畜牧兽医学报  2020, Vol. 51 Issue (8): 2003-2011. DOI: 10.11843/j.issn.0366-6964.2020.08.025    PDF    
基于RNA-Seq筛选ALV-J感染汶上芦花鸡肝差异表达致病相关基因
张会永1, 吴井生2, 杨剑波2, 俞燕1, 薛倩1, 殷建玫1, 朱云芬1, 朱静1, 苏一军1, 李国辉1, 韩威1     
1. 中国农业科学院家禽研究所, 江苏省家禽遗传育种重点实验室, 扬州 225125;
2. 江苏农林职业技术学院, 镇江 212400
摘要:为挖掘感染ALV-J汶上芦花鸡的肝差异表达致病相关基因。本研究以汶上芦花鸡为试验素材,分别在42和300日龄进行ALV血液病毒分离检测筛选ALV阴性和阳性个体,对ALV阳性个体有病理变化的肝组织和阴性个体肝组织进行PCR检测,分别选取3只ALV阳性(G1组)和阴性(G2组)个体的肝组织,并对G1组PCR产物测序、聚类分析确定ALV亚型,利用RNA-Seq测序技术筛选差异表达基因,并进行功能分析,利用荧光定量qRT-PCR对部分差异表达基因进行验证。结果表明,G1组样品经PCR检测、PCR扩增产物测序和聚类分析确定ALV为J亚型,转录组分析发现,共有42个差异基因在GO和KEGG中富集,其中,上调基因18个,下调基因24个。随机选取的5个差异表达基因qRT-PCR验证结果与RNA-Seq测序结果相一致。GO分析显示,差异表达基因主要涉及细胞过程、代谢过程、对刺激的反应、免疫系统等;KEGG分析显示,差异表达基因主要富集在细胞过程、信号传导、疾病、新陈代谢等信号通路。本研究通过转录组分析发现了影响ALV-J致病性的多个基因和关键信号通路,为深入了解ALV-J致病的分子机制提供了思路。
关键词汶上芦花鸡    J亚群白血病病毒    转录组测序    差异表达基因    
Application of RNA-Seq Technology for Screening the Differentially Expressed Pathogenic Genes in Wenshang Barred Chicken Liver Infected by Subgroup J Avian Leukosis Virus
ZHANG Huiyong1, WU Jingsheng2, YANG Jianbo2, YU Yan1, XUE Qian1, YIN Jianmei1, ZHU Yunfen1, ZHU Jing1, SU Yijun1, LI Guohui1, HAN Wei1     
1. Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China;
2. Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
Abstract: The aim of this study was to screen the differentially expressed pathogenic genes in liver of Wenshang Barred chicken infected by subgroup J avian leukosis virus(ALV-J). ALV uninfected and infected Wenshang Barred chickens were pre-screened by virus isolation from blood at 42 and 300 days of age. The liver tissue samples from both ALV infected chickens which had the pathological changes and ALV uninfected chickens were identified accurately by PCR detection, then the liver tissues from 3 ALV-positive (G1 group)individuals and 3 ALV-negative (G2 group) individuals were sampled for further study. PCR ampilification products of 3 ALV-positive individuals were confirmed as subgroup J by sequencing and cluster analysis. The liver tissue samples from both 3 ALV-J positive individuals and 3 ALV-negative individuals were selected for screening the differentially expressed genes by RNA-Seq technology, then functional analysis was conducted. The partial differentially expressed genes were verified by qRT-PCR. The results showed that 42 differentially expressed genes were enriched in GO and KEGG databases, which included 18 up-regulated genes and 24 down-regulated genes. Moreover, expressions of 5 differentially expressed genes randomly selected were verified by qRT-PCR, which confirmed that mRNA expression levels were consistent with RNA-Seq sequencing results. GO analysis results indicated that the differentially expressed genes were mainly involved in cellular processes, metabolic processes, response to stimulus, immune system, and so on. KEGG analysis results showed that the differentially expressed genes were mainly enriched in cellular processes, signal transduction, disease, metabolism pathways. This study found many genes and critical signaling pathways which affected the pathogenicity of ALV-J by transcriptome analysis and would provide new ideas for understanding the pathogenic mechanism of ALV-J at molecular level.
Key words: Wenshang Barred chicken    ALV-J    RNA-Seq    differentially expressed gene    

J亚群白血病病毒(subgroup J avian leukosis virus,ALV-J)属于反转录病毒,由外源性ALV与内源性包膜糖蛋白基因(envelope glycoprotein gene, EAV)发生基因重组产生,能够引起禽类(主要是鸡)各种良性和恶性肿瘤[1]。1988年首次在英国肉鸡中被分离发现[2],2005年在中国地方鸡种中首次发现该亚型病毒[3]。该病毒感染给中国乃至世界养鸡业带来了严重的经济损失[4]。ALV-J可经水平传播和垂直传播[5-6]。与其它亚群(A、B、C、D、E、K)相比,ALV-J gp85同源性差异最大,其致病性、致肿瘤性、传染性最强[7-9],鸡群感染ALV-J后,可导致生长缓慢、死亡率增高、产蛋性能下降、受精率和孵化率降低、免疫抑制等,临床诊断可见各种肿瘤,如肝细胞瘤、髓细胞瘤、血管瘤、神经胶质瘤等[10-12]

目前,针对ALV-J的研究在多个方面有显著进展,Zhang等[13]利用RNA-Seq与RT-qPCR技术,在ALV-J易感群及抗体群中筛选出抗肿瘤基因GADD45β。Fan等[14]通过ALV-J感染DF-1细胞系进行蛋白组学分析,发现30种上调蛋白质和44种下调蛋白质,其中包括DJ-1、UCHL1、VDAC1和HMGB1等在内的多种蛋白质与细胞凋亡或肿瘤发生有一定关系。刘立涛[15]在ALV-J致病机制的体外分子病理学研究中发现,不同ALV-J病毒株的毒力不同,感染细胞的肿瘤的相关基因表达不同,该变化可能对病毒的宿主范围扩大、组织嗜性及肿瘤表型的改变发挥重要作用。病毒致病过程实质上是病毒与宿主相互作用的过程,ALV-J致病机制的体外分子病理学研究已见诸多报道,而我国地方鸡种在正常饲养环境中ALV-J自然交叉感染下的病理学研究鲜有报道,利用RNA-Seq技术对ALV-J自然感染鸡的肝组织进行研究,有助于进一步了解ALV-J的致病机理。

RNA-Seq测序技术因具有高通量、成本低、操作简便、灵敏度高等特点而广泛用于疾病发生发展机制的研究和相关基因功能的筛选。吴良涛等[16]利用RNA-Seq技术筛选出鸭肠炎病毒的免疫相关基因。徐柳柳等[17]以禽致病性大肠杆菌(APEC)及其PhoP/Q缺失株感染雏鸡小肠为模型, 利用RNA-Seq技术筛选出肠道免疫相关基因。本研究利用RNA-Seq技术筛选ALV-J感染汶上芦花鸡与正常芦花鸡的肝差异表达基因,以期为阐明ALV-J的致瘤机制提供分子理论基础。

1 材料与方法 1.1 试验鸡及肝样品选择

以国家级地方鸡种基因库保存的汶上芦花鸡保种群(母鸡)为试验素材,42日龄进行ALV血液病毒分离检测,对试验鸡进行初选,建立ALV阴、阳性试验鸡群,ALV阳性个体隔离单独饲养,300日龄对试验鸡群进行血液病毒分离检测,进一步筛选ALV阳性群体和阴性群体,并追溯系谱阴性个体确认上两个世代没有禽白血病史。对上述试验鸡群屠宰,根据临床肝组织的病变特征采集肝组织,提取RNA,针对ALV的env基因设计并合成一对通用引物用于扩增ALV囊膜蛋白env基因,约2 600 bp(上游引物5′-CGAGAGTGGCTCGCGAGATGG-3′;下游引物5′-ACACTACATTTCCCCCTCCCTAT-3′),利用PCR鉴定3只ALV阳性个体肝组织(G1组,有病变)和3只阴性个体肝组织(G2组,无病变),并收集G1组PCR扩增产物,测序,测序序列采用Blast和MEGA4.0程序进行序列比对和聚类分析,液氮保存备份肝组织,用于RNA-Seq测序。

1.2 肝组织RNA文库构建与序列测定

提取肝组织总RNA,经Agilent 2200质检合格后,利用Illumina HiSeq 2000TM测序平台对送检的肝组织样本进行文库构建和序列测定。

1.3 肝组织差异表达基因筛选与分析

运用Fast-QC(http//www.bioinformatics.babraham.ac.uk/projects/fastqc/)软件评估测序数据质量后,采用MapSplice软件将过滤后的CleanReads比对到鸡基因组上,以|log2(Fold Change)|≥1且FDR < 0.05作为筛选标准阈值筛选差异表达基因后,进行GO和KEGG分析。

1.4 差异表达基因荧光定量PCR验证

随机选择5个差异表达基因,根据GenBank上该基因序列,利用Primer 5.0软件进行引物设计,见表l。然后提取G1和G2组肝组织总RNA样本反转录为cDNA后进行荧光定量PCR扩增。反应体系的配制(总体积20 μL):SYBR Premix Ex Taq(2×)10 μL,正、反向引物(10 μmol · L-1)各1.0 μL,模板(cDNA) 2.0 μL,ddH2O 6.0 μL。反应条件:95 ℃ 30 s;95 ℃ 10 s,60 ℃ 30 s,循环40次;72 ℃单点检测信号。熔解曲线:95 ℃ 15 s,60 ℃ 60 s,95 ℃ 15 s,连续检测信号,每个样本进行3次重复,采用2-△△Ct法计算相关基因mRNA转录水平。

表 1 差异表达基因的荧光定量PCR引物 Table 1 Primers of the real-time PCR for differentially expressed genes
1.5 数据统计与分析

应用Blast和MEGA4.0程序对ALV阳性肝PCR产物测序结果进行序列比对和聚类分析,利用David在线软件(https://david.ncifcrf.gov/)对差异表达基因进行GO和KEGG分析,应用EXCEL对荧光定量PCR验证的基因mRNA转录水平进行统计,并绘图。

2 结果 2.1 感染汶上芦花鸡ALV亚型的确定

图 1所示,G1组肝组织PCR扩增后电泳检测,可见大小约为2 600 bp的条带,初步确定此ALV为J亚型。产物测序的基因序列利用Blast与GenBank数据库比对,结果表明,测序序列与已报道的ALV-J亚型序列(登录号:KY980660.1、KY980658.1、KY980662.1、KF562374.1、KY980657.1)相似性>95%。该测序序列gp85序列与A、B、J亚型参考株的gp85基因序列进行遗传演化分析,如图 2所示,该序列与J亚型聚在同一分支,结果进一步表明该ALV是J亚型。

M.DNA相对分子质量标准;1~6. G1和G2组ALV env基因扩增产物 M. DL-5000 marker; 1-6. The amplification products of ALV env in G1 and G2 groups 图 1 ALV env基因的PCR扩增 Fig. 1 PCR amplification of ALVenv gene
▲.本研究分离毒株序列;●. ALV-Bgp85基因序列;■. ALV-Agp85基因序列 ▲. Sequence of isolated strain in this study; ●.gp85 gene sequence of ALV-B; ■.gp85 gene sequence of ALV-A 图 2 不同亚型禽白血病毒株gp85基因序列的遗传演化分析 Fig. 2 Phylogenetic analysis of gp85 gene sequence of avian leukosis viruses strains subtype A, B, J
2.2 汶上芦花鸡ALV-J阴、阳性肝组织差异基因的筛选

以|log2(Fold Change)|≥1且FDR < 0.05作为筛选标准,将G1与G2对照组测序数据进行比对分析,结果显示,差异表达基因共有67个,其中有42个差异表达基因能够富集在GO和KEGG中,这42个差异表达基因中,18个基因表达上调, 24个基因表达下调,详见表 2

表 2 差异表达基因 Table 2 The differentially expressed genes
2.3 差异基因荧光定量PCR验证

随机选取5个差异表达基因(表达上调基因3个:CALD1、ST3GAL1、CDK2;表达下调基因2个:CHAC1、HSPB11),以β-actin为内参基因,利用荧定量PCR方法对G1和G2组肝组织样品总RNA提取样本进行扩增,如图 3所示,5个差异表达基因的相对表达量与RNA-Seq技术测序结果基本一致。

图 3 部分差异基因荧光定量PCR验证结果 Fig. 3 Real-time PCR verification for differentially expressed genes
2.4 差异表达基因GO和KEGG分析

对差异基因进行GO和KEGG分析,结果如图 4图 5所示,其参与的生物学过程主要有细胞过程、代谢过程、对刺激的反应、细胞成分组成及生物发生、免疫系统、发展过程等;参与的分子功能主要有催化活性、运输活性、受体活性、核酸结合转录因子活性等;参与的细胞组分主要有细胞、细胞器、细胞膜、大分子复合物等。差异表达基因显著富集到细胞过程、信号传导、疾病、新陈代谢等相关的通路中。

图 4 差异表达基因的GO注释分类统计图 Fig. 4 GO annotation and classification of differentially expressed genes
图 5 差异表达基因KEGG分类图 Fig. 5 KEGG classification of differentially expressed genes
3 讨论 3.1 汶上芦花鸡ALV阴、阳性个体筛选

本研究的试验素材为同一批次的汶上芦花鸡,42日龄进行初次ALV血液病毒分离检测,筛选出ALV阳性和阴性试验群体,300日龄进行第二次ALV血液病毒分离检测,并结合PCR检测进一步确认ALV阴性、阳性个体;并且对阴性个体进行系谱追溯,要求上两个世代内家系无禽白血病史,确保阴性个体选择的准确性。

肝肿瘤是ALV-J感染鸡临床诊断的一个重要表型症状(ALV-J感染鸡肝肿大,有肿瘤结),同时肝又是机体重要的代谢器官,因此,本试验以肝组织作为ALV-J感染汶上芦花鸡致病相关差异表达基因研究的对象。

3.2 肝组织差异表达基因功能分析

对肝组织富集到GO和KEGG中的42个差异表达基因进行功能分析,发现这些差异表达基因参与了细胞过程、代谢、免疫、肿瘤和细胞组分等多个复杂过程,这表明ALV-J感染致病是机体多层次调控多个基因参与的复杂分子过程。

ALV-J感染鸡群能够引起各种良性和恶性肿瘤,本试验中,ALV-J阳性鸡肝组织存在许多差异表达基因与肿瘤相关,如CDK2、MYBELF3、GADD45β、ADADDIT4等。研究发现,细胞周期调控核心因子CDK2控制S期DNA合成的起始和G1期进入S期,表达上调可导致细胞增殖[18-20]MYB表达的C-myb也可调整细胞从细胞周期的G1期向S期转化,且ALV-J基因组可整合到宿主细胞C-myb基因组中的上游、下游或中间,从而激活C-myb,导致细胞肿瘤基因的表达异常并最终形成肿瘤[21]ELF3表达上调后可保护ZEB1免受miR-141-3p介导的沉默而促进上皮-间质转化,从而促进肝肿瘤的增殖、迁移和入侵[22]GADD45β为抗肿瘤相关的基因,Zhang等[13]在ALV-J易感群及抗体群的肝中筛选出此基因,发现其过表达抑制了ALV-J的复制,可以增强对ALV-J感染的防御能力,本试验在肝组织中同样发现该基因,且其表达下调,说明此时肝细胞可能对ALV-J的抵抗变弱。

在缺氧环境中,DDIT4表达上调抑制其下游凋亡蛋白表达进而抑制缺氧诱导的凋亡,使肿瘤细胞逐渐适应缺氧环境并耐受低氧,最终促进恶性表型的形成[23-24]。抑制杀伤性T细胞活化基因ADA[25]可控制腺苷的浓度,高浓度的腺苷在实体瘤中可抑制杀伤性T细胞活化,有助于肿瘤的增殖和迁移。本试验中,上述2个基因下调,可能有助于阻止肝细胞或病变细胞向恶性肿瘤细胞转化。

与机体代谢相关的基因有LIPGLIPCAGPAT2,本试验中,这3个基因表达全部下调,说明机体被ALV-J感染后,影响自身的新陈代谢,使鸡生产性能下降,这与课题组前期研究的ALV感染地方鸡群生产性能显著下降相一致,同时与地方鸡饲养管理中遇到鸡群感染ALV发病后期身体消瘦等表型相符。

本试验中,部分差异表达基因如代谢基因LIPGLIPC[26]AGPAT2[27]抑制杀伤性T细胞活化基因ADA;休克蛋白基因HSPb11(小分子HSP)、HSP90AA1(HSP90家族)、HSPA8、HSPA4L与HSPA2(HSP70家族)[28-29]等表达下调,与已有关于ALV-J致病研究的表达规律不尽相同,究其原因可能有如下几个方面:1)本试验采集的是活体样本,非体外细胞攻毒试验;2)本试验采样组织为ALV-J感染肝组织,而非肝上的肿瘤组织;3)采样的时间点不同。鸡群开产前后为禽白血病暴发期,此时多为急性、恶性肿瘤,在肝、骨髓等多个器官有明显的恶性肿瘤,而在本试验中,采样时ALV-J感染的肝仅有轻微的病变。

4 结论

ALV-J感染鸡致病是一个复杂的分子过程,本试验利用RNA-Seq技术筛选肝组织差异表达基因,功能分析发现了多个与ALV-J致病机制相关的基因和关键信号通路,如GADD45β基因是抗肿瘤基因,细胞过程信号通路中的CDK2、MYB等基因与肿瘤的形成有关,新陈代谢等信号通路中的LIPGLIPCAGPAT2影响鸡的新陈代谢,本试验结果可为深入研究ALV-J的致病机制提供参考。

参考文献
[1] BAI J, PAYNE L N, SKINNER M A. HPRS-103(exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses[J]. J Virol, 1995, 69(2): 779–784. DOI: 10.1128/jvi.69.2.779-784.1995
[2] PAYNE L N, BROWN S R, BUMSTEAD N, et al. A novel subgroup of exogenous avian leukosis virus in chickens[J]. J Gen Virol, 1991, 72(4): 801–807. DOI: 10.1099/0022-1317-72-4-801
[3] 成子强, 张利, 刘思当, 等. 中国麻鸡中发现禽J亚群白血病[J]. 微生物学报, 2005, 45(4): 584–587.
CHENG Z Q, ZHANG L, LIU S D, et al. Emerging of Avian leukosis virus subgroup J in a flock of Chinese local breed[J]. Acta Microbiologica Sinica, 2005, 45(4): 584–587. (in Chinese)
[4] CHENG Z Q, LIU J Z, CUI Z Z, et al. Tumors associated with avian leukosis virus subgroup J in layer hens during 2007 to 2009 in China[J]. J Vet Med Sci, 2010, 72(8): 1027–1033.
[5] LI Y, CUI S, LI W H, et al. Vertical transmission of avian leukosis virus subgroup J (ALV-J) from hens infected through artificial insemination with ALV-J infected semen[J]. BMC Vet Res, 2017, 13: 204. DOI: 10.1186/s12917-017-1122-4
[6] 饶明章, 袁丽霞, 赵子君, 等. 黄羽祖代公鸡精液作为禽白血病净化检测材料的应用研究[J]. 畜牧兽医学报, 2017, 48(1): 124–131.
RAO M Z, YUAN L X, ZHAO Z J, et al. Applied research of yellow feather grandparent roosters semen as test sample in Avian Leukosis eradication program[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(1): 124–131. (in Chinese)
[7] VENUGOPAL K, SMITH L M, HOWES K, et al. Antigenic variants of J subgroup avian leukosis virus:sequence analysis reveals multiple changes in the env gene[J]. J Gen Virol, 1998, 79(4): 757–766.
[8] 李久庆, 刘强, 郭雷, 等. 一株新亚群禽白血病病毒全基因组序列分析[J]. 畜牧兽医学报, 2017, 48(9): 1718–1723.
LI J Q, LIU Q, GUO L, et al. Genomic sequence analysis of a new subgroup of avian leukosis virus[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(9): 1718–1723. (in Chinese)
[9] LIN Y, XIA J, ZHAO Y, et al. Reproduction of hemangioma by infection with subgroup J avian leukosis virus:the vertical transmission is more hazardous than the horizontal way[J]. Virol J, 2013, 10: 97. DOI: 10.1186/1743-422X-10-97
[10] DAI Z K, JI J, YAN Y M, et al. Role of gga-miR-221 and gga-miR-222 during tumour formation in chickens infected by subgroup J avian leukosis virus[J]. Viruses, 2015, 7(12): 6538–6551.
[11] 秦四海, 刘立涛, 岳瑞超, 等. 乌骨鸡J亚群白血病的综合诊断及病毒分子生物学特性研究[J]. 畜牧兽医学报, 2014, 45(3): 458–462.
QIN S H, LIU L T, YUE R C, et al. Study on comprehensive diagnosis and molecular characterization of subgroup J avian leukosis virus from silkies[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(3): 458–462. (in Chinese)
[12] 张会永, 吴井生, 李国辉, 等. 禽白血病病毒在惠阳胡须鸡和汶上芦花鸡的垂直传播特性分析[J]. 畜牧兽医学报, 2018, 49(7): 1475–1481.
ZHANG H Y, WU J S, LI G H, et al. Characteristic analysis on vertical transmission of avian leukosis virus in Huiyang Chicken and Wenshang Barred Chicken[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(7): 1475–1481. (in Chinese)
[13] ZHANG X H, YAN Z Q, LI X J, et al. GADD45β, an anti-tumor gene, inhibits avian leukosis virus subgroup J replication in chickens[J]. Oncotarget, 2016, 7(42): 68883–68893.
[14] FAN Z J, HU X M, ZHANG Y P, et al. Proteomics of DF-1 cells infected with avian leukosis virus subgroup J[J]. Virus Res, 2012, 167(2): 314–321.
[15] 刘立涛.ALV-J致病机制的体外分子病理学研究[D].泰安: 山东农业大学, 2014.
LIU L T.Molecular pathology study on pathogenesis of ALV-J in vitro[D].Taian: Shandong Agricultural University, 2014(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10434-1014341584.htm
[16] 吴良涛, 郑敏, 华敏, 等. 基于RNA-Seq筛选鸭肠炎病毒感染鸭脾差异表达免疫相关基因[J]. 畜牧兽医学报, 2017, 48(2): 297–306.
WU L T, ZHENG M, HUA M, et al. Screening of differentially expressed immune-related genes from duck spleen with duck enteritis virus infection based on RNA-Seq technology[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(2): 297–306. (in Chinese)
[17] 徐柳柳, 祁克宗, 涂健, 等. 基于RNA-Seq筛选APEC及其PhoP/Q缺失株感染雏鸡肠道免疫相关基因[J]. 基因组学与应用生物学, 2019, 38(1): 159–164.
XU L L, QI K Z, TU J, et al. Screening of the immune-related genes in chicks small intestines infected with avian pathogenic Escherichia coli (APEC) and its PhoP/Q deletion strain based on RNA-Seq[J]. Genomics and Applied Biology, 2019, 38(1): 159–164. (in Chinese)
[18] WANG Y T, CHEN Y M, CHENG X L, et al. Design, synthesis and biological evaluation of pyrimidine derivatives as novel CDK2 inhibitors that induce apoptosis and cell cycle arrest in breast cancer cells[J]. Bioorg Med Chem, 2018, 26(12): 3491–3501.
[19] FLORES O, WANG Z Y, KNUDSEN K E, et al. Nuclear targeting of cyclin-dependent kinase 2 reveals essential roles of cyclin-dependent kinase 2 localization and cyclin E in vitamin D-mediated growth inhibition[J]. Endocrinology, 2010, 151(3): 896–908.
[20] CHEN M J, CHENG A C, LEE M F, et al. Simvastatin induces G1 arrest by up-regulating GSK3β and down-regulating CDK4/cyclin D1 and CDK2/cyclin E1 in human primary colorectal cancer cells[J]. J Cell Physiol, 2018, 233(6): 4618–4625.
[21] 张桂华.ALV-J感染致病过程中p53基因突变及其作用研究[D].泰安: 山东农业大学, 2018.
ZHANG G H.The mutation of p53 gene and role in ALV-J infection and pathogenesis[D].Taian: Shandong Agricultural University, 2018.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10434-1018169785.htm
[22] ZHENG L B, XU M, XU J J, et al. ELF3 promotes epithelial-mesenchymal transition by protecting ZEB1 from miR-141-3p-mediated silencing in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(3): 387.
[23] PINTO J A, ROLFO C, RAEZ L E, et al. In silico evaluation of DNA damage inducible transcript 4 gene (DDIT4) as prognostic biomarker in several malignancies[J]. Sci Rep, 2017, 7(1): 1526. DOI: 10.1038/s41598-017-01207-3
[24] CORRADETTI M N, INOKI K, GUAN K L. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway[J]. J Biol Chem, 2005, 280(11): 9769–9772.
[25] FEUERSTEIN M, LUFF G M, HARRINGTON C B, et al. Pattern of workplace disputes in cancer survivors:a population study of ADA claims[J]. J Cancer Surviv, 2007, 1(3): 185–192.
[26] 陈兆鑫. 内皮脂酶与疾病和肿瘤关系的研究进展[J]. 临床与病理杂志, 2017, 37(8): 1699–1702.
CHEN Z X. Research progress of the relationship between endothelial lipase and disease or cancer[J]. International Journal of Pathology and Clinical Medicine, 2017, 37(8): 1699–1702. (in Chinese)
[27] TRIANTAFYLLOU E A, GEORGATSOU E, MYLONIS I, et al. Expression of AGPAT2, an enzyme involved in the glycerophospholipid/triacylglycerol biosynthesis pathway, is directly regulated by HIF-1 and promotes survival and etoposide resistance of cancer cells under hypoxia[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(9): 1142–1152.
[28] 王化茹.ALV-J诱发鸡成红细胞瘤和淋巴瘤的临床病例分析[D].泰安: 山东农业大学, 2016.
WANG H Y.Clinical analysis on erythroblastosis and lymphocytic leukosis induced by ALV-J in chicken[D].Taian: Shandong Agricultural University, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10434-1016114733.htm
[29] 陈媛媛.禽病毒性肿瘤发生过程中血浆内Hsp90α蛋白的检测[D].泰安: 山东农业大学, 2015.
CHEN Y Y.Detection of Hsp90α in plasma of chickens with tumors in different process[D].Taian: Shandong Agricultural University, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10434-1015308862.htm