畜牧兽医学报  2020, Vol. 51 Issue (8): 1923-1931. DOI: 10.11843/j.issn.0366-6964.2020.08.016    PDF    
口蹄疫病毒3D蛋白促进TLR3介导的Ⅰ型干扰素产生
李露露, 张敬, 李丹, 郑海学     
中国农业科学院兰州兽医研究所家畜疫病病原生物学国家重点实验室OIE/国家口蹄疫参考实验室, 兰州 730046
摘要:口蹄疫是由口蹄疫病毒(FMDV)引起的急性、热性、高度接触性传染病。口蹄疫病毒感染宿主引起一系列严重的炎症反应,而TLR3通路是介导细胞炎性反应的主要途径之一。为研究口蹄疫病毒蛋白对TLR3通路的影响,本研究首先用双荧光素酶报告系统筛选影响TLR3通路的FMDV蛋白;接着用Q-PCR试验验证筛出来的候选蛋白对TLR3通路下游基因表达水平的影响;并用免疫共沉淀试验验证与候选蛋白有相互作用的TLR3通路蛋白;最后用Western blot试验检测候选蛋白对TLR3通路下游分子磷酸化水平的影响。双荧光素酶报告系统结果显示,口蹄疫病毒3D蛋白促进TLR3通路介导的Ⅰ型干扰素的产生并呈剂量依赖性,Q-PCR试验表明,3D能够促进TLR3通路下游基因表达水平;免疫共沉淀试验表明,FMDV 3D与TLR3有相互作用;Western blot试验进一步显示,过表达3D能够促进TLR3下游分子的磷酸化水平。综上,口蹄疫病毒3D蛋白能促进TLR3介导的Ⅰ型干扰素的产生,从而调控天然免疫反应。
关键词口蹄疫病毒    天然免疫    TLR3    3D蛋白    
Foot-and-Mouth Disease Virus 3D Protein Positively Regulates the Production of InterferonⅠMediated by TLR3
LI Lulu, ZHANG Jing, LI Dan, ZHENG Haixue     
State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
Abstract: Foot-and-mouth disease (FMD) caused by FMD virus (FMDV) is an acute, hot and highly contagious disease. FMDV causes a series of severe inflammatory response, and TLR3 pathway is one of the major cellular inflammatory. In order to study the effect of FMDV protein on TLR3 pathway, we screened the FMDV proteins affecting on TLR3 pathway by reporter assays. Then candidate protein effect on transcription of TLR3 pathway downstream genes was verified by Q-PCR assay. TLR3 signaling pathway proteins interacted with candidate protein was further verified by co-immunocoprecipitation. Finally, we detected phosphorylation level of TLR3 pathway downstream proteins in candidate protein-overexpressed 293-TLR3 cells by Western blot. The luciferase assays and Q-PCR results showed that FMDV 3D potentiated poly (I:C)-triggered TLR3 signaling pathway and transcription of TLR3 pathway downstream genes, respectively. In addition, co-immunocoprecipitation showed that FMDV 3D interacted with TLR3. Furthermore, FMDV 3D increased the phosphorylation level of TLR3 pathway downstream protein. In conclusion, FMDV 3D potentiated type Ⅰ interferon mediated by TLR3 pathway, which regulate innate immune response.
Key words: FMDV    innate immune    TLR3    3D protein    

天然免疫是机体抵御病原入侵的第一道防线,主要包括免疫分子、皮肤和黏膜等。天然免疫系统通过自身模式识别受体(pattern recognition receptors, PRRs)识别病原微生物的病原相关分子模式(pathogen associated molecular patterns, PAMPs)[1]。识别病毒PAMP的天然免疫细胞PRR有5类:Toll样受体(Toll-like receptors, TLRs)、RIG-I样受体(RIG-I like receptors, RLRs)、NOD样受体(NOD- like receptors, NLRs)、C-型凝集素样受体(C-type lectin receptors, CLRs)以及DNA受体[2-5]

TLRs是哺乳动物天然免疫系统中的重要组成部分,据报道证实一些蛋白参与TLRs诱导的天然免疫应答。如E3泛素连接酶RNF182通过促进p65泛素化和降解抑制TLR诱导的炎性细胞因子的产生[6];CUL4B通过抑制PTEN转录负调控Toll样受体诱导的炎性反应[7];HCMV编码的US7和US8通过特异性靶向TLR通路,对天然免疫起拮抗作用[8]。TLRs在结构上具有高度的同源性,它们主要由3部分组成:N端的亮氨酸富集区域(leucine-rich repeats domain, LRRs),主要负责识别和结合PAMPs;跨膜结构域,主要负责自身的膜定位;C端的Toll-白细胞介素-Ⅰ受体同源结构域[toll-interleukin-1 receptor (IL-1R) homology domain, TIR],主要负责与同家族成员形成同源或异源二聚体以及招募接头蛋白向下游传递信号[9-12]。TLR3定位于细胞内的囊泡结构中,而在纤维细胞和上皮细胞中,TLR3则位于细胞表面和细胞内的囊泡结构中[13]。TLR3识别dsRNA及其类似物多聚次黄嘌呤-多聚胞嘧啶核苷酸[polyinosinic-polycytidylic, poly(I:C)],然后通过TRIF向下传递信号,最终诱导Ⅰ型干扰素的产生。另外,TLR3还能够以序列非依赖的方式识别小干扰RNA(small interfering RNA, siRNA),从而诱导IL-12和IFN-β的表达[14-15]

尽管近十年来的研究发现了许多PRRs,也揭示了天然免疫中宿主对不同病毒的识别和调控机制,但口蹄疫病毒(foot-and-mouth disease virus, FMDV)是否调节TLR3通路尚未见报道。FMDV蛋白包括VP1、VP2、VP3、VP4、2A、2B、2C、3A、3B、3Cpro、3D和Lpro[16-18]。已有报道证实一些FMDV蛋白可以调控天然免疫应答。例如,FMDV非结构蛋白3A抑制IFN-β信号通路[19]。FMDV 3C蛋白通过降解NEMO调控先天免疫反应[20]。FMDV结构蛋白VP3抑制IFN-β信号通路[21]。非结构蛋白2B通过靶向RIG-I和MDA5负调控RLR介导的IFN-β的产生[22]。核苷二磷酸激酶(NME1)通过调节p53介导的天然免疫反应发挥抗病毒作用,而VP4通过自噬途径降解NME1,从而阻断天然免疫反应[23]。本研究发现口蹄疫病毒3D蛋白促进TLR3通路介导的Ⅰ型干扰素的产生,并与其有相互作用;过表达3D能够促进TLR3下游基因的表达,并能促进TLR3下游蛋白的磷酸化水平。

1 材料与方法 1.1 材料

FMDV由中国农业科学院兰州兽医研究所国家口蹄疫病毒参考实验室提供;pCMV-Flag-TLR3质粒由兰州瑞博莱生物科技有限公司合成,pCAGGS-Flag-3D和pRK-3D-HA质粒由中国农业科学院兰州兽医研究所家畜疫病病原生物学国家重点实验室构建;pRK-3D-HA(K5STOP)突变体通过点突变技术将野生型的3D第五位赖氨酸密码子(AAG)突变成终止密码子(TAG),且测序正确;pCAGGS质粒和HEK-293T细胞均购买于兰州瑞博莱生物科技有限公司;293-TLR3细胞系由武汉大学舒红兵教授惠赠,poly(I:C)购自Sigma公司。pGL3-IFN-β /pGL3-ISRE报告质粒购自Strategene公司,renilla荧光素酶内参质粒SV40购于Promege公司,双荧光素酶报告基因试剂盒购于Promege公司。鼠抗Flag和鼠抗HA购于Sigma公司。HRP标记的山羊抗鼠IgG二抗和抗兔IgG二抗均购于Santa Cruze公司。内源3D抗体由本实验室制备,内源TLR3抗体购于Cell Signaling Technology公司。人胚胎肾细胞(human embryonic kidney,HEK293T)的培养按已有方法操作[24-25]

1.2 双荧光素酶报告基因试验

293-TLR3细胞铺48孔板,待其生长为70%左右,转染IFN-β-Luc/ISRE-Luc报告质粒、SV40内参质粒以及FMDV蛋白质粒(Lpro、VP1、VP2、VP3、2A、2B、3A、3B、3Cpro、3D)及其相应的空载体pCAGGS,转染16~18 h后加入poly(I:C) (每孔12.5 mg·mL-1)刺激,8 h后收取细胞样品按照双荧光素酶报告基因试剂盒(Promege)说明书进行试验[26]

1.3 Q-PCR

相对定量PCR(SYBR Green法)采用SYBR法进行实时荧光定量PCR。收集的细胞样品,用Trizol法提取总RNA,以该RNA为模板反转录获得cDNA[27]。选择TLR3通路下游基因RANTESCXCL-10、IGS56IFN-β作为检测对象,以GAPDH作为内参,并将cDNA稀释后进行实时荧光定量PCR。7 mL SYBR Permix Ex Taq Ⅱ,0.7 mL上下混合引物,2 mL ddH2O,以及稀释的cDNA 5 mL。反应程序:95 ℃ 3 min;95 ℃ 3 s,60 ℃ 10 s,40个循环。定量引物详见表 1,引物序列由天一辉远公司合成。

表 1 定量PCR引物 Table 1 Q-PCR primers
1.4 免疫共沉淀与Western blot

1.4.1 外源免疫共沉淀试验   将HEK293T细胞培养在10 cm2培养皿中,待其融合度达到60%~80%时,将带HA标签的FMDV 3D表达质粒和带Flag标签的TLR3表达质粒共转染细胞,24 h后弃掉培养基,加入NP-40裂解液[50 mmol·L-1Tris(pH8.0),150 mmol·L-1 NaCl,5 mmol·L-1 EDTA,1% NP-40,2 mg·mL-1 aprotinin,2 mg·mL-1、leupeptin,1 mmol·L-1 phenylmethanesulfonyl fluorid][25, 28-30],收集于1.5 mL EP管中,4 ℃旋转摇床上裂解10 min,超声破碎,4 ℃ 12 000 r·min-1离心10 min。取适量上清加入SDS-PAGE蛋白上样缓冲液,作为input。剩余上清分于两个1.5 mL EP管中,加入G蛋白琼脂糖珠(Sigma),再分别加入IgG抗体和Flag抗体,用裂解液补至1 mL,4 ℃旋转摇床孵育2 h,用含0.5 mol NaCl的裂解液清洗树脂,加入上样缓冲液,与input一同煮沸,离心,进行Western blot[25, 30-31]

1.4.2 内源免疫共沉淀试验   将PAM细胞培养在10 cm2培养皿中,待其融合度达到80%左右时,在不同的时间点感染FMDV,收集样品加入NP-40裂解液(裂解液同上),收集于1.5 mL EP管中,4 ℃旋转摇床裂解10 min,反复冻融3次,超声破碎,4 ℃ 12 000 r·min-1离心10 min。取适量上清加入SDS-PAGE蛋白上样缓冲液,作为input;剩余上清加入G蛋白琼脂糖珠(Sigma),再加入IgG抗体或TLR3抗体,4 ℃旋转摇床孵育过夜,之后步骤如上所述[25, 30-31]

1.4.3 Western blot试验   293-TLR3细胞铺12孔板,待其融合度达到60%左右时,转染FMDV 3D与其空载体,18 h后加入poly(I:C)刺激,3 h后收样,加入上样缓冲液,煮沸10 min后12 000 r·min-1离心10 min。将样品上样跑胶,待样品缓冲液跑至底部,用NC膜转膜。转膜结束后用5%的脱脂奶粉封闭30 min,加入一抗(见“1.1”)常温摇床1 h或4 ℃摇床过夜,用TBST洗3次,每次10 min,加入二抗,常温摇床1 h,用TBST洗3次,每次10 min,曝光显影。

1.5 数据分析

使用单因素方差分析法进行统计学分析(数据为3次独立试验的平均值)。差异显著性用“*”表示(*. 0.01 < P < 0.05; * *. P < 0.01)。

2 结果 2.1 FMDV 3D蛋白促进poly (I:C)诱导的TLR3通路

为了探究FMDV对TLR3通路的作用,首先将293-TLR3细胞铺于48孔板,每组样品设置四个重复,待细胞融合度达到50%~60%时,将带有Flag标签的FMDV蛋白表达质粒(均100 ng)和相应的空载体与100 ng IFN-β-Luc / ISRE报告质粒和10 ng SV40质粒共同转染,16~18 h后,用poly(I:C)刺激8 h,收取细胞样品进行双荧光素酶报告基因检测。结果表明,FMDV 3D蛋白促进poly (I:C)诱导的TLR3通路的激活(图 1),并且呈现剂量依赖性(图 2)。

将FMDV蛋白表达质粒(均100 ng)、相应的空载体与100 ng IFN-β-Luc/ISRE报告质粒、10 ng SV40质粒共同转染293-TLR3细胞,18 h后用poly(I:C)(12.5 mg·mL-1)刺激8 h,收取细胞样品进行双荧光素酶报告基因检测;EV为空载体转染对照;与EV相比,**.P < 0.01 293-TLR3 cells were transfected with FMDV protein plasmids (each 100 ng) or empty vector, 100 ng IFN-β-Luc/ISRE reporter and 10 ng SV40 plasmids. Eighteen hours after transfection, the cells were treated or untreated with poly (I:C) for 8 h before luciferase assays were performed; EV. empty vector; Compared with EV, **.P < 0.01 图 1 口蹄疫病毒3D蛋白促进poly (I:C)诱导的TLR3通路 Fig. 1 FMDV 3D increased poly (I:C)-induced TLR3 pathway
将口蹄疫病毒3D蛋白以不同剂量与100 ng IFN-β-Luc/ISRE和10 ng SV40质粒共同转染293-TLR3细胞,18 h后用poly(I:C)刺激8 h,收取细胞样品进行双荧光素酶报告基因检测;与0 ng量组相比,ns.无显著性差异;*. 0.01 < P < 0.05;* *. P < 0.01 293-TLR3 cells were transfected with FMDV 3D (100 ng), 100 ng IFN-β-Luc/ISRE and 10 ng SV 40 plasmids in a dose-dependent manner. Eighteen hours after transfection, the cells were treated or untreated with poly (I:C) for 8 h before luciferase assays were performed; compared with 0 ng, ns. no significant; *. 0.01 < P < 0.05; * *. P < 0.01 图 2 口蹄疫病毒3D蛋白促进poly (I:C)诱导的TLR3通路的剂量效应 Fig. 2 Dose effect of FMDV 3D on ploy(I:C)-induced TLR3 pathway
2.2 FMDV 3D蛋白促进TLR3通路下游基因的表达水平

将293-TLR3细胞铺于12孔板,分别转染2 mg Flag-3D和2 mg相应的空载体, 18 h后用poly(I:C)刺激3 h,收取细胞样品进行Q-PCR试验,结果表明,过表达3D能促进TLR3诱导的下游相关基因的转录,即RANTESIFN-β、ISG56CXCL-10 (图 3a~d)。进一步为了证实是3D的蛋白还是3D的mRNA促进poly(I:C)诱导的TLR3通路,用空载体、3D及其他的突变体3D(K5STOP)与100 ng IFN-β-Luc报告质粒和10 ng SV 40质粒共同转染293-TLR3细胞,16~18 h后用poly(I:C)刺激8 h,收取细胞样品进行双荧光素酶报告基因检测,结果显示3D促进poly(I:C)诱导的TLR3通路而3D (K5STOP)没有影响(图 3e),这说明是3D蛋白而不是mRNA促进poly(I:C)诱导的TLR3通路。总之这些结果表明,FMDV 3D蛋白能促进TLR3通路诱导的下游抗病毒基因的表达。

a~d.将2 mg Flag-3D和2 mg相应的空载体分别转染293-TLR3细胞, 18 h后, 用poly(I:C)刺激3 h,收取细胞样品进行Q-PCR试验。EV为空载体转染对照;e.将FMDV蛋白3D或者3D(K5STOP)质粒(均100 ng)和相应的空载体与100 ng IFN-β-Luc报告质粒和10 ng SV40质粒共同转染293-TLR3细胞,18 h后, 用poly(I:C)(12.5 mg·mL-1)刺激8 h,收取细胞样品进行双荧光素酶报告基因检测;*. 0.01 < P < 0.05; * *. P < 0.01 a-d. 293-TLR3 cells were transfected with 2 mg Flag-3D and 2 mg empty vector. Eighteen hours after transfection, the cells were treated or untreated with poly (I: C) for 3 h before Q-PCR assays were performed; EV, empty vector; e. 293-TLR3 cells were transfected with FMDV 3D or 3D(K5STOP) plasmids (each 100 ng) or empty vector, 100 ng IFN-β-Luc reporter and 10 ng SV40 plasmids. Eighteen hours after transfection, the cells were treated or untreated with poly (I:C) for 8 h before luciferase assays were performed; *. 0.01 < P < 0.05; * *. P < 0.01 图 3 口蹄疫病毒3D蛋白能够促进TLR3通路下游基因的表达 Fig. 3 FMDV 3D promotes poly (I:C)-induced transcription of downstream genes
2.3 FMDV 3D蛋白与TLR3蛋白有相互作用

为了探究能与FMDV 3D蛋白发生相互作用的TLR3通路蛋白,首先将293-TLR3细胞铺于48孔板,每组样品设置4个重复,待细胞融合度达到50%~60%时,将TLR3通路蛋白(100 ng)与100 ng IFN-β-Luc报告质粒和10 ng SV40质粒混合,分为2份,1份加入空载体,1份加入3D表达质粒,共同转染至细胞, 18 h后收取细胞样品进行双荧光素酶报告基因检测,结果显示,FMDV 3D蛋白作用水平在TLR3(图 4a)。将HEK293T细胞接种在10 cm2大皿,长至50%~60%时,将带有Flag标签的TLR3和HA标签的3D表达质粒共同转染,18 h后收取细胞样品,用相应的抗体进行免疫共沉淀试验,结果表明,FMDV 3D蛋白与TLR3蛋白有相互作用(图 4b)。将PAM细胞铺10 cm2大皿,待长至80%左右时,在不同时间点感染FMDV,收集样品后,用相应的内源抗体进行免疫共沉淀试验,表明FMDV 3D蛋白与TLR3蛋白有相互作用(图 4c)。

a.将FMDV 3D (100 ng)和暗示的质粒(100 ng)与100 ng IFN-β-Luc/ISRE报告质粒和10 ng SV 40质粒共同转染293-TLR3细胞,18 h后收样品并用双荧光素酶报告基因检测;EV为空载体转染对照;**. P < 0.01;b.将带有Flag标签的TLR3与HA标签的3D共转染293T,18 h后收样,做免疫共沉淀和Western blot;c.将PAM细胞在不同的时间点感染FMDV,收集样品进行免疫共沉淀和Western blot a. 293-TLR3 cells were transfected with FMDV 3D (100 ng), indicated plasmid (100 ng), IFN-β-Luc/ISRE reporter plasmid (100 ng) and SV40 (10 ng) 18 h before luciferase assays were performed; EV. empty vector; **. P < 0.01;b. 293T cells were transfected with Flag-TLR3 or Flag-MyD88 and HA-3D for 18 h. Coimmunoprecipitation and Western blot analysis were performed with the indicated antibodies; c. PAM cells were infected with FMDV at indicated times. Coimmunoprecipitation and Western blot analysis were performed with the indicated antibodies 图 4 FMDV 3D与TLR3互作 Fig. 4 FMDV 3D interacts with TLR3
2.4 3D能够促进TLR3下游蛋白的磷酸化水平

TBK1、IRF3、IκBα作为TLR3通路下游重要节点分子,为了检测FMDV 3D对TLR3通路下游分子磷酸化水平的影响,笔者用293-TLR3细胞转染FMDV 3D蛋白及相应空载体后用poly(I:C)刺激,通过Western blot检测TBK1、IRF3、IκBα分子的磷酸化水平,进而说明FMDV 3D对TLR3通路下游分子的影响,结果如图 5所示,表明FMDV 3D能促进TLR3下游分子的磷酸化水平。

293-TLR3细胞转染FMDV 3D,24 h用poly (I:C)刺激一定时间,收集样品进行Western blot. Con为空载体转染对照 293-TLR3 cells were transfected with FMDV 3D. Twenty four hours after transfection, the cells were treated or untreated with poly (I:C) for indicated times before Western blot was performed. Con. Control 图 5 口蹄疫病毒3D蛋白促进TLR3下游蛋白的磷酸化水平 Fig. 5 FMDV 3D increases phosphorylation of TLR3 signaling downstream protein
3 讨论

FMDV作为一种严重危害养殖业的疫病,且宿主范围广,变异频率高,使得口蹄疫防治变得异常困难[32]。因此,有效的疫苗是防控FMDV暴发的重要手段。而FMDV结构特点显示3D蛋白为FMDV复制所需的多聚酶[33]。FMDV 3D蛋白对口蹄疫病毒的复制有重要作用,研究表明,DEAD-Box RNA解旋酶DDX1与FMDV 3D相互作用从而抑制口蹄疫病毒的复制[34]。也有研究表明,3D蛋白具备高效的RdRp活性,能在FMDV感染的BHK-21细胞中增强病毒基因组的复制效率[35]。另有研究表明,口蹄疫病毒3D蛋白具有T细胞表位,是一种潜在的免疫增强剂[33, 36],并且还可以作为免疫佐剂使用。

TLR3通路在天然免疫反应中起着关键作用,如E3泛素连接酶RNF170通过靶向降解鼠细胞中的TLR3抑制天然免疫反应[37];锌指蛋白ZFYVE1通过促进TLR3配体结合来调节TLR3介导的信号转导[38]。同时有报道称Toll-like受体3识别双链RNA并激活NF-κB[40]以及Mint3增强TLR3/4和RIG-I介导的IFN-β表达和抗病毒免疫反应[41]。但是并未报道FMDV是否参与调控TLR3通路。因此,FMDV与TLR3通路的研究具有重要意义,但是,293T细胞等重要的模式细胞中没有TLR3受体,因此研究FMDV在TLR3通路中的互作机制目前还存在多处空白,本研究通过以293-TLR3细胞系作为研究细胞,为TLR3通路与FMDV互作机制的研究提供了可能。为了验证FMDV 3D蛋白能够激活TLR3通路,本研究通过启动子激活、mRNA水平、蛋白磷酸化水平及蛋白互作等多个角度验证,基本可以阐明FMDV 3D可以有效激活TLR3天然免疫通路。但是天然免疫系统是一个错综复杂的网络系统,不同的病原可能激活宿主的多种信号通路:首先,TBK1、IRF3和IκBα尽管是TLR3通路中重要的节点分子,但是不同的通路(如:RIG-Ⅰ、cGAS-STING通路等)也可以激活TBK1、IRF3等相关分子,本研究虽然检测到TBK1、IRF3和IκBα磷酸化水平的变化,但是还不能完全排除这些节点分子的磷酸化是因为3D蛋白同时激活其他通路导致,还需要以后进一步的试验证明;其次,信号通路的激活是细胞内不同分子间互作作用结果,FMDV 3D是作为一种反式作用元件调控TLR3通路分子激活启动,其蛋白水平而不是mRNA参与信号通路的激活。

总的来说,本研究通过多种试验手段,初步证明了FMDV 3D可以激活TLR3信号通路,为进一步研究其具体作用机制提供了研究思路,也为病毒与TLR3信号通路互作机制的研究提供了一定的理论基础。

4 结论

首先通过双荧光素酶报告基因试验证实FMDV 3D蛋白促进TLR3通路的激活, 并与其有相互作用。随后从转录水平和蛋白质水平两个方面证实3D蛋白促进TLR3通路的激活, 并与其有相互作用。由此可知,3D蛋白能促进TLR3通路的激活,促进Ⅰ型干扰素的产生,从而调控机体的天然免疫。

参考文献
[1] AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4): 783–801.
[2] CHEN G, SHAW M H, KIM Y G, et al. NOD-like receptors:role in innate immunity and inflammatory disease[J]. Annu Rev Pathol, 2009, 4: 365–398. DOI: 10.1146/annurev.pathol.4.110807.092239
[3] JIN X H, ZHENG L L, SONG M R, et al. A nano silicon adjuvant enhances inactivated transmissible gastroenteritis vaccine through activation the Toll-like receptors and promotes humoral and cellular immune responses[J]. Nanomedicine, 2018, 14(4): 1201–1212.
[4] KUMAR H, KAWAI T, AKIRA S. Pathogen recognition in the innate immune response[J]. Biochem J, 2009, 420(1): 1–16.
[5] PILA E A, TARRABAIN M, KABORE A L, et al. A novel toll-like receptor (TLR) influences compatibility between the gastropod Biomphalaria glabrata, and the digenean trematode Schistosoma mansoni[J]. PLoS Pathog, 2016, 12(3): e1005513. DOI: 10.1371/journal.ppat.1005513
[6] CAO Y, SUN Y, CHANG H Y, et al. The E3 ubiquitin ligase RNF 182 inhibits TLR-triggered cytokine production through promoting p65 ubiquitination and degradation[J]. FEBS Lett, 2019, 593(22): 3210–3219. DOI: 10.1002/1873-3468.13583
[7] SONG Y, LI P S, QIN L P, et al. CUL4B negatively regulates Toll-like receptor-triggered proinflammatory responses by repressing Pten transcription[J]. Cell Mol Immunol, 2019. DOI: 10.1038/s41423-019-0323-0
[8] PARK A, RA E A, LEE T A, et al. HCMV-encoded US7 and US8 act as antagonists of innate immunity by distinctively targeting TLR-signaling pathways[J]. Nat Commun, 2019, 10: 4670. DOI: 10.1038/s41467-019-12641-4
[9] AKIRA S, TAKEDA K. Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4(7): 499–511. DOI: 10.1038/nri1391
[10] BARBALAT R, EWALD S E, MOUCHESS M L, et al. Nucleic acid recognition by the innate immune system[J]. Annu Rev Immunol, 2011, 29: 185–214. DOI: 10.1146/annurev-immunol-031210-101340
[11] BARTON G M, KAGAN J C. A cell biological view of Toll-like receptor function:regulation through compartmentalization[J]. Nat Rev Immunol, 2009, 9(8): 535–542. DOI: 10.1038/nri2587
[12] CHAI H C, CHUA K H, LIM S K, et al. Insight into gene polymorphisms involved in toll-like receptor/interferon signalling pathways for systemic lupus erythematosus in South East Asia[J]. J Immunol Res, 2014, 2014: 529167.
[13] DE BOUTEILLER O, MERCK E, HASAN U A, et al. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH[J]. J Biol Chem, 2005, 280(46): 38133–38145. DOI: 10.1074/jbc.M507163200
[14] KLEINMAN M E, YAMADA K, TAKEDA A, et al. Sequence-and target-independent angiogenesis suppression by siRNA via TLR3[J]. Nature, 2008, 452(7187): 591–597. DOI: 10.1038/nature06765
[15] SCHULZ O, DIEBOLD S S, CHEN M, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells[J]. Nature, 2005, 433(7028): 887–892. DOI: 10.1038/nature03326
[16] BARNETT P V, GEALE D W, CLARKE G, et al. A review of OIE country status recovery using vaccinate-to-live versus vaccinate-to-die foot-and-mouth disease response policies Ⅰ:benefits of higher potency vaccines and associated NSP DIVA test systems in post-outbreak surveillance[J]. Transbound Emerg Dis, 2015, 62(4): 367–387. DOI: 10.1111/tbed.12166
[17] JAMAL S M, BELSHAM G J. Foot-and-mouth disease:past, present and future[J]. Vet Res, 2013, 44(1): 116. DOI: 10.1186/1297-9716-44-116
[18] KNIGHT-JONES T J D, RUSHTON J. The economic impacts of foot and mouth disease-what are they, how big are they and where do they occur?[J]. Prev Vet Med, 2013, 112(3-4): 161–173. DOI: 10.1016/j.prevetmed.2013.07.013
[19] LI D, LEI C Q, XU Z S, et al. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway[J]. Sci Rep, 2016, 6: 21888. DOI: 10.1038/srep21888
[20] WANG D, FANG L R, LI K, et al. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling[J]. J Virol, 2012, 86(17): 9311–9322. DOI: 10.1128/JVI.00722-12
[21] LI D, YANG W P, YANG F, et al. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway[J]. FASEB J, 2016, 30(5): 1757–1766. DOI: 10.1096/fj.15-281410
[22] LI M, XIN T, GAO X T, et al. Foot-and-mouth disease virus non-structural protein 2B negatively regulates the RLR-mediated IFN-β induction[J]. Biochem Biophys Res Commun, 2018, 504(1): 238–244.
[23] FENG H H, ZHU Z X, CAO W J, et al. Foot-and-mouth disease virus induces lysosomal degradation of NME1 to impair p53-regulated interferon-inducible antiviral genes expression[J]. Cell Death Dis, 2018, 9(9): 885. DOI: 10.1038/s41419-018-0940-z
[24] FU S Z, YANG W P, RU Y, et al. DDX56 cooperates with FMDV 3A to enhance FMDV replication by inhibiting the phosphorylation of IRF3[J]. Cell Signal, 2019, 64: 109393. DOI: 10.1016/j.cellsig.2019.109393
[25] 何艳春, 杨文萍, 付绍祖, 等. PCBP2促进口蹄疫病毒增殖的机制研究[J]. 畜牧兽医学报, 2018, 49(7): 1451–1459.
HE Y C, YANG W P, FU S Z, et al. The research on molecular mechanism of PCBP2 promoting the multiplication of foot-and-mouth disease virus[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(7): 1451–1459. (in Chinese)
[26] LI D, FU S Z, WU Z Q, et al. DDX56 inhibits type Ⅰ interferon by disrupting assembly of IRF3-IPO5 to inhibit IRF3 nucleus import[J]. J Cell Sci, 2020, 133(5): jcs230409. DOI: 10.1242/jcs.230409
[27] WANG J Y, ZENG Y, XU S, et al. A naturally occurring deletion in the effector domain of H5N1 swine influenza virus nonstructural protein 1 regulates viral fitness and host innate immunity[J]. J Virol, 2018, 92(11): e00149–18.
[28] YANG W P, RU Y, REN J J, et al. G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response[J]. Cell Death Dis, 2019, 10(12): 946. DOI: 10.1038/s41419-019-2178-9
[29] YE W, HU M M, LEI C Q, et al. TRIM8 negatively regulates TLR3/4-mediated innate immune response by blocking TRIF-TBK1 interaction[J]. J Immunol, 2017, 199(5): 1856–1864.
[30] 付绍祖, 李露露, 张敬, 等. 猪源DDX56对口蹄疫病毒的复制及其对病毒诱导的RLR通路调节的研究[J]. 畜牧兽医学报, 2019, 50(9): 1849–1856.
FU S Z, LI L L, ZHANG J, et al. Porcine DDX56 regulates the foot and mouth disease virus replication and the virus-triggered RLR pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(9): 1849–1856. (in Chinese)
[31] LI D, YANG W P, REN J J, et al. The E3 ubiquitin ligase TBK1 mediates the degradation of multiple picornavirus VP3 proteins by phosphorylation and ubiquitination[J]. J Virol, 2019, 93(23): e01438–19.
[32] DOMINGO E, BARANOWSKI E, ESCARMI S C, et al. Foot-and-mouth disease virus[J]. Comp Immunol Microbiol Infect Dis, 2002, 25(5-6): 297–308. DOI: 10.1016/S0147-9571(02)00027-9
[33] 杜平, 尚佑军, 贺延玉, 等. 口蹄疫病毒3D基因的克隆及其编码蛋白的结构和功能预测[J]. 甘肃农业大学学报, 2009, 44(2): 20–25.
DU P, SHANG Y J, HE Y Y, et al. Cloning of foot-and-mouth disease virus 3D gene and its structure and function[J]. Journal of Gansu Agricultural University, 2009, 44(2): 20–25. DOI: 10.3969/j.issn.1003-4315.2009.02.004 (in Chinese)
[34] XUE Q, LIU H S, ZENG Q Y, et al. The DEAD-box RNA helicase DDX1 interacts with the viral protein 3D and inhibits foot-and-mouth disease virus replication[J]. Virol Sin, 2019, 34(6): 610–617.
[35] 鲁彬. 口蹄疫病毒3D基因的真核表达及其表达产物的功能分析[J]. 中国兽医科学, 2006, 36(10): 800–804.
LU B. Eukaryotic expression of foot-and-mouth disease virus 3D gene and functional analysis of the expressed product[J]. Veterinary Science in China, 2006, 36(10): 800–804. (in Chinese)
[36] GARCIÍA-BRIONES M M, BLANCO E, CHIVA C, et al. Immunogenicity and T cell recognition in swine of foot-and-mouth disease virus polymerase 3D[J]. Virology, 2004, 322(2): 264–275.
[37] SONG X Q, LIU S, WANG W D, et al. E3 ubiquitin ligase RNF170 inhibits innate immune responses by targeting and degrading TLR3 in murine cells[J]. Cell Mol Immunol, 2019. DOI: 10.1038/s41423-019-0236-y
[38] ZHONG X, FENG L, XU W H, et al. The zinc-finger protein ZFYVE1 modulates TLR3-mediated signaling by facilitating TLR3 ligand binding[J]. Cell Mol Immunol, 2019. DOI: 10.1038/s41423-019-0265-6
[39] ABUJAMRA A L, SPANJAARD R A, AKINSHEYE I, et al. Leukemia virus long terminal repeat activates NFκB pathway by a TLR3-dependent mechanism[J]. Virology, 2006, 345(2): 390–403.
[40] ALEXOPOULOU L, HOLT A C, MEDZHITOV R, et al. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3[J]. Nature, 2001, 413(6857): 732–738. DOI: 10.1038/35099560
[41] HUAI W W, SONG H, YU Z X, et al. Mint3 potentiates TLR3/4-and RIG-I-induced IFN-β expression and antiviral immune responses[J]. Proc Natl Acad Sci U S A, 2016, 113(42): 11925–11930. DOI: 10.1073/pnas.1601556113