羊传染性脓疱俗称羊口疮,是由羊口疮病毒(orf virus,orfv) 感染所致的一种人兽共患传染病,临床表现为患病动物以嘴唇周围开始出现丘疹和脓疱,继而溃烂形成厚状结痂为特征,人主要表现为手指部位的脓疱和溃烂[1-5]。该病发病率高,病死率低,若继发或者混合感染将会导致死亡率大幅度上升。该病在我国的广泛流行,不但严重危害养羊的健康发展,而且威胁人民身体健康[6]。Orfv属于痘病毒科副痘病毒属成员,是一种双链DNA病毒[7]。Orfv自身编码一系列蛋白在拮抗宿主免疫应答和炎症反应中发挥重要作用[8-9],这些免疫逃逸基因的存在致使orfv能够多次重复感染同一宿主[10]。迄今为止,还没有关于羊皮肤成纤维细胞(GSF)感染和未感染orfv差异表达miRNA及其在orfv致病中作用和宿主抵抗orfv感染中作用的相关研究。
microRNA(miRNA)是一类长度为22 nt左右的非编码小RNA片段,广泛存在于植物和动物体内[11]。miRNA通过和靶基因非编码区域互补结合,影响靶基因的翻译和mRNA的稳定性从而实现对靶基因转录后水平的调控作用[12]。近年来的研究表明,miRNA对细菌、病毒和寄生虫感染以及宿主抗病原体感染的免疫应答中发挥重要的调节作用[13]。如猪繁殖与呼吸障碍综合征病毒[14-15]、猪伪狂犬病病毒[16-17]、登革热病毒[18-19]、细菌[20-21]和寄生虫[22-23]。
本研究利用高通量测序技术、荧光定量PCR技术和生物信息学分析技术,首次对orfv感染GSF细胞miRNA差异表达谱进行了筛选、分析和鉴定,为从宿主miRNA层面揭示其和orfv感染关系,进而为揭示orfv感染、致病机制提供了科学依据。
1 材料与方法 1.1 细胞与病毒株Orf病毒、GSF细胞、orfv编码的B2L蛋白单克隆抗体均由中国农业科学院兰州兽医研究所口蹄疫与新发病流行病学创新团队保存。
1.2 主要试剂DMEM培养基购自Hyclone公司,胎牛血清购自GIBCOL公司,Ex Taq酶、dNTP、SYBRⓇ Premix Ex TaqTM (Tli RnaseH Plus)试剂盒,One Step SYBRⓇ PrimeScriptTM RT-PCR Kit试剂盒均为TaKaRa公司产品,miRNA荧光定量试剂盒购自上海吉玛制药技术有限公司,TRIzol购自Invitrogen公司。
1.3 Orfv感染GSF细胞生长曲线测定及样品收集GSF单细胞层长至80%,弃细胞培养基,将细胞接种orfv(MOI=1),37 ℃,5% CO2培养,接毒后分别选取9、24、36、48、72和84 h等6个时间点收集细胞,提取总DNA,运用qPCR方法评估orfv感染GSF细胞的增殖情况,制作orfv一步生长曲线。根据生长曲线结果,感染后72 h弃细胞上清,加入TRIzol收集被orfv感染的GSF细胞,同一时间点未被感染的GSF细胞设置为对照(mock)。
1.4 间接免疫荧光(IFA)评估orfv感染GSF细胞选取GSF感染orfv 72 h的时间点,以B2L MAb(鼠源)为一抗,HRP标记的羊抗鼠IgG为二抗,进行IFA,评估GSF细胞的orfv感染率。
1.5 总RNA提取及miRNA文库构建按照TRIzol法提取细胞总RNA,用甲醛变性琼脂糖凝胶电泳检测RNA的完整性,使用NanoDrop one测定RNA纯度和浓度。将对照组和感染组总RNA样品送华大基因进行文库构建及高通量测序,测定感染组相比对照组细胞miRNA的差异表达变化。
1.6 差异miRNA生物信息学分析当fold change≥1.5时认定miRNA表达差异显著,使用miRanda软件,根据碱基互补配对原则,预测差异显著miRNA的靶基因,并使用DAVID软件进行靶基因的GO和KEGG分析。
1.7 RT-qPCR验证差异表达miRNA根据测定分析结果,根据预测的miRNA免疫相关靶基因对应的miRNA,随机选取6个上调miRNA(miR-34-5p、miR-2397-3p、miR-4466、miR-5928c、miR-3488、miR-125-3p)和4个下调miRNA(miR-195、miR-2285p、miR-3962和miR-1983);以U6作为内参,miRNA的RT-qPCR方法按照试剂盒说明书进行操作,所有试验进行3次生物学重复,采用2-ΔΔCt方法[24]计算miRNA相对表达量。
2 结果 2.1 Orfv在GSF细胞中的生长曲线Orfv感染GSF细胞后,分别选取9、24、36、48、72和84 h 6个时间点收集细胞,提取DNA,使用定量PCR方法评估细胞中orfv基因组拷贝数,结果显示72 h病毒复制达到顶点,此后处于平台期,且和经典病毒一步生长曲线基本一致(图 1)。Orfv B2L单克隆抗体间接免疫荧光检测结果显示,72 h绝大多数GSF细胞被orfv感染(图 2B)。
分别提取感染和未感染orfv的GSF细胞总RNA,经测定其浓度分别为1 092.0和1 750.0 ng·μL-1,两个样品28S/18S分别为2.3和2.0,对应的RNA完整性分别为9.5和9.3;以上数据说明样品RNA质量合格,符合建库要求。
2.3 高通量测序文库特征分析采用高通量测序技术测得未感染GSF细胞和感染orfv的GSF细胞,Clean reads/raw reads分别为94.15%和98.21%;通过对miRNA长度进行分析,显示2个文库的miRNA长度主要分布在21~24 nt(图 3);uniq_miRNA的Venn图分析表明,未感染GSF细胞和感染orfv的GSF细胞共有的miRNA仅有8.21%(图 4)。
通过分析,orfv感染组和未感染GSF细胞组共有678个显著差异表达的miRNA(fold change≥1.5),其中上调表达miRNA有509个,下调表达miRNA有169个(图 5)。
差异miRNA靶基因GO和KEGG分析结果显示,差异miRNA在基因功能上主要与受体、信号转导活动、跨膜信号、催化活性、磷酸转移酶醇基受体活性、肽酶活性、水解酶活性、蛋白激酶活性、转移酶活性、嘌呤核苷酸结合、核糖核苷酸结合和嘌呤核糖核苷酸结合有关;在亚细胞位置上主要以细胞膜、囊泡和溶酶体为主;在miRNA参与的生物过程主要与脂质代谢过程有关。
KEGG分析结果显示,差异miRNA的靶蛋白广泛参与了癌症信号通路、肌动蛋白细胞骨架的调节、局灶性粘连、MAPK信号通路、钙调节信号通路、神经活性配体-受体相互作用、细胞因子-受体相互作用、细胞因子信号通路、NF-κB信号通路、T细胞受体信号通路等有关。
2.6 差异表达miRNA的RT-qPCR验证根据miRNA预测的和免疫相关基因对应的miRNA,笔者随机选取了6个上调表达和4个下调表达的miRNA,设计特异性引物序列,提取总细胞RNA,对选取的miRNA进行RT-qPCR定量验证,结果显示,RT-qPCR结果和高通量测序结果基本一致(图 6),说明测序结果有较高的可信度,为进一步进行差异miRNA功能验证奠定了基础。
病毒感染宿主细胞过程中miRNA变化对揭示病毒致病机制和宿主抵抗病毒感染机制具有十分重要的意义。目前,orfv与宿主在蛋白水平上的相互调控作用已经有报道[25-27],miRNA作为一种能调控基因表达的调控分子,其在orfv致病和感染中的作用未见研究。
为研究orfv感染GSF细胞后miRNA表达谱变化,本研究利用orfv感染GSF细胞(MOI=1),根据orfv在GSF生长曲线,选取病毒复制峰值的时间点72 h,提取总RNA,经检测合格后,构建文库,文库鉴定结果显示,构建的2个文库miRNA长度主要分布在22~24 nt区域。高通量测序后,经去接头、去错误的数据等过滤显示未感染GSF细胞和感染orfv的GSF细胞,Clean reads/raw reads分别为94.15%和98.21%,uniq_miRNA的Venn图分析表明,未感染GSF细胞和感染orfv的GSF细胞共有的miRNA仅有8.21%(图 4)。以fold change≥ 1.5为阈值,分析结果显示,orfv感染组和对照组相比较共有678个差异显著表达miRNA(图 5),其中,下调表达miRNA有169个,上调表达miRNA有509个。通过对差异显著表达miRNA的GO和KEGG分析明确了上述差异miRNA靶基因的功能、所属的细胞成分、参与的细胞过程以及所属的信号转导通路。为证实本次测序和分析结果的可靠性,本研究随机选取6个上调miRNA和4个下调miRNA,应用RT-qPCR对选取的miRNA进行验证,图 6结果显示,高通量测序结果和RT-qPCR结果基本一致,说明测序结果有较高的可信度。
宿主细胞miRNA表达谱随病毒感染而发生变化,差异表达的miRNA通过其对靶基因的调控作用势必影响病毒本身的感染和致病。宿主miRNA-155通过增强SOCS1信号通路介导的自噬作用抑制了乙型肝炎病毒的复制[28],同时,miRNA-155还可以通过调控病毒诱导的炎症反应进而抑制西尼罗河病毒的感染[29]。宿主miRNA能够调控流感病毒的复制且miRNA-188-3p具有广谱抗流感病毒的活性[30-31]。miRNAs通过上调IFN-α/β具有抗登革热病毒的活性[32]。miRNA-1307通过促进FMDV VP3基因降解和提高免疫应答抑制FMDV复制[33]。miRNA-135a通过下调宿主抗病毒因子以促进丙型肝炎病毒复制[34]。
4 结论本研究获得了大量的差异表达miRNA,为揭示宿主miRNA介导的orfv和宿主蛋白相互作用机制提供了参考,但这些差异表达miRNA具体靶向宿主基因调控orfv的复制机制还需要进一步深入研究。
[1] | ZHANG K S, LIU Y J, KONG H J, et al. Human infection with ORF virus from goats in China, 2012[J]. Vector Borne Zoonotic Dis, 2014, 14(5): 365–367. DOI: 10.1089/vbz.2013.1445 |
[2] | FLORES C, GONZÁLEZ E, VERNA A, et al. Orf virus in human, confirmation in case report from Chile[J]. Rev Chil Infectol, 2017, 34(6): 607–609. DOI: 10.4067/S0716-10182017000600607 |
[3] | ANDREANI J, FONGUE J, KHALIL J Y B, et al. Human infection with orf virus and description of its whole genome, France, 2017[J]. Emerg Infect Dis, 2019, 25(12): 2197–2204. DOI: 10.3201/eid2512.181513 |
[4] | Centers for Disease Control and Prevention. Human orf virus infection from household exposures-United States, 2009-2011[J]. MMWR Morb Mortal Wkly Rep, 2012, 61(14): 245–248. |
[5] | DEMIRASLAN H, DINC G, DOGANAY M. An overwiev of ORF virus infection in humans and animals[J]. Recent Pat Antiinfect Drug Discov, 2017, 12(1): 21–30. |
[6] | ZHANG K S, LIU Y J, KONG H J, et al. Comparison and phylogenetic analysis based on the B2L gene of orf virus from goats and sheep in China during 2009-2011[J]. Arch Virol, 2014, 159(6): 1475–1479. DOI: 10.1007/s00705-013-1946-6 |
[7] | SCHNEIDER L E, PROTSCHKA M, MÜLLER U, et al. Orf virus infection of human keratinocytes and dermal fibroblasts:limited virus detection and interference with intercellular adhesion molecule-1 up-regulation[J]. Exp Dermatol, 2019, 28(2): 142–151. |
[8] | HAIG D M, MCINNES C J. Immunity and counter-immunity during infection with the parapoxvirus orf virus[J]. Virus Res, 2002, 88(1-2): 3–16. DOI: 10.1016/S0168-1702(02)00117-X |
[9] | BERGQVIST C, KURBAN M, ABBAS O. Orf virus infection[J]. Rev Med Virol, 2017, 27(4): e1932. DOI: 10.1002/rmv.1932 |
[10] | CARAVAGLIO J V, KHACHEMOUNE K. Orf virus infection in humans:a review with a focus on advances in diagnosis and treatment[J]. J Drugs Dermatol, 2017, 16(7): 684–689. |
[11] | YAZBECK A M, STADLER P F, TOUT K, et al. Automatic curation of large comparative animal microRNA datasets[J]. Bioinformatics, 2019, 35(22): 4553–4559. DOI: 10.1093/bioinformatics/btz271 |
[12] | KITTELMANN S, MCGREGOR A P. Modulation and evolution of animal development through microRNA regulation of gene expression[J]. Genes (Basel), 2019, 10(4): 321. DOI: 10.3390/genes10040321 |
[13] | NAVEED A, UR-RAHMAN S, ABDULLAH S, et al. A concise review of microRNA exploring the insights of microRNA regulations in bacterial, viral and metabolic diseases[J]. Mol Biotechnol, 2017, 59(11-12): 518–529. DOI: 10.1007/s12033-017-0034-7 |
[14] | WU J J, JI Z Y, QIAO M, et al. microRNA transcriptome analysis of poly Ⅰ:C-stimulated and PRRSV-infected porcine alveolar macrophages[J]. J Appl Genet, 2019, 60(3-4): 375–383. DOI: 10.1007/s13353-019-00500-3 |
[15] | LIU F, WANG H L, DU L, et al. microRNA-30c targets the interferon-alpha/beta receptor beta chain to promote type 2 PRRSV infection[J]. J Gen Virol, 2018, 99(12): 1671–1680. DOI: 10.1099/jgv.0.001166 |
[16] | WANG X, ZHANG M M, YAN K, et al. The full-length microRNA cluster in the intron of large latency transcript is associated with the virulence of pseudorabies virus[J]. Virology, 2018, 520: 59–66. DOI: 10.1016/j.virol.2018.05.004 |
[17] | LI Y T, ZHENG G M, ZHANG Y J, et al. microRNA analysis in mouse neuro-2a cells after pseudorabies virus infection[J]. J Neurovirol, 2017, 23(3): 430–440. DOI: 10.1007/s13365-016-0511-y |
[18] | SHAHEN M, GUO Z H, SHAR A H, et al. Dengue virus causes changes of MicroRNA-genes regulatory network revealing potential targets for antiviral drugs[J]. BMC Syst Biol, 2018, 12(1): 2. |
[19] | OSPINA-BEDOYA M, CAMPILLO-PEDROZA N, FRANCO-SALAZAR J P, et al. Computational identification of dengue virus microRNA-like structures and their cellular targets[J]. Bioinform Biol Insights, 2014, 8: 169–176. |
[20] | NABIEL Y, ELSHAHAWY H, MOSBAH A. Intrauterine bacterial colonization and endometrial microRNA-17-5p levels in association to endometriosis:a study in an egyptian population[J]. Immunol Invest:A J Mol Cell Immunol, 2019. DOI: 10.1080/08820139.2019.1693592 |
[21] | ZHAO C H, ZHOU Z, ZHANG T F, et al. Salmonella small RNA fragment Sal-1 facilitates bacterial survival in infected cells via suppressing iNOS induction in a microRNA manner[J]. Sci Rep, 2017, 7(1): 16979. |
[22] | KAMENETZKY L, STEGMAYER G, MALDONADO L, et al. MicroRNA discovery in the human parasite Echinococcus multilocularis from genome-wide data[J]. Genomics, 2016, 107(6): 274–280. DOI: 10.1016/j.ygeno.2016.04.002 |
[23] | MACCHIAROLI N, CUCHER M, ZAROWIECKI M, et al. microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach[J]. Parasit Vectors, 2015, 8: 83. DOI: 10.1186/s13071-015-0686-8 |
[24] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25: 402–408. DOI: 10.1006/meth.2001.1262 |
[25] | LONG M J, WANG Y Y, CHEN D X, et al. Identification of host cellular proteins LAGE3 and IGFBP6 that interact with orf virus protein ORFV024[J]. Gene, 2018, 661: 60–67. DOI: 10.1016/j.gene.2018.03.089 |
[26] | COUÑAGO R M, KNAPP K M, NAKATANI Y, et al. Structures of orf virus chemokine binding protein in complex with host chemokines reveal clues to broad binding specificity[J]. Structure, 2015, 23(7): 1199–213. DOI: 10.1016/j.str.2015.04.023 |
[27] | TIAN H, CHEN Y, WU J Y, et al. Identification and function analysis of the host cell protein that interacted with Orf virus Bcl-2-like protein ORFV125[J]. Res Vet Sci, 2016, 108: 93–97. DOI: 10.1016/j.rvsc.2016.08.005 |
[28] | CHEN L Y, MING X Y, LI W S, et al. The microRNA-155 mediates hepatitis B virus replication by reinforcing SOCS1 signalling-induced autophagy[J]. Cell Biochem Funct, 2020. |
[29] | NATEKAR J P, ROTHAN H A, ARORA K, et al. Cellular microRNA-155 regulates virus-induced inflammatory response and protects against lethal West Nile virus infection[J]. Viruses, 2019, 12(1): 9. |
[30] | ZHENG B J, ZHOU J M, WANG H. Host micro-RNAs and exosomes that modulate influenza virus infection[J]. Virus Res, 2020, 279: 197885. DOI: 10.1016/j.virusres.2020.197885 |
[31] | CUI H, ZHANG C M, ZHAO Z Z, et al. Identification of cellular microRNA miR-188-3p with broad-spectrum anti-influenza A virus activity[J]. Virol J, 2020, 17(1): 12. DOI: 10.1186/s12985-020-1283-9 |
[32] | WONG R R, ABD-AZIZ N, AFFENDI S, et al. Role of microRNAs in antiviral responses to dengue infection[J]. J Biomed Sci, 2020, 27: 4. DOI: 10.1186/s12929-019-0614-x |
[33] | QI L L, WANG K L, CHEN H T, et al. Host microRNA miR-1307 suppresses foot-and-mouth disease virus replication by promoting VP3 degradation and enhancing innate immune response[J]. Virology, 2019, 535: 162–170. DOI: 10.1016/j.virol.2019.07.009 |
[34] | SODROSKI C, LOWEY B, HERTZ L, et al. microRNA-135a modulates hepatitis C virus genome replication through downregulation of host antiviral factors[J]. Virol Sin, 2019, 34(2): 197–210. |