2. 河北省牛羊胚胎技术创新中心, 保定 071000
2. Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071000, China
ZEA是一种主要由镰刀菌产生的具有雌激素活性和多种毒性作用的次级代谢产物,是猪饲料中最常见的霉菌毒素之一。ZEA的污染会对猪生产造成持续且严重的危害。为了应对ZEA污染的危害,相关学者已在ZEA的毒性机理方面开展了多项研究,包括确定子宫和卵巢是ZEA的主要靶器官,ZEA可以降低子宫内膜基质细胞和卵巢颗粒细胞等细胞的抗氧化性能并诱导炎症发生等[1-2],但对ZEA对子宫和卵巢组织抗氧化性能及炎症反应影响的研究相对较少。因此本试验选用对ZEA比较敏感的后备母猪[3],通过饲喂含不同ZEA水平的饲粮,研究其对后备母猪子宫和卵巢抗氧化和炎症指标及相关基因表达的影响,为探讨ZEA毒性作用机理提供参考。
1 材料与方法 1.1 材料与饲粮设计后备母猪饲喂玉米-豆粕型饲粮,不添加抗生素及脱霉剂。ZEA购自Triplebond公司(加拿大),纯度保证值≥98%。基础饲粮配制参照《猪饲养标准》(NY/T65—2004)进行,其组成及营养水平见表 1。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) |
选择胎次和体重((23.20±0.68) kg)相近的长×大二元后备母猪48头,随机分为4组,每组设12个重复,每个重复1头母猪。对照组(CON组)饲喂基础饲粮,试验组(T1、T2、T3组)分别饲喂在基础饲粮中添加200、800、1600 μg·kg-1 ZEA的试验饲粮。预试期7 d,正试期40 d,试验前对猪舍进行清洁和消毒,母猪采用分栏饲养,自由采食和饮水,常规饲养管理。
饲粮于试验开始前一次配制完成,经酶联免疫吸附(ELISA)法检测,各组饲粮中黄曲霉毒素、呕吐毒素和烟曲霉毒素含量,均符合《国家饲料卫生标准》(GB13 078—2017)的限量要求,ZEA的含量分别为52.37、241.60、825.20和1634.46 μg·kg-1。
1.3 测定指标与方法1.3.1 血液及组织指标 正试期结束后,试验母猪空腹12 h,每组随机选择8头进行前腔静脉采血,每头采集15 mL,将血液注入离心管内倾斜静置,血凝后3 000 r·min-1离心10 min,分离血清,-80 ℃保存待测。每组随机选择4头屠宰,取子宫和卵巢组织,-80 ℃保存待测。
采用ELISA法测定血清及子宫、卵巢组织样品中的总抗氧化力(T-AOC)、谷胱甘肽过氧化物酶(GSH-Px)活性、超氧化物歧化酶(SOD)活性以及丙二醛(MDA)、肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)、白介素-4(IL-4)、白介素-10(IL-10)的水平,试剂盒购自北京华悦昌生物科技有限公司,按说明书指示进行操作。
1.3.2 子宫和卵巢组织基因的相对表达 根据GenBank中已报道的猪的Cu/Zn-SOD、Mn-SOD、GSH-Px、TNF-α、IL-1β、IL-10和GAPDH基因的序列,结合前人文献,使用Primer 6.0软件设计相应特异性引物,引物由生工生物工程(上海)股份有限公司合成。引物序列见表 2。
![]() |
表 2 PCR反应引物序列 Table 2 Sequence of primers for real-time PCR |
将-80 ℃保存的子宫和卵巢样品取出50~100 mg,提取总RNA,具体操作按Trizol试剂盒(Invitrogen公司)说明进行,用RNA浓度仪(ThermoN- anoDrop Lite)检测RNA浓度。用反转录试剂盒(Vazyme公司,HiScript Ⅲ RT SuperMix for qPCR +gDNA wiper,20 μL反应体系)进行反转录,具体操作按说明书指示进行。按荧光定量试剂盒(Vazyme公司,AceQ qPCR SYBR Green Master Mix,20 μL反应体系)说明书加入反应试剂[Master Mix 10 μL,上游引物(10 μmol·L-1)0.4 μL,下游引物(10 μmol·L-1) 0.4 μL,50×ROX Reference Dye1 0.4 μL,Template cDNA 2 μL,加ddH2O至20 μL]。扩增条件为:95 ℃预变性5 min;循环反应95 ℃ 10 s, 60 ℃ 30 s,40循环;融解曲线95 ℃ 15 s,60 ℃ 60 s,95 ℃ 15 s。每个样品3个重复,目标基因表达:mRNA相对表达=2-△△Ct。
1.4 数据统计分析使用Excel 2016和SPSS 20.0软件进行数据统计分析,用one-Way ANOVA检验各组数据间显著性差异,用LSD法进行多重比较,P < 0.05为显著差异,P < 0.01为极显著差异。
2 结果 2.1 ZEA对后备母猪血液抗氧化指标的影响由表 3可知,与CON组相比,T3组后备母猪血液T-AOC及SOD活性均显著降低(P<0.05),分别降低了55.02%和13.05%,MDA水平显著升高(P<0.05),升高了142.91%。
![]() |
表 3 ZEA对后备母猪血液抗氧化指标的影响 Table 3 Effect of ZEA on blood antioxidant indexes of prepubertal gilts |
由表 4可知,与CON组相比,T2和T3组后备母猪子宫T-AOC活性显著降低(P<0.05),分别降低了13.76%和15.14%。T3组卵巢T-AOC活性显著降低(P<0.05),降低了37.28%。T2组卵巢GSH-Px活性显著降低(P<0.05),降低了28.27%。T3组子宫SOD活性极显著降低(P<0.01),降低了26.33%。T2组卵巢SOD活性显著降低(P<0.05),降低了20.50%。T3组卵巢MDA水平显著升高(P<0.05),升高了8.76%。
![]() |
表 4 ZEA对后备母猪组织抗氧化指标的影响 Table 4 Effects of ZEA on antioxidant indexes in different tissues of prepubertal gilts |
由表 5可知,与CON组相比,T2组后备母猪血清TNF-α及IL-4水平显著升高(P<0.05),分别升高了26.92%和78.87%。T1~T3组IL-10水平均显著降低(P<0.05),分别降低了24.40%、26.75%和27.82%。
![]() |
表 5 ZEA对后备母猪血液炎症因子的影响 Table 5 Effects of ZEA on inflammatory cytokines in the blood of prepubertal gilts |
由表 6可知,与CON组相比,T2组后备母猪卵巢TNF-α及子宫IL-1β水平显著升高(P<0.05),分别升高了14.29%和47.95%。T1~T3组卵巢IL-4水平均显著升高(P<0.05),分别升高了13.51%、13.78%以及10.64%。T1和T3组子宫IL-10水平显著降低(P<0.05),分别降低了12.82%和11.26%。
![]() |
表 6 ZEA对后备母猪组织炎症因子的影响 Table 6 Effects of ZEA on antioxidant indexes in different tissues of prepubertal gilts |
由图 1可知,与CON组相比,T3组后备母猪子宫Cu/Zn-SOD mRNA的相对表达显著下调(P<0.05)。各组间Mn-SOD及GSH-Px mRNA的相对表达均无显著差异(P>0.05)。
![]() |
数据柱形标注不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01)。下图同 Value columns with different small letters mean significant difference (P < 0.05), and with different capital letters mean extremely significant difference (P < 0.01). The same as below 图 1 ZEA对后备母猪子宫抗氧化酶mRNA相对表达的影响 Fig. 1 Effect of ZEA on relative expression of antioxidant enzyme mRNA of uterus of prepubertal gilts |
由图 2可知,与CON组相比,T3组后备母猪卵巢GSH-Px mRNA的相对表达显著下调(P<0.05)。T1~T3组Mn-SOD mRNA的相对表达与CON组相比均无显著差异(P>0.05),但T2组显著低于T3组(P<0.05)。各组间Cu/Zn-SOD mRNA的相对表达无显著差异(P>0.05)。
![]() |
图 2 ZEA对后备母猪卵巢抗氧化酶mRNA相对表达的影响 Fig. 2 Effect of ZEA on relative expression of antioxidant enzyme mRNA of ovary of prepubertal gilts |
由图 3可知,与CON组相比,T2组后备母猪子宫IL-1β mRNA的相对表达显著上调(P<0.05)。并且T2组极显著高于T1组(P<0.01)。与T2组相比,T1组IL-10 mRNA的相对表达显著上调(P<0.05),但各试验组与CON组间无显著差异(P>0.05)。各组间TNF-α mRNA的相对表达无显著差异(P>0.05)。
![]() |
图 3 ZEA对后备母猪子宫炎症因子mRNA相对表达的影响 Fig. 3 Effect of ZEA on relative expression of inflammatory cytokines mRNA of uterus of prepubertal gilts |
由图 4可知,与CON组相比,T2组后备母猪卵巢IL-1β mRNA的相对表达显著上调(P<0.05)。各组间TNF-α及IL-10 mRNA的相对表达均无显著差异(P>0.05)。
![]() |
图 4 ZEA对后备母猪卵巢炎症因子mRNA相对表达的影响 Fig. 4 Effect of ZEA on relative expression of inflammatory cytokines mRNA of ovary of prepubertal gilts |
动物机体内存在抗氧化系统,正常生理活动中,能够及时清理自由基,使自由基的生成与清理处于平衡状态。但在某些条件下,如采食被ZEA等霉菌毒素污染的饲粮时,使机体自由基浓度过高,平衡打破,产生自由基连锁反应,导致氧化应激甚至氧化损伤。本试验中,ZEA处理显著降低了后备母猪血清中T-AOC和SOD的活性,显著提高了MDA的水平。说明ZEA可以通过降低抗氧化酶的活性,来降低后备母猪的抗氧化性能,并引起氧化应激。
杨立杰等[8]和Shi等[9]发现,在断奶母猪饲粮中添加ZEA,母猪血清中GSH-Px和SOD等抗氧化酶活性显著降低,MDA水平显著升高。子宫和卵巢是母猪重要的繁殖器官,二者的功能状态与后备母猪繁殖潜力的发挥紧密相关。本试验中,ZEA处理显著降低了子宫和卵巢组织T-AOC、GSH-Px和SOD的活性以及Cu/Zn-SOD mRNA、GSH-Px mRNA的相对表达量,显著提高了MDA水平。说明ZEA可以进一步通过降低抗氧化酶基因的表达与活性来降低子宫及卵巢的抗氧化性能,并引起氧化应激。Qin等[10]用15、30和60 μmol·L-1的ZEA处理体外培养的猪卵巢颗粒细胞,发现可以使其活性氧(ROS)水平显著增高,SOD及CAT活性显著降低,Cu/Zn-SOD及CAT mRNA的表达显著下调。
ZEA及其代谢产物可以刺激电子从呼吸链中泄露出来使ROS增多[11],当ROS积累到一定浓度时,可以引起线粒体DNA损伤,蛋白质变性以及脂质过氧化,导致线粒体功能障碍[12-13],使ROS进一步增多,产生氧化应激及损伤[14]。丙二醛是脂质过氧化的终产物,ZEA诱导ROS产生引起脂质过氧化可能是后备母猪血清和组织中丙二醛水平显著升高的原因之一。同时ROS还可以引起蛋白质氧化损伤,姜招峰和杨翰仪[15]报道,ROS可以使SOD酶蛋白氨基酸残基氧化产生羰基, 从而使SOD的活性降低,还可以使GPX酶蛋白氨基酸残基氧化产生羰基, 以及使GPX酶蛋白二级结构改变α-螺旋百分含量减少,从而使GPX活性降低,这可能是血清和组织中T-AOC、GSH-Px以及SOD活性显著降低的原因之一。ZEA还可以引起细胞DNA的碱基修饰、断裂和突变,并通过线粒体途径、死亡受体途径[16]以及内质网途径[17]引起细胞凋亡,这可能是子宫和卵巢组织中Cu/Zn-SOD mRNA和GSH-Px mRNA表达显著下调的原因之一。Pfeiffer等[18]报道,ZEA在机体代谢过程中产生的13-羟基-ZEA和15-羟基-ZEA本身就是两种高度不稳定的氧化代谢产物,可以引起氧化应激及DNA损伤。ZEA降低SOD等抗氧化酶的表达与活性,从而降低后备母猪机体以及子宫和卵巢的抗氧化性能并引起氧化应激,可能是上述影响综合作用的结果。
3.2 ZEA对后备母猪炎症因子及相关基因表达的影响炎症是机体对于刺激的一种防御性反应,适度的炎症对机体有益,但在某些条件下,如采食被ZEA等霉菌毒素污染的饲粮时,引起过度炎症反应,会导致组织损伤和功能障碍。本试验中,ZEA处理使后备母猪血清中TNF-α、IL-1β及IL-4的水平升高或显著升高,IL-10水平显著降低。说明ZEA可以通过促进TNF-α及IL-1β的分泌来诱发后备母猪机体的炎症反应,也可以通过抑制IL-10的分泌来抑制抗炎反应。Marin等[19]饲喂仔猪ZEA含量为316 μg·kg-1的饲粮持续18 d后也发现,血液TNF-α及IL-1β水平显著升高。Del Fabbro等[20],给小鼠注射40 mg·kg-1的ZEA后发现,血液TNF-α及IL-1β水平均上升,IL-10水平降低。炎症反应会直接影响后备母猪子宫和卵巢的发育和功能,从而影响后备母猪的繁殖潜力。本试验中ZEA处理使子宫和卵巢中TNF-α、IL-1β及IL-4的水平升高或显著升高,TNF-α和IL-1β mRNA的表达显著上调,IL-10水平降低或显著降低。说明ZEA可以通过促进TNF-α及IL-1β基因的表达与合成进一步诱发子宫和卵巢的炎症反应,并通过抑制IL-10的分泌来抑制抗炎反应。
氧化反应与炎症反应在机体维持稳态的免疫反应过程中密切相关,氧自由基是炎症反应的效应器,过量的氧自由基可以通过模式或非模式受体诱导机体的炎症反应[21-22]。ZEA能通过刺激电子从呼吸链中泄露出来使ROS增多[11],进而引起后备母猪机体以及子宫和卵巢的炎症反应,这可能是血清以及子宫和卵巢中TNF-α、IL-1β及IL-4的水平升高或显著升高的原因之一。Fan等[23]报道,ZEA可以激活ROS介导的NLRP3炎性小体,进而促成caspase-1依赖性激活炎性细胞因子IL-1β。Pistol等[24]在仔猪试验中发现,ZEA可以通过c-Jun氨基末端激酶(JNK)通路促进TNF-α和IL-1β mRNA的表达与合成,引起炎症反应。JNK通路在哺乳动物的炎症反应中发挥重要作用,这可能是本试验中子宫及卵巢TNF-α和IL-1β mRNA的表达显著上调的原因之一。在抗炎反应方面,IL-4和IL-10是两种典型的炎症抑制因子,ZEA诱导炎症反应后,IL-4水平升高,发挥抗炎作用,Obremski[25]报道,ZEA还能通过将Th1/Th2平衡转向体液免疫应答来进一步刺激Th1和Th2淋巴细胞产生IL-4。IL-10基因表达的下调和水平的降低可能与ZEA能通过p-38MAPK和NF-κB通路下调IL-10 mRNA的相对表达与合成[26],以及能显著上调hdac11基因(IL-10产生的负调节基因)的表达有关[19]。
由上述结果可见,ZEA能降低后备母猪机体以及子宫和卵巢的抗氧化性能,引起氧化应激及炎症反应,因此在进一步的研究中应注意相关问题,如脱霉剂研发时应注意产物对动物机体氧化应激及炎症反应的影响。在生产中,脱霉剂与抗氧化及抗炎产品的组合应用可能会提高保护效果。
4 结 论ZEA能通过抑制SOD和GSH-Px的表达与合成,降低后备母猪子宫和卵巢的抗氧化性能,并引起氧化应激。ZEA能通过促进TNF-α和IL-1β表达与合成引起子宫和卵巢的炎症反应,抑制IL-10的表达与合成从而抑制两组织的抗炎反应。
[1] | ZHOU M, YANG L J, SHAO M H, et al. Effects of Zearalenone exposure on the TGF-β1/Smad3 signaling pathway and the expression of proliferation or apoptosis related genes of post-weaning gilts[J]. Toxins (Basel), 2018, 10(2): E49. DOI: 10.3390/toxins10020049 |
[2] | ZHANG F L, LI N, WANG H, et al. Zearalenone Exposure induces the apoptosis of porcine Granulosa cells and changes long noncoding RNA expression to promote Antiapoptosis by activating the JAK2-STAT3 pathway[J]. J Agric Food Chem, 2019, 67(43): 12117–12128. DOI: 10.1021/acs.jafc.9b05189 |
[3] | ZINEDINE A, SORIANO J M, MOLTÓ J C, et al. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone:an oestrogenic mycotoxin[J]. Food Chem Toxicol, 2007, 45(1): 1–18. |
[4] | CHEN X L, XIANG L, JIA G, et al. Effects of dietary leucine on antioxidant activity and expression of antioxidant and mitochondrial-related genes in Longissimus dorsi muscle and liver of piglets[J]. Anim Sci J, 2019, 90(8): 990–998. DOI: 10.1111/asj.13249 |
[5] | REDDY K E, SONG J, LEE H J, et al. Effects of High Levels of Deoxynivalenol and Zearalenone on Growth Performance, and Hematological and Immunological Parameters in Pigs[J]. Toxins (Basel), 2018, 10(3): 114. DOI: 10.3390/toxins10030114 |
[6] |
陈祥兴, 张崇玉, 黄丽波, 等. 镰刀菌毒素对断奶仔猪肠道IL-1β和IL-6分布和表达的影响[J]. 畜牧兽医学报, 2016, 47(10): 2126–2135.
CHEN X X, ZHANG C Y, HUANG L B, et al. Effects of Fusarium toxins on IL-1β and IL-6 in post-weaning piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(10): 2126–2135. DOI: 10.11843/j.issn.0366-6964.2016.10.022 (in Chinese) |
[7] |
牛群升, 杨维仁, 黄丽波, 等. 镰刀菌毒素对断奶小母猪阴户、生殖器官指数、子宫雌激素受体分布和表达的影响[J]. 动物营养学报, 2016, 28(5): 1525–1533.
NIU Q S, YANG W R, HUANG L B, et al. Effects of Fusarium toxins on vulva, reproductive organ index, distribution and expression of estrogen receptors in uterus of weaning gilts[J]. Chinese Journal of Animal Nutrition, 2016, 28(5): 1525–1533. DOI: 10.3969/j.issn.1006-267X.2016.05.029 (in Chinese) |
[8] |
杨立杰, 王淑静, 杨维仁, 等. 玉米赤霉烯酮对断奶小母猪生产性能、血清抗氧化功能和免疫功能的影响[J]. 动物营养学报, 2017, 29(8): 2843–2850.
YANG L J, WANG S J, YANG W R, et al. Effects of Zearalenone on production performance, serum antioxidant capacity and immune function of weaning gilts[J]. Chinese Journal of Animal Nutrition, 2017, 29(8): 2843–2850. DOI: 10.3969/j.issn.1006-267x.2017.08.029 (in Chinese) |
[9] | SHI B M, SU Y, CHANG S Y, et al. Vitamin C Protects piglet liver against Zearalenone-induced oxidative Stress by modulating expression of nuclear receptors PXR and CAR and their target genes[J]. Food Funct, 2017, 8(10): 3675–3687. DOI: 10.1039/C7FO01301A |
[10] | QIN X S, CAO M J, LAI F N, et al. Oxidative stress induced by Zearalenone in Porcine Granulosa cells and its rescue by Curcumin in vitro[J]. PLoS One, 2015, 10(6): e0127551. DOI: 10.1371/journal.pone.0127551 |
[11] | ZHENG W L, FENG N N, WANG Y, et al. Effects of Zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones:a review[J]. Food Chem Toxicol, 2019, 126: 262–276. DOI: 10.1016/j.fct.2019.02.031 |
[12] | ZHENG W L, PAN S Y, WANG G G, et al. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of sertoli cells[J]. Environ Toxicol Pharmacol, 2016, 42: 146–155. DOI: 10.1016/j.etap.2016.01.013 |
[13] | ZHENG W L, WANG B J, LI X, et al. Zearalenone promotes cell proliferation or causes cell death[J]. Toxins (Basel), 2018, 10(5): 184. DOI: 10.3390/toxins10050184 |
[14] | TATAY E, ESPÍN S, GARCÍA-FERNÁNDEZ A J, et al. Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells[J]. Toxicol Vitro, 2017, 45: 334–339. DOI: 10.1016/j.tiv.2017.04.026 |
[15] |
姜招峰, 杨翰仪. 氧自由基对CAT、SOD和GPX的氧化修饰研究[J]. 北京联合大学学报:自然科学版, 2003, 17(3): 12–17.
JIANG Z F, YANG H Y. Effects of oxygen free radicals on functions and structures of CAT, SOD and GPX in vitro[J]. Journal of Beijing Union University :Natural Sciences, 2003, 17(3): 12–17. DOI: 10.3969/j.issn.1005-0310.2003.03.003 (in Chinese) |
[16] | JEE Y, NOH E M, CHO E S, et al. Involvement of the Fas and Fas ligand in testicular germ cell apoptosis by zearalenone in rat[J]. J Vet Sci, 2010, 11(2): 115–119. DOI: 10.4142/jvs.2010.11.2.115 |
[17] | ZHENG W L, WANGB J, WANG L, et al. ROS-mediated cell cycle arrest and apoptosis induced by Zearalenone in mouse sertoli cells via ER stress and the ATP/AMPK pathway[J]. Toxins (Basel), 2018, 10(1): 24. DOI: 10.3390/toxins10010024 |
[18] | PFEIFFER E, HILDEBRAND A, DAMM G, et al. Aromatic hydroxylation is a major metabolic pathway of the mycotoxin zearalenone in vitro[J]. Mol Nutr Food Res, 2009, 53(9): 1123–1133. DOI: 10.1002/mnfr.200800584 |
[19] | MARIN D E, PISTOL G C, NEAGOE I V, et al. Effects of zearalenone on oxidative stress and inflammation in weanling piglets[J]. Food Chem Toxicol, 2013, 58: 408–415. DOI: 10.1016/j.fct.2013.05.033 |
[20] | DEL FABBRO L, JESSE C R, DE GOMES M G, et al. The flavonoid chrysin protects against zearalenone induced reproductive toxicity in male mice[J]. Toxicon, 2019, 165: 13–21. DOI: 10.1016/j.toxicon.2019.04.004 |
[21] | GILL R, TSUNG A, BILLIAR T. Linking oxidative stress to inflammation:toll-like receptors[J]. Free Radic Biol Med, 2010, 48(9): 1121–1132. DOI: 10.1016/j.freeradbiomed.2010.01.006 |
[22] |
俞卓伟, 保志军, 阮清伟, 等. 氧化应激-炎症-衰老及其与ApoE基因相关性研究进展[J]. 生理学报, 2013, 65(3): 338–346.
YU Z W, BAO Z J, RUAN Q W, et al. Oxi-inflamm-aging and its association with the polymorphism of ApoE genes[J]. Acta Physiologica Sinica, 2013, 65(3): 338–346. (in Chinese) |
[23] | FAN W T, LV Y N, REN S, et al. Zearalenone (ZEA)-induced intestinal inflammation is mediated by the NLRP3 inflammasome[J]. Chemosphere, 2018, 190: 272–279. DOI: 10.1016/j.chemosphere.2017.09.145 |
[24] | PISTOL G C, BRAICU C, MOTIU M, et al. Zearalenone Mycotoxin affects immune mediators, MAPK Signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen[J]. PLoS One, 2015, 10(5): e0127503. DOI: 10.1371/journal.pone.0127503 |
[25] | OBREMSKI K. The effect of in vivo exposure to zearalenone on cytokine secretion by Th1 and Th2 lymphocytes in porcine Peyer's patches after in vitro stimulation with LPS[J]. Pol J Vet Sci, 2014, 17(4): 625–632. DOI: 10.2478/pjvs-2014-0093 |
[26] | PISTOL G C, GRAS M A, MARIN D E, et al. Natural feed contaminant zearalenone decreases the expressions of important pro- and anti-inflammatory mediators and mitogen-activated protein kinase/NF-κB signalling molecules in pigs[J]. Br J Nutr, 2014, 111(3): 452–464. DOI: 10.1017/S0007114513002675 |