畜牧兽医学报  2020, Vol. 51 Issue (9): 2109-2119. DOI: 10.11843/j.issn.0366-6964.2020.09.008    PDF    
DDR1对奶牛乳腺上皮细胞增殖与凋亡的调控作用
华丽萍, 刘双行, 赵鑫哲, 叶挺柱, 熊家军, 杨利国, 梁爱心     
华中农业大学动物科学技术学院, 武汉 430070
摘要:旨在通过干扰或过表达盘状蛋白结构域受体1(DDR1)基因,探讨其对奶牛乳腺上皮细胞增殖、凋亡及周期的影响。本研究将DDR1基因小干扰RNA片段和过表达载体pcDNA3.1-DDR1转染奶牛乳腺上皮细胞,采用qRT-PCR和Western blot检测细胞中DDR1的干扰和过表达效果;利用CCK-8法检测细胞增殖能力;流式细胞术检测细胞周期和细胞凋亡(早凋、晚凋)的变化;利用qRT-PCR检测增殖与凋亡相关基因的表达情况。结果,在奶牛乳腺上皮细胞中干扰DDR1基因后,其mRNA和蛋白表达分别下调94%和30%,而过表达DDR1基因后,其mRNA和蛋白表达分别上调68.24和1.38倍;干扰DDR1极显著抑制细胞的增殖(P < 0.01),细胞早凋与晚凋比例极显著上升(P < 0.01);干扰组G1期细胞比例极显著上升(P < 0.01),S期细胞比例极显著下降(P < 0.01),G2期细胞比例显著下降(P < 0.05),提示细胞阻滞在G0/G1期。相反,过表达DDR1能显著促进细胞增殖(P < 0.05),显著抑制细胞晚期凋亡(P < 0.05),G1期细胞比例极显著下降(P < 0.01),S期细胞比例极显著上升(P < 0.01),促进细胞由G1期向S期的转换。qRT-PCR检测结果显示,干扰DDR1后显著上调BAXCaspase9基因的表达(P < 0.05),极显著上调P53、FAS基因的表达(P < 0.01),且显著下调PCNACyclinB1基因的表达(P < 0.05);过表达DDR1后,分别显著和极显著下调CytcBAX基因的表达(P < 0.05,P < 0.01),并极显著上调CyclinB1基因的表达(P < 0.01)。综上可见,DDR1能够调控奶牛乳腺上皮细胞的增殖、凋亡和周期,可为阐明DDR1参与奶牛乳腺上皮细胞生长发育的分子机制提供参考。
关键词盘状蛋白结构域受体1    奶牛乳腺上皮细胞    细胞增殖    细胞周期    细胞凋亡    
Effects of Interference and Overexpression of DDR1 on Proliferation and Apoptosis of Mammary Epithelial Cells in Dairy Cows
HUA Liping, LIU Shuanghang, ZHAO Xinzhe, YE Tingzhu, XIONG Jiajun, YANG Liguo, LIANG Aixin     
College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Abstract: The aim of this study was to investigate the effect of discoidin domain receptor 1 (DDR1) gene on the proliferation, apoptosis and cell cycle of dairy cow mammary epithelial cells through interfering and overexpressing DDR1. The small RNA interference fragment of DDR1 gene and overexpression vector pcDNA3.1-DDR1 were transfected into dairy cow mammary epithelial cells, qRT-PCR and Western blot were used to detect the interference and overexpression efficiency of DDR1; CCK-8 was employed to detect cell proliferation; Flow cytometry was performed to detect the changes of cell cycle and apoptosis (early apoptosis and late apoptosis). qRT-PCR was used to detect the expression of genes related to proliferation and apoptosis. After interfering DDR1 gene in dairy cow mammary epithelial cells, mRNA and protein expression levels of DDR1 were down-regulated by 94% and 30%, respectively; While after overexpressing DDR1 gene, its mRNA and protein expression were up-regulated 68.24 and 1.38 times, respectively. Interfering DDR1 extremely significantly inhibited the proliferation of cells (P < 0.01), the ratio of early and late apoptotic cells was extremely significantly increased (P < 0.01); the ratio of G1 phase cells in the interference group was extremely significantly increased (P < 0.01), and the proportions of S and G2 phase cells were significantly decreased (P < 0.01 and P < 0.05), which suggested that the cells were blocked in G0/G1 phase. Conversely, overexpression of DDR1 could significantly promote cell proliferation (P < 0.05), significantly inhibit the late apoptosis of cells (P < 0.05), the proportion of G1 phase cells was extremely significantly decreased (P < 0.01), and the proportion of S phase cells was extremely significantly increased (P < 0.01), suggesting the enhancement of transition from G1 to S phase. The results of qRT-PCR detection showed that after interfering DDR1, the expressions of BAX and Caspase9 genes were significantly up-regulated (P < 0.05), and the expressions of P53 and FAS genes were extremely significantly up-regulated (P < 0.01), while the expressions of PCNA and CyclinB1 genes were significantly down-regulated (P < 0.05). After overexpression of DDR1, the expressions of Cytc and BAX genes were significantly (P < 0.05) and extremely significantly down-regulated(P < 0.01), respectively, and the expression of CyclinB1 gene was extremely significantly up-regulated (P < 0.01). In summary, DDR1 can regulate the proliferation, apoptosis and cycle of dairy cow mammary epithelial cells, this result will provide a reference for elucidating the molecular mechanism of DDR1 involved in the growth and development of dairy cow mammary epithelial cells.
Key words: discoidin domain receptor 1    dairy cow mammary epithelial cells    cell proliferation    cell cycle    apoptosis    

奶牛乳腺上皮细胞是乳腺器官的基础细胞,是乳汁合成与分泌的特异功能细胞。奶牛乳腺发育以及乳汁的合成、分泌与乳腺上皮细胞的生长活力密切相关[1],而奶牛乳腺上皮细胞的生长活力受多个重要功能基因的调控。盘状结构域受体1(DDR1)是一种新型受体酪氨酸激酶(RTK)[2],由胞外区、跨膜区和胞内激酶区3部分构成,有5种亚型(a、b、c、d、e)。DDR1主要在上皮细胞和乳腺癌、肺癌等各类肿瘤细胞中表达[3-7]DDR1能与天然或具有三螺旋结构的胶原蛋白(I-V型胶原蛋白)特异性结合进而激活下游信号通路[8-10]。但最新研究发现,DDR1也可以通过胰岛素/IGF信号串扰发挥功能作用,该通路不需要与胶原蛋白结合,从而确定了DDR1的非经典通路[11]。研究发现,DDR1参与细胞外基质的重塑,并参与免疫反应发生[12]、动脉伤口修复[13]以及乳腺发育[14]。Vogel等[14]研究发现,DDR1在妊娠小鼠子宫和乳腺中高表达,小鼠DDR1基因缺失导致乳腺组织异常,并且不能分泌乳汁[14];有研究提出,DDR1对于泌乳过程中维持STAT5的功能至关重要[15],此外,研究证实,STAT5的表达可以影响乳腺上皮细胞的泌乳能力[16-18],以上研究表明,DDR1对于维持乳腺正常功能至关重要。DDR1在调节细胞增殖、存活、迁移、侵袭、代谢、发育中起着至关重要的作用[19-20]。Ongusaha等[21]研究发现,DDR1的激活可抵消P53介导的细胞凋亡,并通过正反馈回路影响P53调节。研究发现,抑制DDR1的表达使肿瘤细胞生长抑制和诱导其凋亡[22-23],而过表达DDR1则促进肿瘤细胞增殖和迁移[24-25];也有研究发现,过表达DDR1a和DDR1b导致胶原蛋白凝胶上的MDCK细胞生长减少[26],表明DDR1与细胞存活有关。综上所述,DDR1作为细胞外基质主要成分为胶原蛋白的受体,其对哺乳动物乳腺发育和调控细胞生长代谢至关重要,但是其在奶牛乳腺上皮细胞中发挥的作用鲜有报道。

本研究通过干扰和过表达的手段调控奶牛乳腺上皮细胞中DDR1基因表达,进而探讨DDR1调控奶牛乳腺上皮细胞功能的分子机制,为进一步丰富奶牛乳腺上皮细胞发育及泌乳代谢分子调控网络,改善乳品质、提高奶产量提供理论基础。

1 材料与方法 1.1 主要试剂及材料

本试验所用细胞是由本实验室保存的奶牛乳腺上皮细胞系(MAC-T)。胎牛血清(FBS)、0.25%胰蛋白酶消化液、青/链霉素混合液均购自Gibco公司;DMEM/F12购自美国Gibco公司;Lipofectamine 3000转染试剂盒购自Invitrogen公司;RNA提取试剂盒购自OMEGA公司;反转录试剂盒购自诺唯赞(Vazyme)公司;PCR引物由武汉擎科创新生物科技有限公司合成;Cell Counting Kit-8(CCK-8)细胞增殖-毒性检测试剂盒购自日本同仁化学研究所;细胞DNA含量检测试剂盒(细胞周期)以及Keygen-Annexin V-FITC/ PI调亡检测试剂盒均购自南京凯基生物科技发展有限公司;DDR1一抗购自Cell Signaling Technology(CST)公司;α-tubulin一抗、山羊抗兔二抗和山羊抗鼠二抗均购自北京博奥龙免疫技术有限公司。

1.2 方法

1.2.1 奶牛乳腺上皮细胞的培养   奶牛乳腺上皮细胞(简称DMECs)用含体积分数10%的胎牛血清(FBS)且含有青/链霉素的DMEM/F12培养基于37 ℃、5% CO2的培养箱中培养,隔2~3 d传一次代,并取处于对数生长期的细胞用于试验。

1.2.2 奶牛DDR1基因干扰片段的合成及转染   查找GenBank中奶牛DDR1基因CDS序列(登录号:NM_001076012.2),并委托上海吉玛基因股份有限公司进行设计合成DDR1干扰片段。DDR1小干扰RNA片段序列为F:GCAUGAUAACCGAUUACAUTT;R:AUGUAAUCGGUUAUCAUGCTT。阴性对照(NC)序列为F:UUCUCCGAACGUGUCACGUTT;R:ACGUGACACGUUCGGAGAATT。待细胞汇合度达到80%左右时进行转染处理,参考Lipofectamine 3000转染试剂盒说明书进行转染。转染处理6 h后,用含10%FBS的培养基继续培养细胞,48 h后收集细胞进行后续试验。

1.2.3 pcDNA3.1-DDR1过表达载体的构建及转染   以pcDNA3.1作为骨架载体构建过表达载体,将DDR1基因CDS序列(登录号:NM_001076012.2)通过酶切连接方法插入pcDNA3.1的Hind III和EcoR I两个酶切位点之间。DDR1基因CDS区扩增引物序列为:F:CTCACTATAGGGAGACCCAA- GCTG;R:GGTACCGAGCTCGGATCCACTAGT,扩增长度为2 787 bp。将此序列委托擎科生物公司进行合成。质粒构建好后,使用菌液PCR产物对质粒进行测序鉴定,测序结果正确方可用于后续试验。本试验使用1 μg的DDR1过表达载体和空载质粒转染乳腺上皮细胞,采用Lipofectamine 3000转染质粒,具体步骤参照说明书进行,细胞处理48 h后,收集细胞样。

1.2.4 奶牛DDR1基因及增殖凋亡相关基因定量引物的设计与合成   在NCBI中查阅奶牛相关基因的mRNA序列,其中包括目的基因DDR1,细胞增殖、凋亡相关蛋白基因PCNAFASBaxCytc,细胞周期相关基因P53、CyclinB1以及内参基因GAPDH。应用Primer5.0软件设计引物,序列由武汉擎科创新生物科技有限公司合成,其具体引物序列见表 1

表 1 引物序列 Table 1 Primer sequence

1.2.5 奶牛乳腺上皮细胞DDR1基因PCR扩增及电泳   细胞处理48 h后,用RNA提取试剂盒提取RNA,按1 μg质量反转录成20 μL体系的cDNA,取1 μL备用,其余样品置于-20 ℃保存。DDR1基因PCR扩增反应体系包括:2×Taq PCR Mix 5 μL,上、下游引物各0.5 μL,cDNA 1 μL,ddH2O 3 μL。PCR反应程序:95 ℃预变性5 min;95 ℃变性30 s,60 ℃退火30 s,72 ℃延伸50 s,共35个循环;72 ℃延伸10 min。取PCR扩增产物进行琼脂糖凝胶电泳,在凝胶成像仪上观察并记录结果。

1.2.6 qRT-PCR检测DDR1及增殖凋亡相关基因表达   将反转录好的cDNA稀释5倍,利用qRT-PCR检测目的基因DDR1及细胞增殖凋亡相关基因的mRNA水平表达量。10 μL扩增反应体系:SYBR Green PCR MasterMix 5 μL,上、下游引物各0.5 μL,cDNA 1 μL,ddH2O 3 μL。扩增反应条件:95 ℃ 1 min;95 ℃ 10 s,60 ℃ 30 s,72 ℃ 50 s,共40个循环。每个样品设3个复孔,相对表达量采用2-△△Ct进行计算。

1.2.7 Western blot检测DDR1的蛋白表达水平   细胞处理48 h后,弃掉六孔板中的上清液,用PBS清洗两遍。每孔加入100 μL细胞裂解液,充分裂解后,12 000 r·min-1,4 ℃离心5 min,收集上清液,加入5 ×上样缓冲液,于沸水中煮5 min备用。

取100 μg蛋白样品分别经5%的浓缩胶和10%分离胶电泳,先恒压80 V 30 min,然后调至电压120 V,电泳2.5 h,电泳结束后,将电泳胶转移至PVDF膜上。用新配制的5%脱脂奶粉封闭PVDF膜,37 ℃封闭2 h。将膜置于用一抗稀释液(1:1 000)稀释好的DDR1和α-Tubulin抗体中孵育,4 ℃过夜后,室温复温1.5 h。TBST洗膜,用TBST稀释二抗(1:5 000),放入PVDF膜室温摇床孵育2 h。TBST洗膜后,均匀滴加适量的ECL显影液,使用ImageQuant LAS 4000 mini成像仪进行化学显影。

1.2.8 CCK-8法检测奶牛乳腺上皮细胞增殖   将细胞传代至96孔板中,隔夜培养后,进行干扰或过表达转染处理,每个处理设5个复孔,置于37 ℃,5% CO2培养箱中培养48 h。每孔加入90 μL 10%培养液和10 μL CCK-8,避光培养2 h后,450 nm波长下进行酶标仪检测。

1.2.9 流式细胞术检测奶牛乳腺上皮细胞周期   细胞处理48 h后,弃掉废液,用PBS清洗一遍,向六孔板中加入适量胰酶将细胞消化下来后,加入含10% FBS的培养液终止消化,转入1.5 mL管,1 500 r·min-1离心5 min,收集细胞沉淀,用PBS清洗两遍。加入预冷的70%乙醇混匀,4 ℃固定过夜。弃掉70%乙醇,用PBS清洗两遍。按照凯基细胞DNA含量检测试剂盒(细胞周期)使用说明书进行处理,将RNase和PI以1:4的比例配制反应体系,向细胞沉淀中加入500 μL混合液,混匀。4 ℃避光反应30 min后,使用流式细胞仪检测。

1.2.10 流式细胞术检测奶牛乳腺上皮细胞凋亡   处理细胞48 h后,用胰酶消化细胞6 min,放置在倒置显微镜下观察,待细胞变圆,将要脱离培养皿之时,加入等体积的含有血清的培养液终止消化,将细胞悬液转移至1.5 mL离心管,1 500 r·min-1离心5 min, 弃上清,用PBS洗涤细胞2次,收集细胞沉淀。按照Annexin V-FITC/ PI凋亡试剂盒说明书进行处理,每管先加入100 μL binding buffer悬浮细胞,然后依次将Annexin V-EGFP和Propidium Iodide每管各加入5 μL,最后每管再加入400 μL binding buffer。室温避光反应15 min后,用流式细胞仪检测荧光信号。

1.2.11 数据统计   所有试验数据以“平均数±标准误(Mean±SEM)”表示,采用SPSS 20.0统计分析软件中的单因素方差分析(one-way ANOVA)通过方差分析和独立性T检验对数据进行显著性分析,P < 0.05或P < 0.01分别为差异显著或极显著,利用Graphpad Prism 5软件对数据进行作图。每组试验数据至少进行3次独立重复试验。

2 结果 2.1 DDR1在奶牛乳腺上皮细胞中的表达

以奶牛乳腺上皮细胞cDNA为模板,采用PCR特异性扩增DDR1和GAPDH基因,其中,DDR1基因片段大小为278 bp,由凝胶电泳结果可以看出(图 1),扩增结果与预期片段大小一致, 表明DDR1在乳腺上皮细胞中稳定表达。

M. DNA相对分子质量标准;1. GAPDH基因PCR扩增产物;2. DDR1基因PCR扩增产物;3. H2O M. DNA MarkerⅠ; 1. PCR amplification result of GAPDH gene; 2. PCR amplification result of DDR1 gene; 3. H2O 图 1 DDR1在奶牛乳腺上皮细胞中的表达 Fig. 1 The expression of DDR1 gene in dairy cow mammary epithelial cells
2.2 奶牛乳腺上皮细胞中DDR1的干扰和过表达效果检测

对奶牛乳腺上皮细胞分别进行干扰和过表达处理,转染48 h后提取RNA和蛋白检测DDR1基因的干扰和过表达效率(图 2)。干扰处理中,与对照组(ssRNAi-negative)相比,干扰组(ssRNAi-DDR1)的DDR1基因在mRNA水平上的表达量下调94%(P < 0.01);Western blot结果显示,干扰组DDR1基因在蛋白水平上的表达量下调30%(P < 0.05)。过表达处理中,与对照组(Ctrl)相比,过表达组(DDRI-OE)DDR1基因在mRNA水平上的表达量上调68.24倍(P < 0.01);Western blot结果显示,与对照组比,DDR1基因在蛋白水平上的表达量上调1.38倍(P < 0.01)。

A. DMECs转染ssRNAi-DDR1与阴性对照后,利用qRT-PCR检测mRNA水平干扰效果;B. Western blot检测蛋白水平干扰效果;C. DDR1蛋白干扰结果进行灰度值分析;D. DMECs转染DDR1过表达质粒与空载质粒后,利用qRT-PCR检测mRNA水平过表达效率;E. Western blot检测蛋白水平过表达效果;F. DDR1蛋白过表达结果进行灰度值分析。*. P<0.05;**. P<0.01,下同 A. After DMECs transfected ssRNAi-DDR1 and negative control, qRT-PCR was used to detect the interference effect of mRNA level; B. Western blot detection of protein level interference effect; C. DDR1 protein interference results for gray value analysis; D. After DMECs transfected DDR1 overexpression plasmid and empty plasmid, qRT-PCR was used to detect mRNA level overexpression efficiency; E. Western blot to detect the effect of protein level overexpression; F. DDR1 protein overexpression results for gray value analysis. *. P < 0.05; **. P < 0.01, the same as below 图 2 DDR1基因干扰和过表达效率检测 Fig. 2 Efficiency detection of DDR1 gene interference and overexpression
2.3 干扰、过表达DDR1对奶牛乳腺上皮细胞增殖的影响

细胞处理48 h后,采用CCK-8法检测DDR1干扰和过表达处理对奶牛乳腺上皮细胞增殖的影响。结果显示,与对照组相比,干扰DDR1后,细胞活力极显著下降(P < 0.01,图 3A),相反地,过表达DDR1则显著提高细胞活力(P < 0.05,图 3B)。

A.干扰DDR1基因对奶牛乳腺上皮细胞增殖的影响;B.过表达DDR1基因对奶牛乳腺上皮细胞增殖的影响 A. Effect of interfering DDR1 gene on the proliferation of dairy cow mammary epithelial cells; B. Effect of overexpressing DDR1 gene on the proliferation of dairy cow mammary epithelial cells 图 3 DDR1对奶牛乳腺上皮细胞(DMECs)增殖的影响 Fig. 3 Effect of DDR1 on the proliferation of dairy cow mammary epithelial cells (DMECs)
2.4 干扰、过表达DDR1对奶牛乳腺上皮细胞周期的影响

细胞转染48 h后,利用流式细胞术检测细胞周期的变化。结果显示,与对照组比,干扰组(ssRNAi-DDR1)G0/G1期细胞比例极显著增加((63.30±4.22)% vs (78.31±3.21)%,P < 0.01), S期细胞比例极显著减少((25.36±3.29)% vs (12.79±2.43)%,P < 0.01),且G2/M期细胞比例显著下降((11.33±1.04)% vs (8.90±0.80)%,P < 0.05)(图 4A4C),表明细胞被阻滞在G0/G1期。进一步对细胞进行过表达DDR1处理,结果发现,与对照组相比,过表达组(DDR1-OE)G0/G1期细胞比例极显著下降((77.30±2.49)% vs (66.60±0.90)%,P < 0.01),S期细胞比例极显著升高((12.31±0.69)% vs (19.08±0.40)%,P < 0.01),G2/M期细胞比例无显著性变化,表明DDR1能促进乳腺上皮细胞G1到S期的转换(图 4B4D)。

A.干扰DDR1后,对照组(ssRNAi-negative)与干扰组(ssRNAi-DDR1)细胞周期分布图;B.过表达DDR1,对照组(Ctrl)与处理组(DDR1-OE)细胞周期分布图;C.干扰组与对照组细胞周期比例分析图;D.过表达组与对照组细胞周期比例分析图 A. After interfering DDR1, the cell cycle distribution of the control group (ssRNAi-negative) and interference group (ssRNAi-DDR1); B. After overexpressing DDR1, the cell cycle distribution of the control group (Ctrl) and treatment group (DDR1-OE); C. Analysis of cell proportion in different stages of cycle in interference group and control group; D. Analysis of cell proportion in different stages of cycle in overexpression group and control group 图 4 DDR1对奶牛乳腺上皮细胞周期分布的影响 Fig. 4 Effect of DDR1 on the cycle distribution of dairy cow mammary epithelial cells
2.5 干扰、过表达DDR1对奶牛乳腺上皮细胞凋亡的影响

细胞转染48 h后,利用流式细胞术检测细胞凋亡的变化。结果显示,无论是早期凋亡还是晚期凋亡,干扰组(ssRNAi-DDR1)细胞凋亡率均极显著高于对照组(ssRNAi-negative)细胞(P < 0.01,图 5A)。过表达组(DDR1-OE)细胞晚期凋亡率显著低于对照组(Ctrl)细胞(P < 0.05),而早期凋亡率无明显差异。以上结果表明,干扰DDR1诱导细胞发生凋亡,过表达DDR1抑制细胞凋亡(图 5B)。

A.干扰DDR1后,流式细胞仪检测细胞凋亡(左)和凋亡率分析图(右); B.过表达DDR1后,流式细胞仪检测细胞凋亡(左)和凋亡率分析图(右) A. Analysis of apoptosis (left) and apoptosis rate (right) by flow cytometry after interfering DDR1; B.Analysis of cell apoptosis (left) and apoptosis rate (right) by flow cytometry after overexpressing DDR1 图 5 DDR1对奶牛乳腺上皮细胞凋亡的影响 Fig. 5 Effect of DDR1 on apoptosis of dairy cow mammary epithelial cells
2.6 干扰、过表达DDR1对奶牛乳腺上皮细胞增殖凋亡相关基因表达的影响

细胞处理48 h后,进一步利用实时荧光定量PCR技术检测增殖、周期和凋亡相关基因在mRNA水平的表达量变化。如图 6所示,细胞干扰处理后,与对照组相比,干扰组细胞中促凋亡相关基因BAXCaspase9基因表达量显著上调(P < 0.05),促凋亡基因P53、FAS基因表达量极显著上调(P < 0.01),增殖相关基因PCNA、周期相关基因CyclinB1表达量显著下调(P < 0.05,图 6A)。进一步检测过表达DDR1后细胞增殖凋亡相关基因表达情况。结果发现,与对照组相比,过表达组细胞中促凋亡基因Cytc相对表达量显著下调(P < 0.05),BAX表达量极显著下调(P < 0.01),细胞周期相关基因CyclinB1表达量极显著上调(P < 0.01,图 6B)。

A.干扰DDR1基因后检测增殖、凋亡与周期相关基因mRNA表达变化;B.过表达DDR1基因后检测增殖、凋亡与周期相关基因mRNA表达变化 A. Detection of expression changes of proliferation, apoptosis and cell cycle-related genes after interfering DDR1 gene; B. Detection of expression changes of proliferation, apoptosis and cycle-related genes after overexpressing DDR1 gene 图 6 干扰、过表达DDR1基因对增殖、周期与凋亡相关基因表达的影响 Fig. 6 Effect of interference and overexpression of DDR1 gene on proliferation, cycle and apoptosis related genes expression
3 讨论 3.1 DDR1对奶牛乳腺上皮细胞增殖、凋亡、周期的影响

本研究得到的DDR1基因干扰片段和DDR1过表达质粒在细胞mRNA和蛋白水平均具有较好的干扰和过表达效果,可用于后续试验。DDR1是受体酪氨酸激酶家族(RTK)的成员,不同于其它的RTK,DDR1基因的激活能够发生缓慢且持续的自磷酸化,并通过多条信号转导途径控制细胞的增殖、凋亡、周期等。Azizi等[27]研究结果表明,抑制DDR1的表达可降低前列腺癌细胞的存活和增殖,诱导细胞凋亡和细胞周期G1期阻滞,此外miR-199a-3p[28]和miR-486-3p[23]能结合DDR1基因的3′-UTR抑制其表达,进而抑制口腔癌和卵巢癌细胞的增殖,同时,DDR1的过表达促进乳腺肿瘤细胞的增殖,以上结果表明,DDR1基因的表达对促进肿瘤细胞的增殖、抑制细胞凋亡有重要作用。本研究结果表明,敲低DDR1基因的表达导致奶牛乳腺上皮细胞增殖减弱,并诱导细胞凋亡,G1/G0期细胞数量增多,S期和G2/M期细胞数量减少,导致细胞发生G1期阻滞,这与Azizi等[27]的研究结果相符,证实了抑制DDR1基因表达导致细胞增殖受到抑制和诱导细胞凋亡,细胞周期G1期发生阻滞。

陆杏蓉等[29]研究表明,DDR1的过表达能增加水牛乳腺上皮细胞的早期凋亡而对细胞增殖没有明显影响,同样,Wang等[26]研究表明,DDR1a、DDR1b的过表达对胶原蛋白凝胶上培养的MDCK细胞有明显的生长抑制作用,且DDR1a的过表达使胶原蛋白凝胶诱导的DN38细胞的凋亡显著增强,但是,在DA1和DA11细胞中却显著抑制胶原蛋白凝胶诱导的细胞凋亡。本研究表明,过表达DDR1能够显著促进细胞增殖,抑制细胞凋亡,G0/G1期细胞数量减少,S期和G2期的数量增多,细胞周期阻滞在S期,从而缩短细胞周期,促进细胞的生长。以上结果表明,DDR1的过表达会促进或抑制细胞的增殖,这可能与细胞类型以及特定环境的改变有关。此外,Curat和Vogel[30]研究表明,DDR1基因敲除小鼠的原代肾小球系膜细胞增殖显著增强,而Hou等[13]研究发现,DDR1基因敲除小鼠中原代血管平滑肌细胞生长速率受到显著抑制,推测DDR1基因功能具有复杂性,但目前尚无相关研究解释这一现象。

3.2 DDR1对奶牛乳腺上皮细胞增殖与凋亡相关基因表达的影响

细胞的增殖和凋亡涉及一系列基因的激活、表达以及调控作用。研究表明,促凋亡蛋白BAX是位于线粒体和内质网膜上重要的Bcl2蛋白家族的成员,当细胞受到损伤刺激后,BAX构像发生改变,寡聚化的BAX形成释放孔道,促使Cytc从线粒体释放[31]。Cytc释放到胞浆后与dATP共同结合到凋亡蛋白酶活化因子1(Apaf-1)重复序列或结构域中,形成的聚合体激活Caspase9,活化的Caspase9进一步激活下游的Caspase3进入内源和外源途径的凋亡通路,从而导致细胞凋亡[32-33]。研究表明,P53肿瘤抑制蛋白是一种DNA序列特异性转录调节因子,参与调控细胞应激时众多基因的表达,导致细胞生长受到抑制,细胞G1期停滞和诱导细胞凋亡[34]。FAS是细胞表面蛋白受体分子,通过与FAS抗体交联或与其配体FasL结合引发细胞凋亡[35]。增殖细胞核抗原(PCNA)在生长细胞的S期以更高的速率合成,调节DNA的合成,在细胞增殖的启动上有重要作用[36]。CyclinB1是调控细胞从G2期向M期转变的必要条件,诱导K562细胞发生G2期阻滞[37]。本研究结果发现,在奶牛乳腺上皮细胞干扰DDR1后,促凋亡基因P53、BAXFAS以及Caspase9表达量上调,增殖调控基因PCNA表达量下调,细胞周期调控基因CyclinB1下调;细胞过表达DDR1后,促凋亡基因BAX、Cytc下调,周期调控基因CyclinB1上调。说明细胞干扰DDR1后BAX基因的表达量升高,促使更多的Cytc释放到胞质中与Caspase9结合,激活下游凋亡通路,导致细胞的早期凋亡和晚期凋亡增加。PCNA基因的表达减少会抑制PCNA的合成,从而抑制DNA的复制,引起细胞生长受阻,同时P53基因的表达量升高促进细胞的凋亡,且降低CyclinB1基因表达量,使G2-M期细胞转变的数量减少,延长了细胞周期,使细胞生长减慢。这与本研究用流式细胞仪检测细胞周期和凋亡的试验结果相符。细胞过表达DDR1后,抑制BAXCytc基因对细胞的促凋亡作用,使细胞凋亡率减少。流式细胞仪检测结果显示,在G1期的细胞数量减少,在S和G2/M期的细胞数量增多,可能是由于CyclinB1的表达量增高所致,具体调节机制有待于进一步研究。

4 结论

本研究获得了1条有效干扰奶牛DDR1基因的siRNA片段,同时构建了奶牛DDR1过表达载体。通过在奶牛乳腺上皮细胞中干扰或过表达DDR1基因发现,DDR1通过调控PCNABAXFASCaspase9等增殖凋亡相关基因的表达,进而促进奶牛乳腺上皮细胞的增殖,抑制其凋亡。该研究结果为完善DDR1的生物学功能以及进一步研究奶牛乳腺的发育和泌乳机制提供理论依据。

参考文献
[1] BOUTINAUD M, GUINARD-FLAMENTA J, JAMMES H. The number and activity of mammary epithelial cells, determining factors for milk production[J]. Reprod Nutr Dev, 2004, 44(5): 499–508. DOI: 10.1051/rnd:2004054
[2] JOHNSON J D, EDMAN J C, RUTTER W J. A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain[J]. Proc Natl Acad Sci U S A, 1993, 90(12): 5677–5681. DOI: 10.1073/pnas.90.12.5677
[3] TAKAI K, DRAIN A P, LAWSON D A, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers[J]. Genes Dev, 2018, 32(3-4): 244–257. DOI: 10.1101/gad.301366.117
[4] YUGE R, KITADAI Y, TAKIGAWA H, et al. Silencing of Discoidin Domain Receptor-1 (DDR1) concurrently Inhibits multiple Steps of metastasis cascade in gastric cancer[J]. Transl Oncol, 2018, 11(3): 575–584.
[5] VILELLA E, GAS C, GARCIA-RUIZ B, et al. Expression of DDR1 in the CNS and in myelinating oligodendrocytes[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(11): 118483. DOI: 10.1016/j.bbamcr.2019.04.010
[6] WEINER H L, HUANG H Y, ZAGZAG D, et al. Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors[J]. Neurosurgery, 2000, 47(6): 1400–1409. DOI: 10.1097/00006123-200012000-00028
[7] VALIATHAN R R, MARCO M, LEITINGER B, et al. Discoidin domain receptor tyrosine kinases:New players in cancer progression[J]. Cancer Metastasis Rev, 2012, 31(1-2): 295–321. DOI: 10.1007/s10555-012-9346-z
[8] FRIDMAN R, AGARWAL G. New concepts on the interactions of discoidin domain receptors with collagen[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(11): 118527. DOI: 10.1016/j.bbamcr.2019.118527
[9] ORGEL J P R O, MADHURAPANTULA R S. A structural prospective for collagen receptors such as DDR and their binding of the collagen fibril[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(11): 118478. DOI: 10.1016/j.bbamcr.2019.04.008
[10] XU H F, RAYNAL N, STATHOPOULOS S, et al. Collagen binding specificity of the discoidin domain receptors:Binding sites on collagens Ⅱ and Ⅲ and molecular determinants for collagen IV recognition by DDR1[J]. Matrix Biol, 2011, 30(1): 16–26.
[11] VELLA V, MALAGUARNERA R, NICOLOSI M L, et al. Insulin/IGF signaling and discoidin domain receptors:An emerging functional connection[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(11): 118522. DOI: 10.1016/j.bbamcr.2019.118522
[12] MATSUYAMA W, FAURE M, YOSHIMURA T. Activation of discoidin domain receptor 1 facilitates the maturation of human monocyte-derived dendritic cells through the TNF receptor associated factor 6/TGF-beta-activated Protein Kinase 1 Binding Protein 1 beta/p38 alpha mitogen-activated protein kinase signaling cascade[J]. J Immunol, 2003, 171(7): 3520–3532. DOI: 10.4049/jimmunol.171.7.3520
[13] HOU G P, VOGEL W, BENDECK M P. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair[J]. J Clin Invest, 2001, 107(6): 727–735.
[14] VOGEL W F, ASZÓDI A, ALVES F, et al. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development[J]. Mol Cell Biol, 2001, 21(8): 2906–2917. DOI: 10.1128/MCB.21.8.2906-2917.2001
[15] FARACI-ORF E, MCFADDEN C, VOGEL W F. DDR1 signaling is essential to sustain Stat5 function during lactogenesis[J]. J Cell Biochem, 2006, 97(1): 109–121.
[16] LI S, HUANG S H, QIAO S Y, et al. Cloning and functional characterization of STAT5a and STAT5b genes in buffalo mammary epithelial cells[J]. Anim Biotechnol, 2020, 31(1): 59–66.
[17] SHIN H Y, HENNIGHAUSEN L, YOO K H. STAT5-Driven enhancers tightly control temporal expression of mammary-specific genes[J]. J Mammary Gland Biol Neoplasia, 2019, 24(1): 61–71. DOI: 10.1007/s10911-018-9418-y
[18] 刘晓飞, 高学军, 李庆章, 等. stat5高效表达对奶牛乳腺上皮细胞泌乳能力的影响[J]. 畜牧兽医学报, 2011, 42(4): 508–512.
LIU X F, GAO X J, LI Q Z, et al. Effects on lactation ability of dairy cow mammary gland epithelial cells by stat5 high expression[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42(4): 508–512. (in Chinese)
[19] VOGEL W F, ABDULHUSSEIN R, FORD C E. Sensing extracellular matrix:An update on discoidin domain receptor function[J]. Cell Signal, 2006, 18(8): 1108–1116. DOI: 10.1016/j.cellsig.2006.02.012
[20] LEITINGER B. Discoidin domain receptor functions in physiological and pathological conditions[J]. Int Rev Cell Mol Biol, 2014, 310: 39–87. DOI: 10.1016/B978-0-12-800180-6.00002-5
[21] ONGUSAHA P P, KIM J I, FANG L, et al. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop[J]. EMBO J, 2003, 22(6): 1289–1301. DOI: 10.1093/emboj/cdg129
[22] VALENCIA K, ORMAZÁBAL C, ZANDUETA C, et al. Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis[J]. Clin Cancer Res, 2012, 18(4): 969–980. DOI: 10.1158/1078-0432.CCR-11-1686
[23] CHOU S T, PENG H Y, MO K C, et al. MicroRNA-486-3p functions as a tumor suppressor in oral cancer by targeting DDR1[J]. J Exp Clin Cancer Res, 2019, 38(1): 281. DOI: 10.1186/s13046-019-1283-z
[24] ZHONG X, ZHANG W W, SUN T H. DDR1 promotes breast tumor growth by suppressing antitumor immunity[J]. Oncol Rep, 2019, 42(6): 2844–2854.
[25] XIE R X, WANG X Y, QI G Q, et al. DDR1 enhances invasion and metastasis of gastric cancer via epithelial-mesenchymal transition[J]. Tumor Biol, 2016, 37(9): 12049–12059. DOI: 10.1007/s13277-016-5070-6
[26] WANG C Z, HSU Y M, TANG M J. Function of discoidin domain receptor I in HGF-induced branching tubulogenesis of MDCK cells in collagen gel[J]. J Cell Physiol, 2005, 203(1): 295–304. DOI: 10.1002/jcp.20227
[27] AZIZI R, SALEMI Z, FALLAHIAN F, et al. Inhibition of didscoidin domain receptor 1 reduces epithelial-mesenchymal transition and induce cell-cycle arrest and apoptosis in prostate cancer cell lines[J]. J Cell Physiol, 2019, 234(11): 19539–19552. DOI: 10.1002/jcp.28552
[28] DENG Y, ZHAO F, HUI L, et al. Suppressing miR-199a- 3p by promoter methylation contributes to tumor aggressiveness and cisplatin resistance of ovarian cancer through promoting DDR1 expression[J]. J Ovarian Res, 2017, 10(1): 50. DOI: 10.1186/s13048-017-0333-4
[29] 陆杏蓉, 段安琴, 马小娅, 等. DDR1基因过表达对水牛乳腺上皮细胞的影响[J]. 中国畜牧兽医, 2019, 46(12): 3635–3641.
LU X R, DUAN A Q, MA X Y, et al. Effect of DDR1 gene over expression on buffalo mammary epithelial cells[J]. Chinese Animal Husbandry & Veterinary Medicine, 2019, 46(12): 3635–3641. (in Chinese)
[30] CURAT C A, VOGEL W F. Discoidin domain receptor 1 controls growth and adhesion of mesangial cells[J]. J Am Soc Nephrol, 2002, 13(11): 2648–2656. DOI: 10.1097/01.ASN.0000032419.13208.0C
[31] SAITO M, KORSMEYER S J, SCHLESINGER P H. BAX-dependent transport of cytochrome C reconstituted in pure liposomes[J]. Nat Cell Biol, 2000, 2(8): 553–555. DOI: 10.1038/35019596
[32] POP C, TIMMER J, SPERANDIO S, et al. The apoptosome activates caspase-9 by dimerization[J]. Mol cell, 2006, 22(2): 269–275. DOI: 10.1016/j.molcel.2006.03.009
[33] JIANG X J, WANG X D. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1[J]. J Biol Chem, 2000, 275(40): 31199–31203. DOI: 10.1074/jbc.C000405200
[34] LAPTENKO O, PRIVES C. Transcriptional regulation by p53:one protein, many possibilities[J]. Cell Death Differ, 2006, 13(6): 951–961. DOI: 10.1038/sj.cdd.4401916
[35] LIU X M, YANG Z M, LIU X K. Fas/FasL induces myocardial cell apoptosis in myocardial ischemia-reperfusion rat model[J]. Eur Rev Med Pharmacol Sci, 2017, 21(12): 2913–2918.
[36] MORRIS G F, MATHEWS M B. Regulation of proliferating cell nuclear antigen during the cell cycle[J]. J Biol Chem, 1989, 264(23): 13856–13864.
[37] 马淑梅, 刘晓冬, 鞠桂芝. CyclinB1、p34cdc2在X射线诱导的K562细胞G2期阻滞中的作用[J]. 中华放射医学与防护杂志, 2002, 22(2): 105–107.
MA S M, LIU X D, JU G Z. The role of CyclinB1 and p34cdc2 in the X2-induced G2 arrest of K562 cells[J]. Chinese Journal of Radiological Medicine and Protection, 2002, 22(2): 105–107. (in Chinese)