畜牧兽医学报  2020, Vol. 51 Issue (7): 1768-1774. DOI: 10.11843/j.issn.0366-6964.2020.07.030    PDF    
1株H1N1亚型猪流感病毒的全基因组特征及其对小鼠的致病性
赵玉仲1,2,3, 丁国飞1,2,3, 刘家琪1,2,3, 李莉1,2,3, 李英超1,2,3, 王彬1,2,3, 邵清源1,2,3, 冯剑1,2,3, 郭丽红1,2,3, 刘思当1,2,3, 肖一红1,2,3     
1. 山东农业大学动物科技学院, 泰安 271018;
2. 山东农业大学动物科技学院/动物医学院基础兽医学系, 泰安 271018;
3. 山东农业大学山东省动物生物技术与疾病预防控制重点实验室, 泰安 271018
摘要:旨在了解河南省猪流感病毒的流行情况及其遗传进化和基因组特征。2018年4月,从河南省某一出现疑似流感症状猪群中采集鼻拭子样品150份用于分离病毒,对分离病毒的全基因组进行序列测定和分析。同时感染6周龄BALB/c小鼠,研究其对小鼠的致病性。结果显示,获得1株H1N1亚型病毒[命名为A/swine/Henan/NY20/2018(H1N1)]。遗传进化表明,其HANA基因属于欧亚类禽H1N1分支,PB2、PB1、PANPM基因属于2009甲型H1N1分支,NS基因属于经典H1N1分支。HA蛋白的裂解位点序列为PSIQSR↓GL,具有低致病性流感病毒的分子特征,在小鼠肺和鼻甲有效复制并能引起肺组织病理学变化。本研究分离到1株3源重排H1N1亚型病毒,对小鼠呈现一定致病力,提示应进一步加强对SIV的监测。
关键词猪流感病毒    H1N1亚型    致病力    
Genomic and Evolutionary Characterization of a H1N1 Swine Influenza Virus and Its Pathogenicity in Mice
ZHAO Yuzhong1,2,3, DING Guofei1,2,3, LIU Jiaqi1,2,3, LI Li1,2,3, LI Yingchao1,2,3, WANG Bin1,2,3, SHAO Qingyuan1,2,3, FENG Jian1,2,3, GUO Lihong1,2,3, LIU Sidang1,2,3, XIAO Yihong1,2,3     
1. College of Animal Science and Technology, Shandong Agricultural University Tai'an 271018, China;
2. Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China;
3. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
Abstract: This study aimed to understand the epidemiological situation of swine influenza virus (SIV) and analyze its evolutionary and genomic characterization in Henan province. In April 2018, 150 nasal swabs were collected from a pig herd with suspected influenza clinical signs to isolate the virus. The isolated virus was sequenced and analyzed. The pathogenicity was evaluated by infecting BALB/c mice. A strain of H1N1 subtype SIV was isolated and named of A/swine/Henan/NY20/2018(H1N1). Phylogenetic analysis results demonstrated that HA and NA genes of the isolated virus belong to the Eurasian avian H1N1 lineage, PB2, PB1, PA, NP and M genes belonged to the pdm/09 H1N1 lineage, and NS gene belonged to the classical swine H1N1 lineage. The HA protein cleavage site of the isolated is PSIQSR↓GL, which accords with the molecular characteristics of low pathogenic avian influenza virus. It can effectively replicate in the lungs and turbinates of mice and can cause pathological changes in lung tissue. A triple reassortant H1N1 subtype virus was isolated in this study, which has a certain pathogenicity to mice, suggesting that further monitoring of SIV should be strengthened.
Key words: swine influenza virus    H1N1 subtype    pathogenicity    

A型流感病毒是流感病毒中最常见的,可以感染人类、猪、狗、马等动物[1-2]。根据血凝素(HA)和神经氨酸酶(NA)的抗原性可将A型流感病毒分为不同的亚型,已知A型流感病毒HA有18种亚型,NA有11种亚型[3-6]。猪呼吸道中同时含有类禽样唾液酸(sialic acid, SA)-α-2, 3Gal受体和类人样SA-α-2, 6-Gal受体[7-9],可以同时被禽源、人源流感病毒感染。不同种属来源的病毒在猪体内产生重组病毒,这些重组病毒可以导致跨种感染,对人类及动物产生危害。

日前,在世界各地猪群中主要传播H1N1、H1N2和H3N2 3种猪流感病毒(swine influenza virus,SIV)亚型,这些SIV亚型的起源以及抗原和遗传特征不同[10-12]。经典H1N1 SIV被认为是随着1918年西班牙流感大流行进入猪群[13]。中国大陆于1991年发现有经典H1N1病毒[14-15]。欧亚类禽H1N1病毒2001年在中国香港购入的猪中检测到,经典H1N1和欧亚类禽H1N1病毒间重排的毒株出现,并在临床上流行[16]。引起2009年的大流行病毒为3源重排病毒,之后由2009年大流行病毒片段和其他来源的SIV的重排病毒也已从不同国家分离[17],给公共卫生带来巨大的威胁。

不同类型流感病毒在猪体内重排产生的新的毒株,具有潜在的引起猪流感大流行的可能性,需要对SIV进行实时监控。因此,本实验室于2018年4月份在河南省某猪场采集鼻拭子样品150份,分离到1株H1N1亚型SIV,进行了分离病毒全基因组的序列测定与分析及小鼠的致病性研究,研究结果丰富了我国猪流感分子流行病学调查内容,为进一步开展SIV的防控提供重要的理论依据。

1 材料与方法 1.1 临床样品及病毒分离

2018年4月,从河南省南阳市猪场采集150份鼻拭子样品,将样品上清液经尿囊腔接种于10日龄SPF鸡胚(0.2 mL·胚-1),置于37 ℃孵化箱孵育72 h,收获尿囊液并通过HA试验检测其血凝效价及使用鉴定引物扩增流感病毒NP节段。将分离的病毒用SPF鸡胚纯化,用Reed-Muench方法测定病毒的EID50

1.2 病毒亚型的鉴定及测序

SIV分型引物及各基因片段扩增引物均由本实验室设计、上海生工生物工程技术服务有限公司合成。采用TRIzol法提取病毒RNA,利用通用引物Uni12(5′-AGCAAAAGG-3′)将RNA反转录为cDNA,以反转录产物为模板进行亚型鉴定及8个基因片段的扩增。扩增产物送上海生工生物工程技术服务有限公司测序。

1.3 病毒的遗传进化与分子特征分析

应用DNASTAR软件包中的Seqman软件进行拼接;Megalign软件进行同源性比较和氨基酸特征分析;用MEGA7软件绘制进化树;利用NetNGlyc 1.0 Server糖基化位点预测器(http://www.healthtech.dtu.dk in the future),对氨基酸潜在糖基化位点进行预测分析。

1.4 病毒对小鼠的致病性试验

将16只6周龄BALB/c雌性小鼠随机分成感染组和对照组,每组8只。每只小鼠经鼻腔接种106EID50病毒,对照组用相同的方法接种PBS。每天观察小鼠临床症状并称量体重。感染后第3天每组随机各剖杀3只小鼠,无菌采集各组织器官备用。

2 结果 2.1 病毒分离鉴定及同源性分析

分离出1株SIV,通过RT-PCR鉴定为H1N1亚型,命名为A/swine/Henan/NY20/2018(H1N1)。利用Megalign软件将参考毒株分别与分离病毒进行核苷酸同源性比较,结果显示,PB2、PB1、NANS均与A/swine/Guangxi/NNXD2023/2013(H1N1)相似性最高,在98.4%以上,PA与A/swine/Guangxi/1874/2012(H3N2)相似性最高,为98.8%,M和A/swine/Guangdong/NS2883/2012(H3N2)相似性最高,为98.9%,HA与A/swine/Guangxi/3858/2011(H1N1)相似性最高,为98.2%,NP与A/swine/Guangxi/BB1/2013(H1N1)相似性最高,为99%。

2.2 遗传进化分析

对分离病毒8个基因片段进行遗传进化分析。结果显示,分离病毒H1基因属于欧亚类禽H1N1分支,N1基因与H1基因具有相同的分支(图 1)。相比于表面基因,内部基因聚集成相同的聚类模式,除了NS基因属于经典H1N1分支,剩余内部基因全部属于2009年甲型H1N1分支。

图 1 A/swine/Henan/NY20/2018(H1N1)的HA(A)和NA(B)基因与参考序列构建的基因进化树 Fig. 1 Phylogenetic relationship of HA and NA gene of A/swine/Henan/NY20/2018(H1N1) with reference sequences
2.3 关键氨基酸位点

对分离病毒A/swine/Henan/NY20/2018(H1N1)基因上的关键氨基酸位点进行了分析,HA蛋白的裂解位点对流感病毒的毒力和致病性具有决定性的作用[18-20]。HA蛋白的裂解位点为PSIQSR↓ GL,具备低致病性流感病毒的分子特征。HA蛋白的受体结合位点发生了T155V(对应H3 HA基因编码位点),T159N、G225E位的突变,T155V和T159N位的突变是禽流感适应猪群的必需突变[21]。HA蛋白225位能够提高病毒颗粒的组装和出芽效率,且225E的病毒比携带225G的病毒复制得更快[22]。分离株的225位为E,对流感病毒的传播起到重要作用。研究发现,HA蛋白226 Q和228 G容易与SA-α-2, 3-Gal受体结合,L226和S228则容易与SA-α-2, 6-Gal受体结合[23]。分离株226位和228位分别为Q和G,表明该病毒容易与SA-α-2, 3-Gal受体结合。HA蛋白糖基化位点分别为14NST1626NVT28277NCT279484NGT486543NGS545。NA蛋白糖基化位点分别为57NNT5962NQT6467NVS6987NSS89145NGT146234NGS236。PB2蛋白的627和701位的被认为是哺乳动物适应性的突变,单个E627K或D701N突变可能会增加病毒的致病性[24]。有相关报道表明,PB2蛋白的591R对于2009甲型H1N1流感病毒对哺乳动物适应很重要[25]。PB2蛋白的627位和701位均未发生突变,但是591位出现了突变。最常见的NA蛋白耐药性的突变存在于N1亚型的H275Y和N295S[26-27],N1蛋白的275位和295位未发生突变,表明对神经氨酸酶抑制剂类药物敏感。有相关报道表明,2009甲型H1N1流感病毒在M2蛋白的31N已经发生突变,对金刚烷胺药物具有耐药性[28]。M2蛋白31位出现S到N的突变,表明具有金刚烷胺类药物的耐药性。

2.4 小鼠致病性试验

感染组小鼠第3天开始表现出活动量和采食量减少、扎堆、皮毛皱纹、体重下降等临床症状,体重于感染后的第8天降到最低,最大下降比19.67%,随后体重逐渐恢复。

对照组保持健康且体重保持平稳状态(图 2A)。脏器滴定结果显示,感染组小鼠在肺中检测到的病毒含量为4.25 lg EID50·mL-1,在鼻甲中检测到的病毒含量为2.67 lg EID50·mL-1,在脑、脾和肾中均未检测到病毒复制。对照组未检测到病毒(图 2B)。对小鼠肺HE染色,组织病理变化主要表现为肺泡壁毛细血管充血、出血,肺泡壁增厚,炎性细胞浸润等。对照组未见明显的病理变化(图 2C)。

A.攻毒后14 d内小鼠体重变化; B.攻毒后第3天小鼠脏器内病毒含量; C.攻毒后第3天小鼠肺部病理切片(200×) A. The body weight changes of mice over 14 days post infection; B. Viral titer in organs of mice at 3 days post infection; C. Histopathological of the mice lung tissue at 3 days post infection (200×) 图 2 A/swine/Henan/NY20/2018(H1N1)对小鼠的致病性 Fig. 2 Pathogenicity of A/swine/Henan/NY20/2018(H1N1) in mice.
3 讨论

由于猪具有A型流感病毒“混合容器”的作用,所以当多种流感病毒亚型的共同循环可导致基因重排新病毒的产生[29-33]。2009年,在墨西哥和美国出现人感染2009甲型H1N1,随后的一段时间内迅速传播至多个国家[34]。在发生人感染2009甲型H1N1之后,在加拿大发现猪感染2009甲型H1N1的病例[35-36]。在我国香港发现第1个重配的H1N1病毒,其基因片段来源于2009甲型H1N1(NA),欧亚类禽H1N1(HA),6个内部基因3重重组SIV[37]。目前,猪群中经常分离到含有2009甲型H1N1基因的新型重配病毒[32]。本研究中,A/swine/Henan/NY20/2018(H1N1)为1株3源重排H1N1病毒,其基因片段来源于欧亚类禽H1N1 (HANA)、2009甲型H1N1(PB2、PB1、PANPM)和经典H1N1(NS)。此种基因型在2013年广西省曾报道过[25]。此次分离的病毒5个内部基因来源于2009甲型H1N1,再次验证了含有2009甲型H1N1基因已经相对稳定的存在猪群中。

为了评估分离株在哺乳动物物种中的致病性,笔者将BALB/c小鼠作为感染模型,研究结果发现分离株在小鼠肺和鼻甲能够有效的复制,肺出现明显的病理学变化,没有出现小鼠的死亡。说明分离株对小鼠的有一定的致病性,但致病力不强,其具体的致病性还有待于到猪体内验证。

2009甲型H1N1可以从猪群传染给人类,也可以从人类传播到猪群[38]。含有2009甲型H1N1基因片段的重配病毒已在全世界的猪中广泛传播[39-40]。含有2009甲型H1N1基因的流感病毒是否会引发下一次的流感大流行,将是关乎公共卫生学意义的重要事情。因此,需要加强SIV流行病学的监测。

4 结论

在河南省流行病学调查中分离到1株H1N1亚型SIV,该分离株属于1株3源重排H1N1病毒,对小鼠呈现一定的致病力。提示需要进一步加强对SIV监测,为流感的防控及流感大流行的预测提供重要的理论依据。

参考文献
[1] FONI E, GARBARINO C, CHIAPPONI C, et al. Epidemiological survey of swine influenza A virus in the wild boar population of two Italian provinces[J]. Influenza Other Respir Viruses, 2013, 7(S4): 16–20.
[2] WEBSTER R G, BEAN W J, GORMAN O T, et al. Evolution and ecology of influenza A viruses[J]. Microbiol Rev, 1992, 56(1): 152–179. DOI: 10.1128/MMBR.56.1.152-179.1992
[3] MUKHERJEE T R, AGRAWAL A S, CHAKRABARTI S, et al. Full genomic analysis of an influenza A (H1N2) virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1)pdm09 and A/Brisbane/10/2007-like H3N2 strains[J]. Virol J, 2012, 9: 233. DOI: 10.1186/1743-422X-9-233
[4] FOUCHIER R A M, MUNSTER V, WALLENSTEN A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls[J]. J Virol, 2005, 79(5): 2814–2822. DOI: 10.1128/JVI.79.5.2814-2822.2005
[5] TONG S X, ZHU X Y, LI Y, et al. New world bats harbor diverse influenza A viruses[J]. PLoS Pathog, 2013, 9(10): e1003657. DOI: 10.1371/journal.ppat.1003657
[6] TONG S X, LI Y, RIVAILLER P, et al. A distinct lineage of influenza A virus from bats[J]. Proc Natl Acad Sci U S A, 2012, 109(11): 4269–4274. DOI: 10.1073/pnas.1116200109
[7] YANG H L, CHEN Y, QIAO C L, et al. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses[J]. Proc Natl Acad Sci U S A, 2016, 113(2): 392–397. DOI: 10.1073/pnas.1522643113
[8] ZHAO N, MARTIN B E, YANG C K, et al. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans[J]. Sci Rep, 2015, 5: 15778. DOI: 10.1038/srep15778
[9] SUZUKI Y, ITO T, SUZUKI T, et al. Sialic acid species as a determinant of the host range of influenza A viruses[J]. J Virol, 2000, 74(24): 11825–11831. DOI: 10.1128/JVI.74.24.11825-11831.2000
[10] VAN REETH K, BROWN I H, DVRRWALD R, et al. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003[J]. Influenza Other Respir Viruses, 2008, 2(3): 99–105. DOI: 10.1111/j.1750-2659.2008.00043.x
[11] CHUTINIMITKUL S, THIPPAMOM N, DAMRONGWATANAPOKIN S, et al. Genetic characterization of H1N1, H1N2 and H3N2 swine influenza virus in Thailand[J]. Arch Virol, 2008, 153(6): 1049–1056. DOI: 10.1007/s00705-008-0097-7
[12] KONG W L, HUANG L Z, QI H T, et al. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010[J]. Virol J, 2011, 8: 469. DOI: 10.1186/1743-422X-8-469
[13] VINCENT A L, PEREZ D R, RAJAO D, et al. Influenza A virus vaccines for swine[J]. Vet Microbiol, 2017, 206: 35–44. DOI: 10.1016/j.vetmic.2016.11.026
[14] KONG W L, HUANG Y M, CAO N, et al. Isolation and phylogenetic analysis of H1N1 swine influenza virus from sick pigs in Southern China[J]. Indian J Virol, 2011, 22(1): 66–71. DOI: 10.1007/s13337-011-0035-2
[15] ZHU W F, YANG S, GUO Y J, et al. Imported pigs may have introduced the first classical swine influenza viruses into Mainland China[J]. Infect Genet Evol, 2013, 17: 142–146. DOI: 10.1016/j.meegid.2013.03.007
[16] ZHU H, WEBBY R, LAM T T, et al. History of Swine influenza viruses in Asia[J]. Curr Top Microbiol Immunol, 2013, 370: 57–68.
[17] FAN X H, ZHU H C, ZHOU B P, et al. Emergence and dissemination of a swine H3N2 reassortant influenza virus with 2009 pandemic H1N1 genes in pigs in China[J]. J Virol, 2012, 86(4): 2375–2378. DOI: 10.1128/JVI.06824-11
[18] WEBSTER R G, ROTT R. Influenza virus a pathogenicity:the pivotal role of hemagglutinin[J]. Cell, 1987, 50(5): 665–666. DOI: 10.1016/0092-8674(87)90321-7
[19] KLENK H D, ROTT R. The molecular biology of influenza virus pathogenicity[J]. Adv Virus Res, 1988, 34: 247–281. DOI: 10.1016/S0065-3527(08)60520-5
[20] HORIMOTO T, KAWAOKA Y. Pandemic threat posed by avian influenza A viruses[J]. Clin Microbiol Rev, 2001, 14(1): 129–149. DOI: 10.1128/CMR.14.1.129-149.2001
[21] 刘清政, 王宏宇, 杜以军, 等. 一株猪流感病毒的遗传进化分析及其致病力研究[J]. 中国预防兽医学报, 2017, 39(12): 1022–1025.
LIU Q Z, WANG H Y, DU Y J, et al. Genetic evolution analysis and pathogenicity of a swine influenza virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2017, 39(12): 1022–1025. (in Chinese)
[22] WANG Z, YANG H L, CHEN Y, et al. A single-amino-acid substitution at position 225 in hemagglutinin alters the transmissibility of Eurasian avian-like H1N1 swine influenza virus in guinea pigs[J]. J Virol, 2017, 91(21): e00800–17.
[23] 李婷, 朱启运, 冉多良, 等. 猪流感病毒分离株A/Swine/Fujian/F1/2001(H5N1)表面蛋白基因序列分析[J]. 新疆农业大学学报, 2006, 29(3): 1–4.
LI T, ZHU Q Y, RAN D L, et al. Sequence analysis on the surface glycoprotein genes of a swine influenza virus isolate A/Swine/Fujian/F1/2001(H5N1)[J]. Journal of Xinjiang Agricultural University, 2006, 29(3): 1–4. DOI: 10.3969/j.issn.1007-8614.2006.03.001 (in Chinese)
[24] ZHU W F, LI L, YAN Z G, et al. Dual E627K and D701N mutations in the PB2 protein of A(H7N9) influenza virus increased its virulence in mammalian models[J]. Sci Rep, 2015, 5: 14170. DOI: 10.1038/srep14170
[25] HE P, WANG G J, MO Y N, et al. Novel triple-reassortant influenza viruses in pigs, Guangxi, China[J]. Emerg Microbes Infect, 2018, 7(1): 85.
[26] LI X D, LIAO H, LIU Y, et al. Drug-resistant and genetic evolutionary analysis of influenza virus from patients during the 2013 and 2014 influenza season in Beijing[J]. Microb Drug Resist, 2017, 23(2): 253–260. DOI: 10.1089/mdr.2015.0297
[27] IKEMATSU H, KAWAI N, IWAKI N, et al. In vitro neuraminidase inhibitory activity of four neuraminidase inhibitors against influenza virus isolates in the 2011-2012 season in Japan[J]. J Infect Chemother, 2014, 20(2): 77–80.
[28] GARTEN R J, DAVIS C T, RUSSELL C A, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans[J]. Science, 2009, 325(5937): 197–201. DOI: 10.1126/science.1176225
[29] ITO T, COUCEIRO J N, KELM S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential[J]. J Virol, 1998, 72(9): 7367–7373. DOI: 10.1128/JVI.72.9.7367-7373.1998
[30] GAMMELIN M, MANDLER J, SCHOLTISSEK C. Two subtypes of nucleoproteins (NP) of influenza A viruses[J]. Virology, 1989, 170(1): 71–80.
[31] VAN POUCKE S G, NICHOLLS J M, NAUWYNCK H J, et al. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution[J]. Virol J, 2010, 7: 38. DOI: 10.1186/1743-422X-7-38
[32] NONTHABENJAWAN N, CHANVATIK S, CHAIYAWONG S, et al. Genetic diversity of swine influenza viruses in Thai swine farms, 2011-2014[J]. Virus Genes, 2015, 50(2): 221–230. DOI: 10.1007/s11262-014-1153-x
[33] SONG Y F, ZHANG Y, ZHANG B, et al. Identification, genetic analysis, and pathogenicity of classical swine H1N1 and human-swine reassortant H1N1 influenza viruses from pigs in China[J]. Viruses, 2020, 12(1): 55.
[34] SMITH G J D, VIJAYKRISHNA D, BAHL J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic[J]. Nature, 2009, 459(7250): 1122–1125. DOI: 10.1038/nature08182
[35] HOWDEN K J, BROCKHOFF E J, CAYA F D, et al. An investigation into human pandemic influenza virus (H1N1) 2009 on an Alberta swine farm[J]. Can Vet J, 2009, 50(11): 1153–1161.
[36] NElSON M I, VINCENT A L, KITIKOON P, et al. Evolution of novel reassortant A/H3N2 influenza viruses in North American swine and humans, 2009-2011[J]. J Virol, 2012, 86(16): 8872–8878. DOI: 10.1128/JVI.00259-12
[37] VIJAYKRISHNA D, POON L L M, ZHU H C, et al. Reassortment of pandemic H1N1/2009 influenza A virus in swine[J]. Science, 2010, 328(5985): 1529. DOI: 10.1126/science.1189132
[38] NELSON M I, VINCENT A L. Reverse zoonosis of influenza to swine:new perspectives on the human-animal interface[J]. Trends Microbiol, 2015, 23(3): 142–153.
[39] WATSON S J, LANGAT P, REID S M, et al. Molecular epidemiology and evolution of influenza viruses circulating within European swine between 2009 and 2013[J]. J Virol, 2015, 89(19): 9920–9931. DOI: 10.1128/JVI.00840-15
[40] LEWIS N S, RUSSELL C A, LANGAT P, et al. The global antigenic diversity of swine influenza A viruses[J]. eLife, 2016, 5: e12217. DOI: 10.7554/eLife.12217