2. 中国农业科学院北京畜牧兽医研究所, 北京 100193
2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
发情鉴定是奶牛人工授精的前提基础,为提高发情鉴定效果,人工观察、直肠检查[1]、尾根涂蜡[2]、B超检查等很多方法被用于奶牛生产,并取得了一定成效,但这些方法都需耗费大量人力、物力,并受技术人员主观因素影响[3-4],且很难实现夜间发情母牛鉴定,检出率仅53.37%。虽然基于活动量的自动化发情鉴定明显改善了检出率(可达70%~74%)[5-7],但仍无法检出安静发情牛。如能跨越发情鉴定环节,则可对奶牛繁殖技术及养殖业产生颠覆性影响。在此背景下,同期排卵-定时输精技术应运而生,该技术借助外源激素调控,使母牛在相对集中的时间内卵泡同步发育、同步排卵,养殖者可在固定时间实施人工输精,省去了发情鉴定环节,减少了工作量[8]。定时输精技术以其巨大的产业优势,得到了科研和产业的广泛关注,并随众多技术的研发在全球范围内推广应用[9-10]。据报道,近年来同期排卵-定时输精技术在我国规模化奶牛场不断普及[11],北美推广应用更多,约80%奶牛场都在使用[12]。然而,该技术处理后,母牛发情表现个体差异较大,有的发情明显,有的表现较弱,甚至没有发情表现,导致处理母牛实际受胎率只有32%~45%[13],严重影响了这一技术的推广应用。
阴道生理参数受外界环境干扰较小,能更真实的反映母牛的生理状况。为此,本研究使用阴道生理参数采集装置,对同期处理母牛进行体温和活动量监测,以探究同期排卵处理母牛的性周期规律,为优化同期排卵-定时输精技术提供理论指导。
1 材料与方法 1.1 试验动物及饲养管理本研究中的试验牛均为荷斯坦奶牛,来自河北省石家庄市天泉良种奶牛场和北京大地群生养殖专业合作社。试验牛散栏饲养,圈舍设有卧床,每日7:00、12:00和17:00投喂TMR日粮,自由采食并提供清洁饮水。首先选择18头发情周期正常的健康荷斯坦母牛,进行常规同期排卵试验。然后再选择17头发情周期正常的健康荷斯坦母牛进行预同期排卵试验。试验牛由中国农业科学院北京畜牧兽医研究所伦理委员会批准使用。
1.2 数据采集系统使用阴道生理参数自动检测系统[14]进行体温和活动量数据采集,本系统包括阴道生理参数检测装置、数据采集器、上位机系统。该系统每0.5 h检测一次体温及活动量,每2 h通过无线发射器向数据采集器发射1次数据,并通过采集器将数据上传到上位机系统。
1.3 试验处理对18头20月龄左右的荷斯坦青年母牛自动采集体温及活动量数据,直至试验结束。期间对试验牛进行同期排卵处理,即促性腺激素释放激素(GnRH)-前列腺素(PG)-GnRH(GnRH-PG-GnRH)处理,具体操作为:发情周期任意一天(为第0天),第1次肌肉注射GnRH 100 μg,第7天肌肉注射PG 0.4 mg,第9天第2次肌肉注射GnRH 100 μg。0~9 d,每天进行1次B超监测,记录双侧卵巢内最大卵泡和黄体直径变化;从第9天开始,每隔4 h B超监测1次,直至排卵。将排卵卵泡消失时间减2 h定义为排卵时间[15]。对17头产后40~60 d的荷斯坦母牛进行预同期排卵处理,即PG-PG-GnRH-PG-GnRH处理,具体操作为:发情周期任意一天,第1次肌肉注射PG 0.4 mg,14 d后第2次肌肉注射PG 0.4 mg,再间隔12 d进行同期排卵处理。全程同样进行试验牛体温及活动量数据自动采集。
1.4 发情鉴定根据前期试验结果,将当前阴道温度高于间情期同一时间点平均温度0.3 ℃、且持续2.5 h,设为自动检测系统发情预警阈值,进行奶牛发情自动监测[16],并经牛场工作人员直肠检测确认。
1.5 数据分析将牛体温数据分为发情前后、排卵前后两部分进行统计分析。由于每头牛发情起始时间和持续时间不一样,根据温度升高0.3 ℃、持续2.5 h的发情阈值要求,将发情时体温最早升高和降低0.3 ℃时的温度采集时间点记为0时,当两个连续时间点温度变化小于0.3 ℃时,记为发情结束。分别对母牛发情期阴道温度和活动量变化数据进行单因素方差分析(one-way ANOVA);对母牛排卵前后阴道温度与间情期平均温度进行显著性检验。数据分析软件为SPSS 21.0。
2 结果 2.1 同期排卵处理发情期母牛的阴道温度及活动量变化规律2.1.1 母牛发情开始与结束前后阴道温度变化规律 对18头荷斯坦母牛进行同期排卵处理后,共监测到7头母牛发情并排卵。统计分析7头排卵牛发情时和间情期同一时间点阴道温度(图 1和图 2)显示,母牛发情开始前3 h阴道温度开始升高,至发情开始后2 h达最高体温(38.86±0.29) ℃,体温约增加0.49 ℃,而后维持在恒定状态(图 1);至发情结束前3 h阴道温度增加最大(0.62±0.31) ℃,随后逐渐降低,直至恢复基础体温(图 2)。发情期阴道温度平均升高(0.43±0.2) ℃,持续约(12.37± 2.73) h。
![]() |
*.P<0.05。下同 *.P < 0.05. The same as below 图 1 同期排卵处理母牛发情开始前后的阴道温度变化 Fig. 1 Changes of vaginal temperature of cows treated with ovulation synchronization before and after the onset of estrus |
![]() |
图 2 同期排卵处理母牛发情结束前后的阴道温度变化 Fig. 2 Changes of vaginal temperature of cows treated with ovulation synchronization before and after the end of estrus |
2.1.2 母牛发情开始与结束前后活动量变化规律 对7头排卵牛发情时和间情期同一时间点活动量进行统计分析显示,母牛发情开始前3 h活动量与间情期相差不大,均小于200步,发情开始后活动量显著升高(P<0.05,图 3);发情结束前6 h活动量增加至最大,为(606±306)步,随后逐渐减小,直至恢复间情期活动量(图 4)。发情期活动量平均升高(18.28±18.61)倍,持续(11.00±1.68) h。
![]() |
图 3 同期排卵处理母牛发情开始前后活动量变化 Fig. 3 Activity variation of cows treated with ovulation synchronization before and after the onset of estrus |
![]() |
图 4 同期排卵处理母牛发情结束前后活动量变化 Fig. 4 Activity variation of cows treated with ovulation synchronization before and after the end of estrus |
将排卵时间记为0时,统计分析7头排卵牛排卵前后阴道温度和间情期同一时间点阴道温度。结果表明,排卵前5 h左右,母牛阴道温度开始低于间情期,至排卵前2 h下降到最低点(37.9±0.14) ℃,随后缓慢回升,但仍低于间情期(图 5);排卵后0~5.5 h,母牛阴道温度持续低于间情期,且较平稳,排卵后5.5 h开始逐渐回升,至6.5 h恢复至间情期水平(图 6)。排卵期阴道温度平均下降(0.20±0.10) ℃,持续约(11.00±1.68) h。
![]() |
图 5 同期排卵处理母牛排卵前阴道温度变化规律 Fig. 5 Changes of vaginal temperature of cows treated with ovulation synchronization before ovulation |
![]() |
图 6 同期排卵处理母牛排卵后阴道温度变化 Fig. 6 Changes of vaginal temperature of cows treated with ovulation synchronization after ovulation |
对18头同期排卵处理母牛的发情鉴定结果表明(表 1),PG处理后27、37.5 h分别有1头牛发情,43~45 h又有2头牛发情;GnRH第二次处理后2.5~3.5 h有3头牛发情(16.7%)。累计监测到7头牛发情排卵(38.9%),还有11头未发情。
![]() |
表 1 同期排卵处理对母牛发情的影响(n=18) Table 1 Effect of ovulation synchronization treatment on cows'estrus (n=18) |
对17头预同期排卵处理母牛的发情鉴定结果表明(表 2),在第1次PG处理后10 d内,88.24%的处理母牛逐渐发情排卵。其中,发情最早的在处理25 h后,最晚的在第1次PG处理后第10天,主要集中在PG处理后的42.5~75 h;第2次PG处理后第4天,未发情的2头牛全部发情排卵(11.76%),无需进行后续GnRH-PG-GnRH处理。
![]() |
表 2 预同期排卵处理对母牛发情的影响(n=17) Table 2 Effect of ovulation pre-synchronization treatment on cows'estrus (n=17) |
体温和活动量是母牛基本生理体征参数,能真实反映母牛健康状况和生理状态,对其进行实时监测,对牛场繁殖生产管理有重要指导意义[17-18]。传统人工直肠测温方式具有时效性差、数据量少,且费时费力等缺点。蹄腕[19]和红外测温[20-21]易受外界环境影响,瘤胃丸[22-23]和网胃丸[24]植入测温易受体内发酵影响,误差较大。阴道温度受外界环境影响较小,且与子宫温度的相关性高于直肠温度,可靠性高[25]。本研究采用阴道生理参数自动采集装置,每0.5 h采集一次阴道温度及活动量数据,实现了全天候母牛阴道生理参数高密度、自动化连续监测,能真实、全面地反应母牛的生理状态。
母牛发情时伴随着体温规律性变化,研究发现,发情时体温约上升0.48~1.3 ℃不等,体温检测差异较大,可能是由于母牛体况、温度采集密度和时间、分析方法等不同导致的[26-32]。本研究以间情期4 d的平均阴道温度为基础温度、每0.5 h一次的高密度体温数据采集,连续监测奶牛整个发情周期阴道温度,分析结果更为全面、科学。分析发现,发情期母牛阴道温度平均升高(0.43±0.2)℃,持续约(12.37±2.73)h。升高幅度及发情持续时间均略低于Sakatani等[33]的研究结果。本研究采用同期排卵处理母牛,不同于Sakatani等[33]的1次PG注射同期诱导法,不同的外源激素处理模式,可能会影响到卵泡发育进程,并影响发情体温升高幅度及持续时间。同期排卵处理奶牛发情体温变化规律,可对精确预测同期母牛发情提供理论参考。
发情后排卵同样伴随着体温的规律性变化。研究表明,排卵前奶牛体温逐渐降低,随后逐渐上升[34]。以每0.5 h一次的直肠温度采集频率,对荷斯坦母牛的分析发现,排卵时母牛体温比排卵前0.5 h低(0.22±0.13)℃[35]。以1 h一次的阴道温度采集频率,分析荷斯坦母牛体温发现,阴道温度由发情前的(38.6±0.3)℃上升到发情时的(39.0±0.5)℃,排卵时下降为(38.5±0.2)℃[28]。本研究以每0.5 h一次的阴道温度数据采集,对同期排卵处理母牛排卵前后阴道温度进行分析发现,排卵期阴道温度较间情期平均下降(0.20±0.10)℃,持续约(11.00±1.68)h,略低于杨章平等[35]的研究结果,可能与体温采集方式、方法及部位有关,阴道温度是性器官的一种表现,能反映性周期特征,而直肠测温则更多反映性周期以外的身体特征,更多体现体温恒定特征。关于排卵期间的体温变化研究较少,还需更多试验以深入揭示其细微的变化规律。
除体温外,活动量也可作为发情检测指标[36-38]。以2 h一次的活动量数据采集频率,分析荷斯坦母牛活动量发现,发情时活动量比间情期增加(290±160)%,持续时间约(14±4) h[39]。以每小时一次的活动量数据采集频率,分析日本黑牛活动量发现,发情时活动量可达间情期的2.3~3.5倍,持续时间约(16.8±0.9) h[33]。本研究以每0.5 h一次的高密度活动量数据采集,分析同期排卵处理母牛活动量发现,发情时活动量可达间情期的(18.28±18.61)倍,高于Silper等[39]和Sakatani等[33]的研究结果,持续时间约(11.00±1.68) h,略低于他们的研究结果。该差异可能是由于外源激素处理打破了母牛自然发情周期,造成母牛发情期间活动量上升短暂而强烈的特点。
本研究发现,荷斯坦母牛发情期阴道温度平均升高(0.43±0.2) ℃,持续约(12.37±2.73) h;活动量平均升高(18.28±18.61)倍,持续(11.00±1.68) h。然而,活动量数据易受外界因素影响,变化起伏较大,可能会因为某一时刻数据突然降低而出现假阴性。而体温变化则较平缓、稳定,故体温发情鉴定优于活动量发情检测[33]。
鉴于试验工作量问题,本研究仅对同期排卵处理母牛进行了体温与活动量监测及规律分析。研究表明,发情过程中体温和活动量发生了先逐渐升高,发情后期逐渐降低的规律性变化;同期排卵后未发情母牛体温及活动量仅呈现昼夜变化规律,并未表现出发情与排卵的变化规律。然而,考虑到自然发情母牛相关规律的研究对奶牛繁殖管理具有更重要意义。所以,在此试验后,本团队将专门设计试验,进一步比较同期排卵母牛与自然发情母牛间的生理参数差异,为奶牛繁殖生产提供重要指导。
另外,注射PG后,部分母牛卵巢上存在逐渐消退期的黄体,PG注射加快了这些黄体退化过程,但可能没有改变原有退化序列;而另一部分没有黄体的母牛则不受PG影响。GnRH处理促进了成熟卵泡排卵,并有利于处理母牛排卵同期化。本研究表明,同期排卵处理只能促使部分母牛(38.9%)生理响应,实现性周期同步化,而对另一部分母牛(61.1%)则没有任何生理效果。同期排卵处理难以兼顾所有处理母牛个性化卵泡发育、排卵生理过程,导致同期效果较差[40],同时还受到母牛营养状况、健康状况、激素质量等因素的影响。此外,预同期排卵处理结果也表明,如果所有处理母牛都不进行发情鉴定,均在最后一针GnRH处理后16 h集中输精,将使很多发情母牛错过最佳受配期而不能受孕[13]。
4 结论同期排卵只是促进并适当加快部分母牛性周期进程,提高其同步化程度;在实际生产中,仍需借助发情鉴定,跟踪母牛卵泡发育与发情进程,适时输精配种。科学应用同期排卵-定时输精及发情鉴定技术十分必要。
[1] |
夏宗军, 陈辉. 如何应用直肠检查法准确判断牛的发情[J]. 河南畜牧兽医, 2012, 33(10): 40.
XIA Z J, CHEN H. How to use rectal examination to check and clean the estrus of cattle accurately[J]. Henan Journal of Animal Husbandry and Veterinary Medicine, 2012, 33(10): 40. (in Chinese) |
[2] |
宋亚攀, 孙丽萍, 郭爱珍, 等. 涂蜡笔方法在母牛发情鉴定中的应用[J]. 中国奶牛, 2014(15): 60–61, 62.
SONG Y P, SUN L P, GUO A Z, et al. The application of the wax-coated method in the identification of the oestrus of the cow[J]. China Dairy Cattle, 2014(15): 60–61, 62. (in Chinese) |
[3] |
宗哲英, 王帅, 苏力德, 等. 奶牛发情行为的监测研究现状及进展[J]. 畜牧与兽医, 2018, 50(2): 147–150.
ZONG Z Y, WANG S, SU L D, et al. A review of research on monitoring the oestrus behavior of dairy cows[J]. Animal Husbandry & Veterinary Medicine, 2018, 50(2): 147–150. (in Chinese) |
[4] |
孙庆华. 奶牛常用的几种发情鉴定方法的对比分析[J]. 吉林畜牧兽医, 2017(4): 42–43.
SUN Q H. Comparative analysis of several estrus identification methods commonly used in dairy cows[J]. Jilin Animal Husbandry and Veterinary Medicine, 2017(4): 42–43. (in Chinese) |
[5] | JIANG X X, DENG S Y, LIU W, et al. Identification effects of pedometer on estrus of Holstein cows during peak lactation period[J]. Anim Husb Feed Sci, 2014, 6(2): 63–65. |
[6] | FRICKE P M, CARVALHO P D, GIORDANO J O, et al. Expression and detection of estrus in dairy cows:the role of new technologies[J]. Animal, 2014, 8(Suppl 1): 134–143. |
[7] | HOLMAN A, THOMPSON J, ROUTLY J E, et al. Comparison of oestrus detection methods in dairy cattle[J]. Vet Rec, 2011, 169(2): 47. DOI: 10.1136/vr.d2344 |
[8] | PURSLEY J R, MEE M O, WILTBANK M C. Synchronization of ovulation in dairy cows using PGF2αand GnRH[J]. Theriogenology, 1995, 44(7): 915–923. |
[9] |
张燊, 邵宝顺, 孙晖, 等. 奶牛和水牛同期发情-定时输精技术研究进展[J]. 中国畜牧杂志, 2019, 55(6): 6–9.
ZHANG S, SHAO B S, SUN H, et al. Research progress on the simultaneous estrus of cows and Buffalo-Timed Insemination Technology[J]. Chinese Journal of Animal Science, 2019, 55(6): 6–9. (in Chinese) |
[10] | WILTBANK M C, PURSLEY J R. The cow as an induced ovulator:timed AI after synchronization of ovulation[J]. Theriogenology, 2014, 81(1): 170–185. |
[11] |
郑鹏, ADENIRANSAMSON O, 田亚光, 等. 同期发情定时输精技术对经产奶牛繁殖力的影响[J]. 畜牧与兽医, 2019, 51(12): 15–18.
ZHENG P, ADENIRAN SAMSON O, TIAN Y G, et al. Effect of estrus synchronization and timed artificial insemination on the fertility in dairy cows[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(12): 15–18. (in Chinese) |
[12] | BRUSSOW K P, WAHNER M. Biological and technological background of estrus synchronization and fixed-timeovulation induction in the pig[J]. Biotechnol Anim Husb, 2011, 27(3): 533–545. |
[13] | PURSLEY J R, SILCOX R W, WILTBANK M C. Effect of Time of Artificial Insemination on pregnancy rates, calving rates, pregnancy loss, and gender ratio after synchronization of ovulation in lactating dairy cows[J]. J Dairy Sci, 1998, 81(8): 2139–2144. |
[14] |
寇红祥.奶牛体温与活动量自动检测系统设计研发及发情周期规律研究[D].吉林: 吉林农业大学, 2017.
KOU H X.Design of automatic detection system for body temperature and activity and the research on estrus regulation of dairy cows[D].Jilin: Jilin Agricultural University, 2017.(in Chinese) https://www.ixueshu.com/document/79da8b70f0a1bdbad5f569daf1462f86318947a18e7f9386.html |
[15] | BLOCH A, FOLMAN Y, KAIM M, et al. Endocrine alterations associated with extended time interval between estrus and ovulation in high-yield dairy cows[J]. J.Dairy Sci, 2006, 89(12): 4694–4702. |
[16] | WANG S L, ZHANG H L, TIAN H Z, et al. Alterations in vaginal temperature during the estrous cycle in dairy cows detected by a new intravaginal device-a pilot study[J]. Trop Anim Health Prod, 2020. DOI: 10.1007/s11250-020-02199-5 |
[17] |
李小俊, 王振玲, 陈晓丽, 等. 奶牛体温变化规律及繁殖应用研究进展[J]. 畜牧兽医学报, 2016, 47(12): 2331–2341.
LI X J, WANG Z L, CHEN X L, et al. Study progress on the rule of body temperature and its application in reproduction of dairy cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(12): 2331–2341. (in Chinese) |
[18] |
刘忠超, 范伟强, 张会娟, 等. 基于Android的奶牛体温实时远程监测系统的设计[J]. 黑龙江畜牧兽医, 2017(12): 6–283.
LIU Z C, FAN W Q, ZHANG H J, et al. Design of real-time remote monitoring system for cow body temperature based on Android[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(12): 6–283. (in Chinese) |
[19] | KOU H X, ZHAO Y Q, REN K, et al. Automated measurement of cattle surface temperature and its correlation with rectal temperature[J]. PLoS One, 2017, 12(4): e0175377. |
[20] |
陈静, 蒋安, 孙晓燕, 等. 红外线测温仪在牛体温测定中的效果观察[J]. 草学, 2018(3): 69–71.
CHEN J, JIANG A, SUN X Y, et al. Observation on the effect of infrared thermometer in bovine body temperature measurement[J]. Prataculture & Animal Husbandry, 2018(3): 69–71. (in Chinese) |
[21] | METZNER M, SAUTER-LOUIS C, SEEMUELLER A, et al. Infrared thermography of the udder surface of dairy cattle:characteristics, methods, and correlation with rectal temperature[J]. Vet J, 2014, 199(1): 57–62. |
[22] | IPEMA A H, GOENSE D, HOGEWERF P H, et al. Pilot study to monitor body temperature of dairy cows with a rumen bolus[J]. Comput Electron Agric, 2008, 64(1): 49–52. |
[23] | COOPER-PRADO M J, LONG N M, WRIGHT E C, et al. Relationship of ruminal temperature with parturition and estrus of beef cows[J]. J Anim Sci, 2011, 89(4): 1020–1027. |
[24] | ADAMS A E, OLEA-POPELKA F J, ROMAN-MUNIZ I N. Using temperature-sensing reticular boluses to aid in the detection of production diseases in dairy cows[J]. J Dairy Sci, 2013, 96(3): 1549–1555. |
[25] | EL-SHEIKH ALI H, KITAHARA G, TAMURA Y, et al. Presence of a temperature gradient among genital tract portions and the thermal changes within these portions over the estrous cycle in beef cows[J]. J Reprod Dev, 2012, 59(1): 59–65. |
[26] | KYLE B L, KENNEDY A D, SMALL J A. Measurement of vaginal temperature by radiotelemetry for the prediction of estrus in beef cows[J]. Theriogenology, 1998, 49(8): 1437–1449. |
[27] | FISHER A D, MORTON R, DEMPSEY J M A, et al. Evaluation of a new approach for the estimation of the time of the LH surge in dairy cows using vaginal temperature and electrodeless conductivity measurements[J]. Theriogenology, 2008, 70(7): 1065–1074. |
[28] | SUTHAR V S, BURFEIND O, PATEL J S, et al. Body temperature around induced estrus in dairy cows[J]. J Dairy Sci, 2011, 94(5): 2368–2373. |
[29] | TALUKDER S, KERRISK K L, INGENHOFF L, et al. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system[J]. Theriogenology, 2014, 81(7): 925–935. |
[30] | MIURA R, YOSHIOKA K, MIYAMOTO T, et al. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle[J]. Anim Reprod Sci, 2017, 180(7): 50–57. |
[31] | RANDI F, MCDONALD M, DUFFY P, et al. The relationship between external auditory canal temperature and onset of estrus and ovulation in beef heifers[J]. Theriogenology, 2018, 110: 175–181. |
[32] | HIGAKI S, MIURA R, SUDA T, et al. Estrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine lear-ning in cattle[J]. Theriogenology, 2019, 123: 90–99. |
[33] | SAKATANI M, TAKAHASHI M, TAKENOUCHI N. The efficiency of vaginal temperature measurement for detection of estrus in Japanese Black cows[J]. J Reprod Dev, 2016, 62(2): 201–207. |
[34] | WRENN T R, BITMAN J, SYKES J F. Body temperature variations in dairy cattle during the estrous cycle and pregnancy[J]. J Dairy Sci, 1958, 41(8): 1071–1076. |
[35] |
杨章平, 陆克文, 程广龙, 等. 黑白花奶牛体温变化与发情及排卵关系的研究[J]. 畜牧与兽医, 1992, 24(1): 2–3.
YANG Z P, LU K W, CHENG G L, et al. Study on the relationship between body temperature and estrus and ovulatory inBlack and White Dairy cows[J]. Animal Husbandry & Veterinary Medicine, 1992, 24(1): 2–3. (in Chinese) |
[36] |
李蓝祁, 刘江静, 陈晓丽, 等. 奶牛发情期活动量变化规律研究[J]. 畜牧兽医学报, 2018, 49(7): 1387–1393.
LI L Q, LIU J J, CHEN X L, et al. Study on the activity alteration of dairy cow during estrus[J]. Acta Vet-erinaria et Zootechnica Sinica, 2018, 49(7): 1387–1393. (in Chinese) |
[37] | HOJO T, SAKATANI M, TAKENOUCHI N. Efficiency of a pedometer device for detecting estrus in standing heat and silent heat in Japanese Black cattle[J]. Anim Sci J, 2018, 89(8): 1067–1072. |
[38] |
寇红祥, 赵福平, 任康, 等. 奶牛体温与活动量检测及变化规律研究进展[J]. 畜牧兽医学报, 2016, 47(7): 1306–1315.
KOU H X, ZHAO F P, REN K, et al. The progresson detection method and the regularities of body temperature and activities in dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(7): 1306–1315. (in Chinese) |
[39] | SILPER B F, ROBLES I, MADUREIRA A M L, et al. Automated and visual measurements of estrous behavior and their sources of variation in Holstein heifers[J]. Theriogenology, 2015, 84(2): 312–320. |
[40] | MOREIRA F, DE LA SOTA R L, DIAZ T, et al. Effect of day of the estrous cycle at the initiation of a timed artificial insemination protocol on reproductive responses in dairy heifers[J]. J Anim Sci, 2000, 78(6): 1568–1576. |