCGAGTCACATCTGTCCCATGTGAT-3′),并纯化回收扩增片段。PCR体系:模板2 μL,LA酶10 μL,正、反向引物各0.5 μL,ddH2O 7 μL。PCR扩增程序:95 ℃ 5 min;95 ℃ 30 s,62 ℃ 30 s,72 ℃ 90 s,30个循环;72 ℃ 10 min。分别对质粒pcDNA3.1(+)-GFP、pGL3-basic及PCR回收产物进行双酶切及胶回收,利用T4连接酶将目的片段与目的载体连接;最后通过转化,菌液PCR,测序筛选及鉴定pcDNA3.1-GFP-TCF4重组质粒及GIPR启动子片段与pGL3-basic重组质粒;随后进行细胞转染(步骤同siRNA转染)。

1.2.5 siRNA转染   通过NCBI找到小鼠TCF4转录本,将其CDS序列复制到Thermofisher网站中设计siRNA,选择3条靶点相差25 bp以上的高评分序列进行合成。随后进行siRNA转染,找出沉默效率最高的siRNA。将细胞铺到6孔板中待长至70%~80%时进行转染,将5 μL脂质体lipo2000加入125 μL OPTI-MEM混合;同时将siRNA(2.5 μg)稀释于125 μL OPTI-MEM中,并将其加入上一步混合液中混匀;室温孵育15 min后加入6孔板中培养;48 h后收集蛋白进行检测。

1.2.6 蛋白表达定量检测   提取细胞总蛋白,使用BCA试剂盒测定蛋白浓度;经SDS-聚丙烯酸胺凝胶电泳、转膜后,5%脱脂奶粉封闭2 h;加入按比例稀释好的TCF4、GIPR、Akt、pAkt、GAPDH抗体,4 ℃孵育过夜,TBST洗3次,室温二抗孵育45 min;TBST洗3次后滴加发光液显影。

1.2.7 Min6细胞胰岛素分泌能力测定   细胞铺板贴壁后,在对数生长期处理细胞;分别用Akti和PKAi处理6 h,同时设对照组;无糖KRBH将细胞洗3次后,无糖KRBH培养1 h;随后用葡萄糖含量为16.7 mmol·L-1的KRBH刺激1 h;收集上清,按ELISA试剂盒说明书步骤检测胰岛素含量;为矫正细胞数量等造成的误差,用DPBS清洗2遍,提取总蛋白并测定蛋白浓度;所测胰岛素含量与蛋白总量的比值即为Min6细胞胰岛素相对分泌量。

1.2.8 细胞增殖能力检测   细胞生长至80%,消化并重悬细胞,计算出细胞总数;并将其稀释至每毫升培养基(2~5)×104个细胞。96孔板每孔加入100 μL细胞悬液(含2 000~5 000个细胞),在接种细胞后的12、24、36 h,每孔加入10 μL CCK8溶液,37 ℃孵育2 h,用酶标仪在450 nm检测吸光度。

1.3 统计学分析

试验数据经过t-test统计学分析,P < 0.05时认为具有统计学意义;绘图使用GraphPad Prism 6软件。

2 结果 2.1 GIP激素活性检测

小鼠的糖耐量检测统计结果显示,10或100 nmol·kg-1 GIP处理组曲线下面积均极显著低于对照组(P < 0.01,图 1A),即注射GIP可抑制小鼠血糖的上升。在GIP刺激Min6细胞试验中,10 nmol·kg-1 GIP刺激1 h后,pAkt水平上调,并持续12 h(图 1B),GIPR蛋白表达量在GIP刺激后4和8 h升高(图 1C),表明合成的GIP激素具有生物活性,可激活Akt磷酸化,并促进GIPR表达。

A.小鼠糖耐量检测;B. GIP刺激Akt磷酸化检测;C. GIP刺激GIPR表达检测。*. P < 0.05,**. P < 0.01,下同 A. Intraperitoneal glucose tolerance test of the mice; B. Akt phosphorylation changes after GIP stimulation; C. Expression change of GIPR after GIP stimulation. *. P < 0.05, **. P < 0.01, the same as below 图 1 GIP激素活性鉴定 Fig. 1 GIP hormone activity test
2.2 GIPR表达调控相关筛选

为确定TCF4为GIPR表达的上游基因,通过GIP激活及Akt、PKA信号通路的阻断,观察GIPR及TCF4表达变化。结果显示(图 2),GIP处理使GIPR和TCF4的表达量显著升高,且具有随浓度增加而升高的趋势(2、3组);Akti在有无GIP情况下均抑制TCF4和GIPR的表达(4、6组);PKAi处理上调TCF4及GIPR表达(5组),但与Akti联合时,即使添加GIP,仍无这种上调作用(7、8组);在上述处理组中GIPR表达趋势与TCF4始终一致。

A. GIPR和TCF4的Western blot检测;B. TCF4灰度值分析;C. GIPR灰度值分析 A. Western blot analysis of GIPR and TCF4; B. Grayscale analysis of TCF4; C. Grayscale analysis of GIPR 图 2 GIPR和TCF4的蛋白表达检测 Fig. 2 Western blot detection of GIPR and TCF4 expression
2.3 TCF4调控GIPR表达鉴定

双荧光素酶报告结果显示,转染GIPR启动子序列为607 bp重组质粒的细胞荧光素强度极显著高于对照组(P < 0.01,图 3),说明TCF4可在此区域与GIPR的启动子结合。在进一步试验中,TCF4过表达组(OE)表达量比对照组(NC)高将近300倍(图 4A),说明过表达载体可高效表达TCF4基因,且在TCF4过表达时,GIPR mRNA表达显著上调(图 4B)。蛋白检测结果显示,OE组GIPR蛋白表达显著高于NC组,且在Akt或PKA通路阻断时,TCF4过表达仍可上调GIPR表达(图 4CD),表明TCF4可直接上调GIPR表达。瞬时转染结果显示,TCF4干扰组(siTCF4)TCF4 mRNA表达显著下调,干扰效果显著(图 5A);TCF4基因沉默使GIP刺激(GIP+)下的GIPR mRNA表达量显著下调(图 5B);同时siTCF4干扰也使GIPR蛋白表达显著降低(图 5CD)。

1.NC;2.启动子空载+ pcDNA3.1;3. 1 904 bp启动子+空载;4. 1 904 bp启动子+ pcDNA3.1;5. 1 442 bp启动子+空载;6. 1 442 bp启动子+ pcDNA3.1;7. 607 bp启动子+空载;8. 607 bp启动子+ pcDNA3.1 Promoter empty carrier and empty vector+pcDNA3.1 (number1, 2);GIPR promoters with different length and empty vector cotransfected (number3, 5, 7 for 1 904, 1 442, 607 bp); GIPR promoters with different length and pcDNA3.1 cotransfected (number4, 6, 8 for 1 904, 1 442, 607 bp) 图 3 TCF4与GIPR靶标验证 Fig. 3 Verification of targets relationship between TCF4 and GIPR
A. TCF4过表达效率;B. GIPR mRNA表达量;C. OE组与对照组GIPR蛋白表达;D. GIPR灰度值分析 A. TCF4 overexpression efficiency; B. Expression of GIPR mRNA; C. GIPR protein expression in OE group and control group; D. Grayscale analysis of GIPR 图 4 过表达TCF4对GIPR的影响 Fig. 4 The effect of overexpression of TCF4 on GIPR
A. TCF4干扰效率;B. GIPR mRNA表达量;C. siTCF4组与对照组GIPR蛋白表达;D. GIPR灰度值分析 A. TCF4 interference efficiency; B. Expression of GIPR mRNA; C. The GIPR protein level in siTCF4 group and control group; D. Grayscale analysis of GIPR 图 5 干扰TCF4对GIPR表达的影响 Fig. 5 The effect of interference of TCF4 on GIPR
2.4 TCF4介导β细胞增殖及胰岛素分泌

Min6细胞进行TCF4干扰和过表达后,分别在12、24、36 h通过CCK8检测β细胞增殖情况。结果显示(图 6A),TCF4干扰后相比对照组β细胞增殖缓慢,而TCF4过表达则可促进β细胞的增殖。胰岛素分泌测定结果显示,OE组与NC组相比极显著促进胰岛素分泌(图 6B),在Akt或PKA通路阻断时仍具有促进作用。

A. Min6细胞增殖情况;B. TCF4过表达对胰岛素分泌量的影响 A. Proliferation of Min6 cells; B. The effect of overexpression of TCF4 on insulin secretion 图 6 TCF4干扰和过表达对Min6细胞增殖及胰岛素分泌的影响 Fig. 6 The effect of interference and overexpression of TCF4 on Min6 cells proliferation and insulin secretion
3 讨论

在2型糖尿病患者中,β细胞分泌功能受损可归因于环境、遗传、免疫等因素之间复杂的相互作用[28-29],β细胞衰竭及肠促胰岛素效应降低的潜在机制仍然存在许多未知。而无论在β细胞还是脂肪细胞,肠促胰岛素受体GIPR/GLP-1R相关转录因子包括TCF/LEF家族(TCF1、TCF4)和PPAR家族(PPARα、PPARβ\δ、PPARγ)。来自全基因组关联研究的结果鉴定了TCF4基因中SNP,并揭示了其与2型糖尿病有很强的关联,TCF4突变可造成胰岛素分泌受损[30-32]。与非糖尿病对照相比,糖尿病肥胖(VDF)Zucker大鼠和高脂肪/高蔗糖饮食处理小鼠的TCF4蛋白水平发生下调;在T2DM患者的胰切片中也观察到类似的病理变化[33]。本研究中,双荧光素酶报告系统检测结果表明,TCF4与GIPR有直接调控关系,过表达TCF4可显著促进GIPR表达,干扰TCF4则下调GIPR表达,且TCF4过表达可显著促进Min6细胞增殖和葡萄糖刺激下的胰岛素分泌。这为TCF4可通过GIPR转录调控来调节β细胞功能提供了进一步的证据。

GIP与GIPR结合后,使得活化的Akt由细胞膜上释放至细胞浆内继续传递生物学信号[34]。在T2DM患者中观察到Akt磷酸化降低[35-36],而PI3K/Akt信号通路是细胞增殖和凋亡的中心介质。FoxO1上游主要受PI3K/Akt信号调控,PI3K/Akt信号使FoxO1发生磷酸化后转位出细胞核,上调PPARγ表达,后者是GIPR、Pdx-1的转录因子[37-38]。本研究中,当Akt通路被阻断时,TCF4蛋白表达下调,GIPR蛋白表达也随之下调;同时GIP对GIPR及TCF4的上调效应也被抑制;但TCF4过表达仍可增加GIPR表达及葡萄糖刺激下胰岛素分泌,干扰TCF4则作用相反。TCF4的缺失导致GIP刺激的GIPR表达下降,这与在T2DM患者分离的胰岛中siTCF4处理的结果一致[39]。因此,本研究结果显示,GIP与GIPR结合后使Akt通路活化,使TCF4表达升高,继而调控GIPR表达及胰岛素分泌,形成一个信号反馈。

GIP和GLP-1与其受体结合后,腺苷酸环化酶(AC)被激活并在β细胞中产生cAMP,进一步激活cAMP依赖的蛋白激酶,使控制胰岛素分泌的PKA关键蛋白质磷酸化[40]。尽管如此,本研究结果表明,在PKA被高度抑制的情况下,GIPR和TCF4蛋白高表达,胰岛素分泌增加,这种相反的表达调控机制尚不清楚。GLP-1可通过经典的Wnt信号通路来调控β细胞功能[41]。在PKA信号阻断条件下,GIP是否也通过Wnt及Akt信号通路的补偿作用来抵抗凋亡而增加GIPR及TCF4的表达,仍需进一步探究。

4 结论

本研究以小鼠胰岛瘤Min6细胞为材料,从Akt和PKA通路筛选出调控GIPR表达的转录因子TCF4。荧光素酶报告系统证明,TCF4可与GIPR启动子结合;细胞试验证明,GIP结合GIPR后,经Akt信号通路上调转录因子TCF4表达,再增强GIPR表达,形成正反馈加强GIP信号,提高β细胞增殖和胰岛素分泌的功能,维持血糖稳态。胰岛素抵抗状态下,Akt上游信号通路受阻,激活TCF4信号可能是恢复胰岛β细胞功能,治疗2型糖尿病的一条新途径。

参考文献
[1] CHO N H, KIRIGIA J, MBANYA J C, et al.IDF diabetes atlas-9th edition 2019[N]. International Diabetes Federation, 2019.
[2] GONZALEZ L L, GARRIE K, TURNER M D. Type 2 diabetes-An autoinflammatory disease driven by metabolic stress[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(11): 3805–3823. DOI: 10.1016/j.bbadis.2018.08.034
[3] LECHNER A, SCHLÖßER H A, THELEN M, et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma[J]. Oncoimmunology, 2019, 8(3): 1535293. DOI: 10.1080/2162402X.2018.1535293
[4] KIM K, CHUNG M H, PARK S, et al. ER stress attenuation by Aloe-derived polysaccharides in the protection of pancreatic β-cells from free fatty acid-induced lipotoxicity[J]. Biochem Biophys Res Commun, 2018, 500(3): 797–803.
[5] KIRIYAMA Y, NOCHI H. Role and cytotoxicity of amylin and protection of pancreatic islet β-cells from amylin cytotoxicity[J]. Cells, 2018, 7(8): 95. DOI: 10.3390/cells7080095
[6] DENROCHE H C, VERCHERE C B. IAPP and type 1 diabetes:implications for immunity, metabolism and islet transplants[J]. J Mol Endocrinol, 2018, 60(2): R57–R75. DOI: 10.1530/JME-17-0138
[7] FARIDI A, SUN Y X, MORTIMER M, et al. Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide[J]. Nano Res, 2019, 12(11): 2827–2834. DOI: 10.1007/s12274-019-2520-7
[8] MOULLÉ V S, GHISLAIN J, POITOUT V. Nutrient regulation of pancreatic β-cell proliferation[J]. Biochimie, 2017, 143: 10–17. DOI: 10.1016/j.biochi.2017.09.017
[9] SAMUEL V T, SHULMAN G I. The pathogenesis of insulin resistance:integrating signaling pathways and substrate flux[J]. J Clin Invest, 2016, 126(1): 12.
[10] JASTROCH M, USSAR S, KEIPERT S. Gut microbes controlling blood sugar:no fire required[J]. Cell Metab, 2020, 31(3): 443–444. DOI: 10.1016/j.cmet.2020.02.007
[11] HARADA N, INAGAKI N. Role of GIP receptor signaling in β-cell survival[J]. Diabetol Int, 2017, 8(2): 137–138. DOI: 10.1007/s13340-017-0317-z
[12] EHSES J A, CASILLA V R, TIM D, et al. Glucose-dependent insulinotropic polypeptide promotes β-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase[J]. Endocri-nology, 2003, 144(10): 4433–4445. DOI: 10.1210/en.2002-0068
[13] EL K, CAMPBELL J E. The role of GIP in α-cells and glucagon secretion[J]. Peptides, 2020, 125: 170213. DOI: 10.1016/j.peptides.2019.170213
[14] JØRGENSEN M B, IDORN T, RYDAHL C, et al. Effect of the Incretin hormones on the endocrine pancreas in end-stage renal disease[J]. J Clin Endocrinol Metab, 2020, 105(3): e564–e574. DOI: 10.1210/clinem/dgz048
[15] NAUCK M A, MEIER J J. Incretin hormones:their role in health and disease[J]. Diabetes Obes Metab, 2018, 20(S1): 5–21.
[16] GRANDL G, NOVIKOFF A, DIMARCHI R, et al. Gut Peptide Agonism in the treatment of obesity and diabetes[J]. Compr Physiol, 2019, 10(1): 99–124.
[17] DOGGRELL S A. Sgemaglutide in type 2 diabetes-is it the best glucagon-like peptide 1 receptor agonist (GLP-1R agonist)?[J]. Expert Opin Drug Metab Toxicol, 2018, 14(3): 371–377. DOI: 10.1080/17425255.2018.1441286
[18] ROSE F, BLOOM S, TAN T. Novel approaches to anti-obesity drug discovery with gut hormones over the past 10 years[J]. Expert Opin Drug Discov, 2019, 14(11): 1151–1159. DOI: 10.1080/17460441.2019.1646243
[19] NAUCK M A, BALLER B, MEIER J J. Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes[J]. Diabetes, 2004, 53(S3): S190–S196.
[20] GASBJERG L S, HELSTED M M, HARTMANN B, et al. Separate and combined Glucometabolic effects of endogenous glucose-dependent Insulinotropic polypeptide and glucagon-like peptide 1 in healthy indivi-duals[J]. Diabetes, 2019, 68(5): 906–917. DOI: 10.2337/db18-1123
[21] IRWIN N, GAULT V A, O'HARTE F P M, et al. Blockade of Gastric Inhibitory Polypeptide (GIP) action as a novel means of countering insulin resis-tance in the treatment of obesity-diabetes[J]. Peptides, 2020, 125(19): 170203.
[22] YABE D, SEINO Y. Two incretin hormones GLP-1 and GIP:comparison of their actions in insulin secretion and β cell preservation[J]. Prog Biophys Mol Biol, 2011, 107(2): 248–256. DOI: 10.1016/j.pbiomolbio.2011.07.010
[23] REGAZZO D, BARBOT M, SCARONI C, et al. The pathogenic role of the GIP/GIPR axis in human endocrine tumors:emerging clinical mechanisms beyond diabetes[J]. Rev Endocr Metab Disord, 2020, 21(1): 165–183. DOI: 10.1007/s11154-019-09536-6
[24] CEPERUELO-MALLAFRÉ V, DURAN X, PACHÓN G, et al. Disruption of GIP/GIPR axis in human adipose tissue is linked to obesity and insulin resistance[J]. J Clin Endocrinol Metab, 2014, 99(5): E908–E919. DOI: 10.1210/jc.2013-3350
[25] 雷雨欣, 焦凯, 赵国宏, 等. 胰岛素对β细胞FoxO1胞质-胞核穿梭定位的影响[J]. 现代生物医学进展, 2015, 15(29): 5621–5623, 5644.
LEI Y X, JIAO K, ZHAO G H, et al. Effect of insulin on FoxO1 nucleus-cytoplasmic shuttling in β cells[J]. Progress in Modern Biomedicine, 2015, 15(29): 5621–5623, 5644. (in Chinese)
[26] KIM S J K, WINTER K, NIAN C, et al. Glucose-Dependent Insulinotropic Polypeptide (GIP) stimulation of pancreatic β-cell survival is dependent upon phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax Expression[J]. J Biol Chem, 2005, 280(23): 22297–22307. DOI: 10.1074/jbc.M500540200
[27] CHANDRA M, MIRIYALA S, PANCHATCHARAM M. PPARγ and its role in cardiovascular diseases[J]. PPAR Res, 2017, 2017: 6404638.
[28] 刘烨, 张琳, 洪天配. 2011年糖尿病学领域的研究进展和热点回顾[J]. 中国医学前沿杂志(电子版), 2011, 3(6): 27–31.
LIU Y, ZHANG L, HONG T P. Review of research progress and hot spots in the field of diabetes in 2011[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2011, 3(6): 27–31. (in Chinese)
[29] KLEINERT M, CLEMMENSEN C, HOFMANN S M, et al. Animal models of obesity and diabetes mellitus[J]. Nat Rev Endocrinol, 2018, 14(3): 140–162. DOI: 10.1038/nrendo.2017.161
[30] CROPANO C, SANTORO N, GROOP L, et al. The rs7903146 variant in the TCF7L2 gene increases the risk of Prediabetes/Type 2 diabetes in obese adolescents by impairing β-cell function and hepatic insulin sensitivity[J]. Diabetes Care, 2017, 40(8): 1082–1089. DOI: 10.2337/dc17-0290
[31] XIA Q H X, DELIARD S, YUAN C X, et al. Characterization of the transcriptional machinery bound across the widely presumed type 2 diabetes causal variant, rs7903146, within TCF7L2[J]. Eur J Hum Genet, 2014, 23(1): 103–109.
[32] YE D, FEI Y, LING Q, et al. Polymorphisms in TCF7L2 gene are associated with gestational diabetes mellitus in Chinese Han population[J]. Sci Rep, 2016, 6(1): 30686. DOI: 10.1038/srep30686
[33] DA SILVA XAVIER G, MONDRAGON A, SUN G, et al. Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2 -null mice[J]. Diabetologia, 2012, 55(10): 2667–2676. DOI: 10.1007/s00125-012-2600-7
[34] 孙晓阳, 丁涟沭, 金孝东, 等. PI3K/Akt/mTOR信号传导通路与人脑胶质瘤恶性进展及预后的相关研究[J]. 中华神经医学杂志, 2011, 10(1): 24–28.
SUN X Y, DING L S, JIN X D, et al. Correlation of PI3K/Akt/mTOR signal transduction pathway with both malignancy progression and prognosis of human gliomas[J]. Chinese Journal of Neuromedicine, 2011, 10(1): 24–28. (in Chinese)
[35] 常盛. PI3K/Akt信号通路与胰岛素抵抗的研究进展[J]. 中医药导报, 2008, 14(7): 113–116.
CHANG S. Progress in studying the relationship between PI3K/Akt signal access and insulin resis-tance[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2008, 14(7): 113–116. (in Chinese)
[36] 王帅, 金磊, 海春旭, 等. PI3K/Akt信号通路在胰岛素抵抗中作用的研究进展[J]. 毒理学杂志, 2015, 29(4): 313–316.
WANG S, JIN L, HAI C X, et al. Progress on the role of PI3K/Akt signaling pathway in insulin resistance[J]. Journal of Toxicology, 2015, 29(4): 313–316. (in Chinese)
[37] GUPTA D, LEAHY A A, MONGA N, et al. Peroxisome proliferator-activated receptor γ (PPARγ) and its target genes are downstream effectors of FoxO1 protein in islet β-cells:mechanism of β-cell compensation and failure[J]. J Biol Chem, 2013, 288(35): 25440–25449. DOI: 10.1074/jbc.M113.486852
[38] MO F F, LIU H X, ZHANG Y, et al. Anti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell[J]. Iran J Basic Med Sci, 2019, 22(3): 262–266.
[39] SHU L, SAUTER N S, SCHULTHESS F T, et al. Transcription factor 7-like 2 regulates β-cell survival and function in human pancreatic islets[J]. Diabetes, 2008, 57(3): 645–653. DOI: 10.2337/db07-0847
[40] SHU L, MATVEYENKO A V, KERR-CONTE J, et al. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function[J]. Hum Mol Genet, 2009, 18(13): 2388–2399. DOI: 10.1093/hmg/ddp178
[41] SVEGLIATI-BARONI G, SACCOMANNO S, RYCHLICKI C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis[J]. Liver Int, 2011, 31(9): 1285–1297. DOI: 10.1111/j.1478-3231.2011.02462.x