畜牧兽医学报  2020, Vol. 51 Issue (9): 2039-2047. DOI: 10.11843/j.issn.0366-6964.2020.09.001    PDF    
环状RNA及其在生殖发育中的研究进展
陈慧芳, 杨天浩, 蔡健锋, 李超, 白银山     
佛山科学技术学院生命科学与工程学院, 佛山 528231
摘要:环状RNA(circular RNA,circ-RNA)是一类由初始转录RNA反向剪接,形成的闭合环状RNA分子,广泛存在于真核细胞中。因不受RNA外切酶切割,所以稳定存在时间长。主要通过海绵吸附作用竞争性结合miRNA调节基因表达。circ-RNA分子鉴定及其生理调控作用成为近几年生命科学领域的研究热点,本文从circ-RNA的生成过程、在早期胚胎发育调控以及配子发育过程中的数量和作用等方面进行了综述。
关键词环状RNA    生成过程    生殖发育    基因表达    
Circular RNA and Its Research Progress in Reproductive Development
CHEN Huifang, YANG Tianhao, CAI Jianfeng, LI Chao, BAI Yinshan     
School of Life Science and Engineering, Foshan University, Foshan 528231, China
Abstract: Circular RNA (circ-RNA) is a class of closed circular RNA molecules formed by reverse splicing of the initial transcriptional RNA, which are expressed abundantly in eukaryocytic cells. circ-RNA exists stably for a long period because of the resistance to RNA exonuclease. The expression of genes is regulated by cornpetitive binding of miRNA via sponge absorption. Recent studies demonstrated that circ-RNA molecular identification and physiological regulation had become the focus of life science research. In this review, we summarized the biogenesis of circ-RNA, the role in regulating early embryonic development, and the quantity and effects during the gamete development.
Key words: circ-RNA    formation    reproductive development    gene expression    

环状RNA(circular RNA, circ-RNA)是由初始转录的RNA分子反向剪接形成的一种共价闭合环状结构的RNA,与线性mRNA相比,大部分缺少5′帽子结构和3′端尾巴,因此不能被RNA外切酶切割降解,具有较高的稳定性[1-2]。与其他类型的RNA分子相比更具有作为生物标志物的潜能[1-2]。研究显示,circ-RNA分子富含微小RNA(microRNA, miRNA)的结合位点[1],在细胞中起到海绵吸附miRNA的作用,从而解除miRNA对其靶基因的调控作用,促使靶基因的表达水平升高,这一作用机制被称为竞争性内源RNA(competing endogenous RNA, ceRNA)机制[3-4]。通过ceRNA机制实现了广泛参与细胞生理活动的调控[5];与此同时,也发现一部分circ-RNA具有开放阅读框,可以高效地翻译出小肽和多肽,进行生命活动调节[6];此外,还有研究显示,一些circ-RNA停留在细胞核中,参与基因的转录调控[7]

circ-RNA研究目前仍处于起步阶段,不同细胞的circ-RNA数量、种类和其它潜在生物学调控作用仍然不清楚。生殖发育是生命的起始和延续,一直处于生命科学研究的前沿领域。随着对circ-RNA数量和功能的深入研究,生殖领域相关circ-RNA的研究报道越来越多,本文从circ-RNA的生成过程、在早期胚胎发育及其配子发育过程中的数量和作用等方面进行综述。

1 环状RNA的生成过程

1976年,Sanger等[8]在电镜下发现,拟南芥中存在共价连接的闭合RNA分子,就是最早观察到的circ-RNA;随后在1993年,小鼠睾丸中发现Sry-RNA呈环状存在,也就是circ-RNA;直到2012年,伴随高通量测序技术的完善与发展,大量circ-RNA才被鉴定出来[9]。研究显示,在病毒、细菌和植物体的各类细胞中也都大量存在circ-RNA,它们各自的形成方式和功能现在还不清楚[4-5]。根据其来源可分为3种circ-RNA:第一种是以外显子序列作为来源的circ-RNA,约占总数的90%;第二种是由内含子序列作为来源的circ-RNA,约占总数的5%;第三种是以外显子和内含子作为共同来源的circ-RNA,约占总数的5%[4-5],不同来源的circ-RNA也预示着不同的剪接方式。

根据剪接方式的不同,circ-RNA可归纳为3种:第一种是选择性反向剪切,在含有高度重复序列的线性RNA中,根据重复序列位置的不同,线性RNA被剪切成外显子-内含子circ-RNA或外显子RNA和游离的线性RNA(图 1A)[1, 10];第二种是依赖RNA结合蛋白(RNA binding protein, RBP)的环化机制,机体内没有高度重复序列充当配位点的线性RNA,可以通过RBP结合[11],最终形成外显子-内含子circ-RNA或外显子circ-RNA和游离的线性RNA(图 1B);第三种是内含子套索脱支的环化机制,含有一对重复序列的内含子序列,在线性剪切和配位点间结合力共同的作用下形成内含子套索,套索分支通过剪切,最终形成内含子circ-RNA(图 1C)[12]。内含子circ-RNA和外显子circ-RNA都能进入细胞质发挥ceRNA的调控作用。一般情况下,外显子-内含子circ-RNA只能停留在细胞核中发挥基因转录调控作用,一旦需要进入细胞质,就需要进一步剪切,形成外显子circ-RNA,才能进入细胞质[7, 13]

A.选择性剪切形成的circ-RNA;B.依赖RBP形成circ-RNA;C.内含子circ-RNA生成机制 A. circ-RNA formation by selective shearing; B. circ-RNA formation relyed on RBP; C. The generation mechanism of intron circ-RNA 图 1 环状RNA的生成过程 Fig. 1 The biogenesis of circ-RNA
2 环状RNA的作用机制

大部分circ-RNA属于非编码RNA,主要通过ceRNA机制发挥作用[9];一部分circ-RNA可以进行蛋白质翻译,还有一部分circ-RNA参与基因转录调控,通过这些作用实现了对细胞生理功能的调控[14-15]

2.1 内源性竞争RNA作用

circ-RNA上分布大量miRNA结合位点,例如:宫颈癌细胞中存在一种高表达的ciRS-7,含有70多个miRNAs结合位点[16-18];子宫内膜异位症患者中差异表达circ-RNA,预测和鉴定出1 225个miRNAs结合位点[19]。circ-RNA通过ceRNA作用发挥广泛调控作用[14, 20-22],小鼠睾丸Y染色体上的Sry基因决定性别,可以剪切成circ-RNA,竞争性结合miR-138,在性别分化中起到重要作用[7]。有研究发现,在卵巢组织中circ-PLEKHM3下调,导致其miR-9竞争性结合作用减弱,降低了miR-9靶基因Brca1、Dnajb6、Klf4和Akt1的表达作用,促进了肿瘤的发生发展[23]。GDNF信号通路在雌、雄种系干细胞中都发挥重要的作用,其中,circ-LGF1R与miRNA-15a-5p发生竞争性结合,进而增加了靶基因InhaAcsl3、Kif21b和lgfbp2的表达,有助于促进种系干细胞分化形成配子[24]

2.2 circ-RNA翻译功能

随着研究的深入,越来越多的证据表明,circ-RNA可编码蛋白质[25]。线性蛋白质翻译需要翻译启动元件和开放阅读框两个基本条件,因为在circ-RNA中没有m7GPPPN“帽子”和poly(A)“尾巴”结构,所以,circ-RNA的翻译需要以特殊的方式进行[26]。研究显示,circ-RNA主要通过内部核糖体进入位点(internal ribosome entry sites, IRES)和N6-甲基腺嘌呤(N6-methyladenosine, m6A)修饰两种途径翻译蛋白。IRES是一种可以直接募集核糖体进行阅读框翻译的调控元件,人的circ-ZNF609就具有IRES元件,可以进行蛋白翻译(图 2A)[27]。m6A是核糖核苷酸的腺苷酸第六位N处发生甲基化修饰的产物,参与其修饰的酶种类很多,主要为METTL3/METTL14-WTAP复合体,它是高等生物mRNA和lncRNAs普遍的一种修饰方式,具有重要的生理意义[6, 28]。最新研究显示,m6A也大量分布在circ-RNA中,与其翻译作用有关[29]。当circ-RNA翻译时,带有m6A修饰的circ-RNA可以直接募集YTHDF3来招募eIF4G2蛋白和其他翻译起始因子,启动蛋白的翻译(图 2B)。研究显示,处于circ-RNA开放阅读框的起始密码子上游的Rrach基因序列,A碱基发生甲基化修饰,进而启动蛋白质的翻译(图 2B)[30]。研究证明,存在一个m6A位点的circ-RNA的翻译效率与存在多个m6A位点的circ-RNA翻译效率基本相同,过量的m6A修饰并不会提高circ-RNA的翻译效率[27]

A. IRES途径翻译蛋白;B. m6A修饰途径翻译蛋白 A. Protein translation by IRES pathway; B. Protein translation by m6A modified pathway 图 2 circ-RNA的翻译 Fig. 2 circ-RNA translation
2.3 circ-RNA转录调控作用

由外显子-内含子组成的circ-RNA(exon-intron circ-RNA, ElciRNA),具有特殊的功能,主要停留在细胞核中,调节亲本基因的转录[7]。它们具有一类富含尿苷酸的小分子量核RNA酶(small nuclear RNA, snRNA)的互补配对位点,一起与RNA聚合酶Ⅱ(pol Ⅱ)复合体结合,可以增强基因转录效率(图 3)[1, 30]。在哺乳动物的RNA核酶中,U1 snRNA的数量最多,在内含子剪切和转录调控中发挥重要的作用[30],不仅可以促进mRNA的转录,还可以防止mRNA过早聚腺苷酸化[31-33]。ElciRNA还可以通过核膜进入细胞质,但需要进一步加工,去除内含子部分序列,变成外显子circ-RNA,进入细胞质发挥吸附miRNA的作用,这种机制尚未被清楚解析[7, 32]

图 3 circ-RNA转录调控 Fig. 3 Transcriptional regulation of circ-RNA
3 环状RNA在生殖发育中的调控作用

circ-RNA在早期胚胎发育中有规律地被激活,在配子发育中存在的数量和种类多样化,促进了配子发育。在很多生殖相关的疾病中都伴随circ-RNA表达异常,显示了circ-RNA在生殖发育中的重要调控作用[29]

3.1 circ-RNA在早期胚胎发育中的作用

早期胚胎发育是一个基因有序激活和关闭的过程,从卵母细胞到囊胚,发育基因逐渐被激活,而卵母细胞库RNA逐渐耗尽,呈现关闭的状态,这些研究引起了学者们广泛的关注[34-35]。通过单细胞测序技术对人卵母细胞和附植前胚胎发育的不同阶段进行circ-RNA转录组测序分析,发现circ-RNA在不同阶段呈现出数量和种类规律性变化的现象[34]。在人类成熟卵母细胞中,circ-RNA的含量约占总转录本的9%,合子最低7%,这些circ-RNA可能是来自卵母细胞RNA库,随着胚胎发育进行,基因表达被激活,circ-RNA数量逐渐增加,到桑葚胚达到了25%(图 4)。研究显示,circ-RNA数量约占其线性转录产物的10%,但也有少数基因(Prdm2、Setd2、Mllt3、Mllt4和Kit等)中circ-RNA产量要高于其线性转录产物[35],对比上述数据,显示出circ-RNA在早期胚胎发育中的重要作用(表 1)。此外,在小鼠植入前胚胎中鉴定出了2 891个circ-RNA,揭示circ-RNA在参与早期胚胎发育中发挥了调控作用[35]。还有证据显示,从不同发育阶段的线虫(1-胚胎期、2-胚胎期、卵母细胞和精子期)中共鉴定出了724个circ-RNA。在4个不同的时期,含有不同的circ-RNA分子,这些证据显示,circ-RNA在早期胚胎发育中被有规律地激活且起到重要作用。

图 4 circ-RNA转录比例[35] Fig. 4 Percentage of total transcription for circ-RNA
表 1 调控生殖发育的circ-RNA Table 1 The circ-RNA regulating reproductive development
3.2 circ-RNA在精子发育中的调控作用

通过circ-RNA测序在人睾丸组织中预测了15 996条circ-RNA,其中有1 017个宿主基因参与精子发生、有性生殖、生殖细胞发育及减数分裂细胞周期等过程[36];在雌性和雄性小鼠原始生殖干细胞中共鉴定出18 822种circ-RNA分子,其中921种circ-RNA与性别相关,与雌、雄性别分化相关的circ-RNA数量分别为245和676种,GO和KEGG分析显示,这些circ-RNA对精子和卵子发育具有重要的作用(表 1)[24, 37]

Ragusa等[37]在circ-Base中分析与精子/睾丸和附睾相关的circ-RNA,其在受精中发挥潜在作用,研究表明,circNAPEPLDiso1在人和鼠的精子中均表达,小鼠未受精时低水平表达,但受精后呈高水平表达;而circNAPEPLDiso2受精前高水平表达,受精后表达水平稳定。精原干细胞发育成有受精能力的精子,经历了一个极其复杂却又精确的调控过程[24]。研究显示,circ-RNA在各类精细胞中也大量表达,总数量达到了15 101个,其中精原干细胞中有5 573个,A型精母细胞中有5 596个,在圆形精母细胞中有7 220个,细线期精母细胞中有6 689个,在粗线精母细胞中有4 467个,显示了circ-RNA在精子分化中差异化的潜在调控作用[38]。GO分析发现,circ-RNA与精子发生、运动和受精作用密切相关。睾丸来源的20个高表达circ-RNA在精液中也稳定存在,提示circ-RNA有可能参与受精作用(表 1)[37]

3.3 circ-RNA对卵母细胞发育的调控作用

circ-RNA在早期胚胎发育和精子分化过程中具有重要调控作用,同样也证实了circ-RNA在卵母细胞和卵泡发育中的大量存在是决定畜禽繁殖性能的关键因素[39]。颗粒细胞是卵泡发育的决定性因素,为卵母细胞提供营养和支持作用,对卵母细胞生长发育和排卵的完成有着重要的意义[40]。鸭卵泡中预测了4 204个circ-RNA,其中14个circ-RNA差异性表达,Aplacirc-013267参与circRNA-miRNA-mRNA共表达网络,促进鸭卵巢颗粒细胞的凋亡[39]。山羊排卵前卵泡中预测有13 950个circ-RNA表达[41]。Liu等[40]通过circ-RNA测序,分析小于30岁年轻女性和大于38岁女性的卵巢颗粒细胞表达情况,发现年轻女性中有46个显著高表达的circ-RNA和11个显著低水平的circ-RNA。其中circ-103827和circ-104816可能参与葡萄糖代谢、有丝分裂细胞周期和卵巢类固醇生成[42]。随年龄增长或者卵泡微环境受损,circ-103827和circ-104816表达上调,影响卵母细胞受精,呈现年龄关联性(表 1);Fu等[43]构建了4个牛卵丘细胞cDNA文库,对1 706个circ-RNA进行鉴定,发现在通过BMP15、GDF9和处理组BMP15+GDF9对体外卵母细胞培养时,BMP15组有3个上调circ-RNA和6个下调circ-RNA,GDF9组有12个上调circ-RNA和24个下调circ-RNA,BMP15+GDF9组有15个上调circ-RNA和13个下调circ-RNA,显示出了circ-RNA在卵母细胞发育中的重要作用。

3.4 circ-RNA与生殖发育相关疾病

circ-RNA在多种生殖相关疾病中表达异常,如习惯性流产[46]、卵巢癌[47-48]、宫颈癌[49-50]、前列腺癌[51]和多囊卵巢综合征[52]等。circ-104948/104547/101319在习惯性流产人胎盘绒毛膜组织中异常表达[46]。卵巢癌患者血清circ-setdb1表达升高[53];卵巢癌中circ-RNA表达下调,导致miR-24/let-7呈上调表达,促进肿瘤转移和侵袭[47]。宫颈癌细胞中circ-000284和circ-102049的表达显著上调,其中circ-000284上调,提高了miR-506的靶基因Snail-2表达,促进了细胞的增殖和侵袭[54];circ-0023404通过提升miR-136的靶基因Tfcp2/Yap的表达,促进宫颈癌的发生和发展[49];circ-101996通过竞争抑制miR-8075的表达激活Tpx2,增加宫颈癌细胞的增殖和侵袭[49]。circ-1565在正常前列腺细胞系中几乎没有表达,在转移性前列腺癌细胞系中高水平表达,在非转移性前列腺癌细胞系中低水平表达[55]。多囊卵巢综合征患者卵泡液中circ-RNA的表达异常,167个circ-RNA上调,245个circ-RNA下调[52]。人精浆中游离circ-RNA数量丰富,汇集了雄性生殖腺的RNA表达信息,是很好的雄性繁殖能力和疾病分子诊断标志物[56-57],这些研究显示了circ-RNA在生殖相关发育中的重要调控作用以及在疾病治疗中潜在的分子靶点。

4 小结与展望

随着生物学信息技术和高通量测序方法的不断发展,越来越多的功能性circ-RNA分子被鉴定出来。circ-RNA介导的转录及转录后调控作用,涉及细胞生命活动的各个阶段,在早期胚胎和配子发育中显示出规律性的表达,预示了其在生殖和发育中的重要作用,但其中的调控机制有待深入解析;生殖系统的疾病中被鉴定出来的circ-RNA分子,具有潜在的诊断和治疗标记的应用前景,是一种理想的标记物。然而,circ-RNA的研究仍处于起步阶段,许多潜在的功能和作用机制尚未研究清楚,但随着研究的深入,相信关于circ-RNA更多的机制将会被发现,并将在生殖领域研究取得更大的进步。

参考文献
[1] QU S B, YANG X S, LI X L, et al. Circular RNA:a new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141–148. DOI: 10.1016/j.canlet.2015.06.003
[2] HUANG M S, ZHU T, LI L, et al. LncRNAs and CircRNAs from the same gene:Masterpieces of RNA splicing[J]. Cancer Lett, 2018, 415: 49–57. DOI: 10.1016/j.canlet.2017.11.034
[3] LASDA E, PARKER R. Circular RNAs:diversity of form and function[J]. RNA, 2014, 20(12): 1829–1842. DOI: 10.1261/rna.047126.114
[4] WANG D D, LUO Y J, WANG G W, et al. Circular RNA expression profiles and bioinformatics analysis in ovarian endometriosis[J]. Mol Genet Genomic Med, 2019, 7(7): e00756. DOI: 10.1002/mgg3.756
[5] KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characteri zation of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675–691. DOI: 10.1038/s41576-019-0158-7
[6] YANG Y, FAN X J, MAO M W, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626–641. DOI: 10.1038/cr.2017.31
[7] LI F, ZHANG L Y, LI W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J]. Oncotarget, 2015, 6(8): 6001–6013. DOI: 10.18632/oncotarget.3469
[8] SANGER H L, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852–3856. DOI: 10.1073/pnas.73.11.3852
[9] HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384–388. DOI: 10.1038/nature11993
[10] STARKE S, JOST I, ROSSBACH O, et al. Exon circularization requires canonical splice signals[J]. Cell Rep, 2015, 10(1): 103–111.
[11] ERRICHELLI L, MODIGLIANI S D, LANEVE P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons[J]. Nat Commun, 2017, 8.
[12] ZHANG X O, WANG H B, ZHANG Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134–147. DOI: 10.1016/j.cell.2014.09.001
[13] LI Z Y, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256–264.
[14] MITRA A, PFEIFER K, PARK K S. Circular RNAs and competing endogenous RNA (ceRNA) networks[J]. Transl Cancer Res, 2018, 7(S5): S624–S628. DOI: 10.21037/tcr.2018.05.12
[15] CESANA M, CACCHIARELLI D, LEGNINI I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011, 147(2): 358–369. DOI: 10.1016/j.cell.2011.09.028
[16] TANG W, JI M, HE G, et al. Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7[J]. OncoTargets Ther, 2017, 10: 2045–2056. DOI: 10.2147/OTT.S131597
[17] HANSEN T B, KJEMS J, DAMGAARD C K. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013, 73(18): 5609–5612. DOI: 10.1158/0008-5472.CAN-13-1568
[18] DOLCI S, GRIMALDI P, GEREMIA R, et al. Identification of a promoter region generating Sry circular transcripts both in germ cells from male adult mice and in male mouse embryonal gonads[J]. Biol Reprod, 1997, 57(5): 1128–1135. DOI: 10.1095/biolreprod57.5.1128
[19] SHEN L C, ZHANG Y, ZHOU W, et al. Circular RNA expression in ovarian endometriosis[J]. Epigenomics, 2018, 10(5): 559–572. DOI: 10.2217/epi-2017-0079
[20] LI X, YANG L, CHEN L L. The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71(3): 428–442. DOI: 10.1016/j.molcel.2018.06.034
[21] JI Q, ZHANG C C, SUN X T, et al. Circular RNAs function as competing endogenous RNAs in multiple types of cancer[J]. Oncol Lett, 2018, 15(1): 23–30.
[22] GUO J U, AGARWAL V, GUO H L, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7): 409. DOI: 10.1186/s13059-014-0409-z
[23] ZHANG L, ZHOU Q, QIU Q Z, et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/ DNAJB6/ KLF4/AKT1 axis in ovarian cancer[J]. Mol Cancer, 2019, 18(1): 144. DOI: 10.1186/s12943-019-1080-5
[24] LI X Y, AO J P, WU J. Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells[J]. Oncotarget, 2017, 8(16): 26573–26590. DOI: 10.18632/oncotarget.15719
[25] XIN Z Y, MA Q, REN S C, et al. The understanding of circular RNAs as special triggers in carcinogenesis[J]. Brief Funct Genomics, 2016, 16(2): 80–86.
[26] JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141–157. DOI: 10.1261/rna.035667.112
[27] LEGNINI I, DI TIMOTEO G, ROSSI F, et al. Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22–37.
[28] ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608–624. DOI: 10.1038/s41580-019-0168-5
[29] LIU K S, PAN F, MAO X D, et al. Biological functions of circular RNAs and their roles in occurrence of reproduction and gynecological diseases[J]. Am J Transl Res, 2019, 11(1): 1–15.
[30] MEYER K D, JAFFREY S R. The dynamic epitranscriptome:N6-methyladenosine and gene expression control[J]. Nat Rev Mol Cell Biol, 2014, 15(5): 313–326.
[31] ALMADA A E, WU X B, KRIZ A J, et al. Promoter directionality is controlled by U1 snRNP and polyadeny -lation signals[J]. Nature, 2013, 499(7458): 360–363. DOI: 10.1038/nature12349
[32] BERG M G, SINGH L N, YOUNIS I, et al. U1 snRNP determines mRNA length and regulates isoform expression[J]. Cell, 2012, 150(1): 53–64.
[33] KAIDA D, BERG M G, YOUNIS I, et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation[J]. Nature, 2010, 468(7324): 664–668. DOI: 10.1038/nature09479
[34] DANG Y J, YAN L Y, HU B Q, et al. Tracing the expression of circular RNAs in human pre-implantation embryos[J]. Genome Biol, 2016, 17(1): 130.
[35] FAN X Y, ZHANG X N, WU X L, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos[J]. Genome Biol, 2015, 16(1): 148.
[36] DONG W W, LI H M, QING X R, et al. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma[J]. Sci Rep, 2016, 6(1): 39080.
[37] RAGUSA M, BARBAGALLO D, CHIOCCARELLI T, et al. CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs[J]. RNA Biol, 2019, 16(9): 1237–1248. DOI: 10.1080/15476286.2019.1624469
[38] DONG Z F, DENG L N, PENG Q X, et al. CircRNA expression profiles and function prediction in peripheral blood mononuclear cells of patients with acute ischemic stroke[J]. J Cell Physiol, 2020, 235(3): 2609–2618. DOI: 10.1002/jcp.29165
[39] WU Y, XIAO H W, PI J S, et al. The circular RNA aplacirc_13267 upregulates duck granulosa cell apoptosis by the apla-miR-1-13/THBS1 signaling pathway[J]. J Cell Physiol, 2020, 235(7-8): 5750–5763. DOI: 10.1002/jcp.29509
[40] LIU L, LI L, MA X, et al. Altered circular RNA expression in patients with repeated implantation failure[J]. Cell Physiol Biochem, 2017, 44(1): 303–313.
[41] TAO H, XIONG Q, ZHANG F, et al. Circular RNA profiling reveals chi-circ-0008219 function as microRNA sponges in pre-ovulatory ovarian follicles of goats (Capra hircus)[J]. Genomics, 2018, 110(4): 257–266. DOI: 10.1016/j.ygeno.2017.10.005
[42] LIN X L, LU D, GAO Y, et al. Genome-wide association study identifies novel loci associated with serum level of vitamin B12 in Chinese men[J]. Hum Mol Genet, 2012, 21(11): 2610–2617. DOI: 10.1093/hmg/dds062
[43] FU Y, JIANG H, LIU J B, et al. Genome-wide analysis of circular RNAs in bovine cumulus cells treated with BMP15 and GDF9[J]. Sci Rep, 2018, 8(1): 7944.
[44] 马志, 赵慧珊, 张妍, 等. 多囊卵巢综合征患者卵丘颗粒细胞中特异性环状RNA的表达研究[J]. 生殖医学杂志, 2019, 28(10): 1219–1226.
MA Z, ZHAO H S, ZHANG Y, et al. Novel circular RNAs expression in cumulus granulosa cells of patients with polycystic ovary syndrome[J]. Journal of Reproductive Medicine, 2019, 28(10): 1219–1226. (in Chinese)
[45] 何笑, 于鲁华, 吕芳, 等. 多囊卵巢综合征与正常卵泡液中环状RNA的差异表达分析[J]. 扬州大学学报:农业与生命科学版, 2019, 40(2): 58–64.
HE X, YU L H, LV F, et al. Differential expression of circular RNA in follicular fluid of polycystic ovarian syndrome patients and normal control group[J]. Journal of Yangzhou University:Agricultural and Life Science Edition, 2019, 40(2): 58–64. (in Chinese)
[46] QIAN Y T, WANG X, RUAN H J, et al. Circular RNAs expressed in chorionic villi are probably involved in the occurrence of recurrent spontaneous abortion[J]. Biomed Pharmacother, 2017, 88: 1154–1162. DOI: 10.1016/j.biopha.2017.01.172
[47] AHMED I, KAREDATH T, ANDREWS S S, et al. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma[J]. Oncotarget, 2016, 7(24): 36366–36381. DOI: 10.18632/oncotarget.8917
[48] BACHMAYR-HEYDA A, REINER A T, AUER K, et al. Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues[J]. Sci Rep, 2015, 5: 8057. DOI: 10.1038/srep08057
[49] ZHANG J H, ZHAO X Y, ZHANG J, et al. Circular RNA hsa_circ_0023404 exerts an oncogenic role in cervical cancer through regulating miR-136/TFCP2/YAP pathway[J]. Biochem Biophys Res Commun, 2018, 501(2): 428–433.
[50] GAO D F, ZHANG X F, LIU B B, et al. Screening circular RNA related to chemotherapeutic resistance in breast cancer[J]. Epigenomics, 2017, 9(9): 1175–1188. DOI: 10.2217/epi-2017-0055
[51] 时浩清, 訾晓渊, 张春雷, 等. 前列腺癌细胞系中环状RNA circRNA-1565的表达及鉴定[J]. 现代生物医学进展, 2019, 19(12): 2243–2247.
SHI H Q, ZI X Y, ZHANG C L, et al. Expression and identification of ring RNA CircRNA-1565 in prostate cancer cell line[J]. Progress in Modern Biomedicine, 2019, 19(12): 2243–2247. (in Chinese)
[52] ZHANG C R, LIU J Q, LAI M H, et al. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome[J]. Arch Gynecol Obstet, 2019, 300(2): 431–440. DOI: 10.1007/s00404-019-05129-5
[53] WANG W, WANG J, ZHANG X, et al. Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer[J]. OncoTargets Ther, 2019, 12: 7451–7457. DOI: 10.2147/OTT.S220700
[54] MA H B, YAO Y N, YU J J, et al. Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506[J]. Am J Transl Res, 2018, 10(2): 592–604.
[55] SONG T F, XU A L, ZHANG Z F, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075[J]. J Cell Physiol, 2019, 234(8): 14296–14305. DOI: 10.1002/jcp.28128
[56] LIU Y C, LI J R, SUN C H, et al. CircNet:a database of circular RNAs derived from transcriptome sequencing data[J]. Nucleic Acids Res, 2016, 44(D1): D209–D215. DOI: 10.1093/nar/gkv940
[57] ZHENG L L, LI J H, WU J, et al. deepBase v2.0:identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data[J]. Nucleic Acids Res, 2016, 44(D1): D196–D202. DOI: 10.1093/nar/gkv1273