禽流感(avian influenza,AI)是具有重要公共卫生意义的动物源性人兽共患病,严重危害家禽业的发展,并威胁人类健康[1-2]。根据禽流感病毒(avian influenza viruses,AIV)对鸡致病性的差异[3],兽医临床上将其划分为高致病性禽流感病毒和低致病性禽流感病毒。在我国,禽流感病毒H5N1、H9N2及其衍生毒株是引起我国家禽流感发生的重要根源[4-8]。近年来,H7N9[9]、H5N2[10]、H5N6[11-12]、H10N8[13-14]等新型禽流感病毒的出现均与这两种流感病毒及其重组有关。
疫苗和抗病毒药物是目前用于流感病毒预防和治疗的主要手段,流感病毒不断变异的特性导致原有的疫苗不足以对新出现的病毒或变异株提供足够的保护[15-17]。多种化学性抗病毒药物也面临着耐药性问题[18-20],寻找和鉴定新的抗病毒药物是防控流感的迫切需求。中药及其复合制剂在抑制病毒复制、抗炎等多方面具有独特的优势,是抗病毒药物筛选的宝库[21-23]。研究表明,包括板蓝根[24]、虎杖[25]、黄芩[26]、穿心莲[27]在内的多种中草药及其提取物具有良好的抗流感活性。
连翘为木犀科植物连翘[Forsythia suspensa(Thunb.)Vahl]的干燥果实,具有清热解毒、抗炎等多种功效[28-30]。近年来,研究表明,连翘作为中药配方的重要组成部分,具有良好的抗病毒活性[31-32],但是其对禽流感的作用尚未得到深入评估。本研究中通过构建细胞模型,对连翘提取物抗禽流感病毒增殖和抗炎作用进行了深入的评估,以期为进一步开发抗流感病毒的药物提供基础数据。
1 材料与方法 1.1 病毒和细胞试验用禽流感毒株:H5N1 influenza A virus A/goose/Guangdong/SH7/2013和H9N2 influenza A virus A/chicken/Guangdong/V/2008,均由华南农业大学生物安全3级实验室保存。所用细胞为鸡成纤维细胞系(DF-1),购自美国标准生物品收藏中心(ATCC)。细胞生长液为含10%胎牛血清的DMEM。
1.2 主要试剂及耗材L-谷氨酰胺(进口分装)、胎牛血清、DMEM培养基、0.25%胰酶-EDTA、青霉素/链霉素双抗、RIPA裂解液等均购自北京鼎国昌盛生物技术有限公司。CCK-8试剂盒购自同仁化学研究所(Dojindo)。MTT试剂盒、荧光定量SYBR Premix Ex Taq试剂盒均购自宝生物工程(大连)有限公司。
1.3 连翘水提液的制备连翘果实(购自河北安国药材公司,产地:山西)在20倍体积的无菌水中煮沸30 min, 4 000 r·min-1离心30 min,取上清液在50 ℃水浴锅中减压和浓缩,得到密度为1.031 g·mL-1的连翘水提液。
1.4 连翘水提液对DF-1细胞的安全浓度测定取对数期DF-1细胞,调整细胞悬液浓度约为3×105个·mL-1,加入96孔板,100 μL·孔-1,待细胞长至单层后,吸弃孔中培养液,用磷酸缓冲液(PBS)洗2遍,加入用无血清培养基递次2倍稀释得到的一系列浓度(16、8、4、2、1、0.5、0.25 mg·mL-1)的连翘水提液,每个浓度设8个重复孔,每孔200 μL,置37 ℃培养箱培养48 h后弃去药液,每孔加入10 μL CCK-8溶液和90 μL无血清培养基,继续培养2 h后用酶标仪测定各孔的D450 nm值。试验中同时设立空白细胞对照组和阴性对照组。相同方法重复3次。利用以下公式计算每孔细胞的存活率:细胞存活率(%)=(试验组D450 nm值-空白细胞对照组D450 nm值)/(阴性对照组D450 nm值-空白细胞对照组D450 nm值)×100。
1.5 筛选连翘水提液的最佳给药方式基于连翘水提液的安全浓度,将连翘水提液用无血清培养基2倍递次稀释成6个浓度(4、2、1、0.5、0.25、0.125 mg·mL-1),将H5N1和H9N2 AIVs分别用无血清培养基稀释为MOI=0.001,以3种给方式分别加入连翘水提液和病毒:给药方式Ⅰ (药液预处理病毒后感染):药液与病毒各100 μL混匀后,先置37 ℃培养箱中1 h,再接种到已长成单层DF-1细胞的96孔板中;给药方式Ⅱ(先感染病毒后加药):向96孔板中每孔加入100 μL病毒,置培养箱中培养1 h后弃去,加入100 μL药液继续培养;给药方式Ⅲ(先加药后感染病毒):向96孔板中每孔加入100 μL药液,置培养箱中培养1 h后弃去,加入100 μL病毒后继续培养。每个浓度均设8个复孔。
1 h后,弃去孔中上清液,PBS洗2遍,加入含0.2%血清的DMEM继续培养24 h。其中,H9N2 AIV接毒组中加入终浓度为0.25 μg·mL-1的TPCK-胰蛋白酶。弃上清,每孔加入20 μL MTT溶液和80 μL无血清培养基,培养4 h。弃孔内培养液,每孔加入150 μL DMSO,轻摇10 min,用酶标仪测定各孔的D490 nm值。试验过程中同时设立阴性对照组和病毒对照组。病毒抑制率根据以下公式计算:病毒抑制率(%)=(试验组D490 nm值-病毒对照组D490 nm值)/(阴性对照组D490 nm值-病毒对照组D490 nm值)×100。
1.6 连翘水提液对H5N1和H9N2 AIVs增殖的抑制试验根据1.5中探索出的最佳给药方式,将DF-1细胞感染MOI=0.01的H5N1和H9N2 AIVs后给予连翘水提液4 mg·mL-1,同时,设置对照组(只接毒不给药),分别在0、3、6、12、18、24、36和48 h时收集病毒上清液和细胞样品,使用Reed-Muench法测定每个时间点病毒上清液的TCID50,获得H5N1和H9N2 AIVs在DF-1细胞中的增殖情况。
1.7 基因表达的实时荧光定量PCR检测提取1.6中细胞样品的总RNA并反转录获得cDNA。以试验组和对照组DF-1细胞的cDNA为模板进行实时荧光定量PCR反应。检测趋化因子(IL8L1、IL8L2、CX3CL1、CCL5、CCL20、K203和SCYA4)和细胞因子(IFN-α、IFN-β、IL-1β、IL-6和TNF-α)基因的动态表达。PCR引物见表 1,由宝生物工程(大连)有限公司合成。PCR反应体系:SYBR Premix Ex Taq II(Tli RNaseH Plus)(2×)10 μL,cDNA模板2 μL,上下游引物各0.8 μL(10 μmol·L-1),加ddH2O至20 μL。PCR反应程序:95 ℃ 30 s;95 ℃ 5 s,60 ℃ 30 s,45个循环。mRNA的相对转录量采用2-ΔΔCt方法计算,并以β-actin为内参基因。
![]() |
表 1 鸡IL8L1、IL8L2、CX3CL1、CCL5、CCL20、K203、SCYA4、IFN-α、IFN-β、IL-1β、IL-6、TNF-α和β-actin基因实时荧光定量PCR扩增引物的序列 Table 1 Primers for quantitative RT-PCR of chicken genes of IL8L1, IL8L2, CX3CL1, CCL5, CCL20, K203, SCYA4, IFN-α, IFN-β, IL-1β, IL-6, TNF-α and β-actin |
采用SPSS 22.0软件对数据进行平均值、标准差和P值的计算,所得结果用“平均值±标准差(Mean±SD)”表示。使用单因素方差分析对数据进行统计评估。使用Graphpad Prism 5软件进行药物半数致死量(LD50)和药物半数有效量(ED50)的计算,按公式TI= LD50/ED50计算相应的治疗指数。
2 结果 2.1 连翘水提液对DF-1细胞的安全浓度采用0.25~16 mg·mL-1的连翘水提液分别处理DF-1细胞,结果显示,连翘水提液在使用浓度低于4 mg·mL-1时对DF-1细胞无毒性作用(P>0.05)(图 1),当连翘水提液使用浓度大于4 mg·mL-1时,细胞活力明显下降,因此,对DF-1细胞而言,连翘水提液的最高安全浓度是4 mg·mL-1。连翘水提液的半数致死量(LD50)为6.3 mg·mL-1。
![]() |
**. P<0.01。下同 **.P < 0.01. The same as below 图 1 不同浓度连翘水提液下细胞活力的测定 Fig. 1 Cell viability assay for different concentration of Forsythiae Fructus aqueous extract |
给药方式Ⅰ(药液预处理病毒后感染)和给药方式Ⅲ(光给药感染病毒)对H5N1和H9N2 AIVs无明显抑制作用,病毒抑制率均在10%以下。给药方式Ⅱ(先感染病毒后给药)可以有效地抑制H5N1和H9N2 AIVs,且呈剂量依赖性。当连翘水提液的浓度达到4 mg·mL-1时,病毒抑制率分别可达65%和78%(图 2)。对于H5N1连翘水提液的半数有效量(ED50)为2.71 mg·mL-1, 治疗数(TI)为2.33;对于H9N2,ED50=2.26 mg·mL-1, TI=2.79。
![]() |
*. P<0.05;**P < 0.01;.***. P<0.001。下同。a. 3种不同给药方式下H5N1 AIV抑制率的计算;b. 3种不同给药方式下H9N2 AIV抑制率的计算 *.P < 0.05;**P < 0.01; ***.P < 0.001. The same as below. a. H5N1 AIV inhibition rate of treatment by 3 methods of Forsythiae Fructus aqueous extract; b. H9N2 AIV inhibition rate of treatment by 3 methods of Forsythiae Fructus aqueous extract 图 2 3种不同给药方式下病毒抑制率的计算 Fig. 2 Calculation of virus inhibition rate of treatment by 3 methods of Forsythiae Fructus aqueous extract |
在连翘水提液处理组中,H5N1 AIV在12~36 h的病毒滴度极显著低于对照组(P < 0.01)(图 3a),48 h时差异无统计学意义(P>0.05);H9N2 AIV的病毒滴度在12~48 h均极显著降低(P < 0.001)(图 3b)。
![]() |
图 3 连翘水提液对H5N1和H9N2 AIVs增殖的抑制作用 Fig. 3 Replication inhibition of H5N1 and H9N2 AIVs treated by Forsythiae Fructus aqueous extract |
在连翘水提液处理H5N1 AIV感染组中,IL8L2、CCL20、K203、IFN-α和IFN-β的表达水平与对照组相比未呈现显著下降,而CX3CL1、IL8L1、CCL5、SCYA4、IL-1β、IL-6和TNF-α的表达与对照组相比在18~36 h显著(P < 0.05)或极显著降低(P < 0.01或P < 0.001),SCYA4的表达仅在18 (P < 0.01)和36 h(P < 0.001)时极显著下降(图 4)。
![]() |
图 4 连翘水提液抑制H5N1 AIV感染组中CX3CL1、IL8L1、CCL5、SCYA4、IL-1β、IL-6和TNF-α的表达 Fig. 4 Attenuation of the expression of CX3CL1, IL8L1, CCL5, SCYA4, IL-1β, IL-6 and TNF-α in Forsythiae Fructus aqueous extract treated H5N1 AIV infected group compared with the control |
在连翘水提液处理H9N2 AIV感染组中,IL8L2、CCL20、K203、SCYA4、IFN-α和IL-1β的表达水平与对照组相比没有显著下降,而CX3CL1、IL8L1、CCL5、IFN-β、IL-6和TNF-α的表达呈现出不同程度的显著性降低。CX3CL1的表达在6~48 h极显著降低(P < 0.001)。IL8L1的表达仅在36 h时显著降低(P < 0.05)。CCL5的表达在36~48 h极显著降低(P < 0.01)。IFN-β和TNF-α的表达在24~48 h极显著降低(P < 0.01或P < 0.001)。IL-6的表达显示从18 h开始极显著下降(P < 0.01, 图 5)。
![]() |
图 5 连翘水提液抑制H9N2 AIV感染组中CX3CL1、IL8L1、IFN-β、IL-6和TNF-α的表达 Fig. 5 Attenuation of the expression of CX3CL1, IL8L1, CCL5, IFN-β, IL-6 and TNF-α in Forsythiae Fructus aqueous extract treated H9N2 AIV infected group compared with the control |
抗病毒药物的研发具有重要的意义,从传统中药中寻找抗病毒候选药物已经成为抗病毒药物筛选的研究热点。目前,已经发现板蓝根[24]、虎杖[25]、黄芩[26]、穿心莲[27]等的提取物具有良好的抗流感病毒活性,在医学临床上,连翘具有明显的抗炎和抗病毒活性,但其对H5N1和H9N2禽流感病毒的增殖和抗炎活性仍然缺乏系统评估。
本研究在获得连翘水提液对DF-1细胞最大安全浓度范围的基础上,采用3种作用方式初步探讨了连翘水提液抗H5N1和H9N2 AIVs增殖和抑制炎症因子表达的作用。结果显示,连翘水提液预处理病毒后感染和先加连翘水提液再感染病毒这两种给药方式对H5N1和H9N2 AIVs均无明显的抑制作用,这提示了连翘水提液对H5N1和H9N2 AIVs没有直接的抑制作用。病毒感染细胞后再加入连翘水提液则能有效抑制H5N1和H9N2 AIVs的增殖,并且呈现出剂量依赖关系,这表明连翘水提液在病毒的增殖阶段发挥作用。已有研究表明连翘提取物连翘酯苷A可抑制流感病毒M1蛋白的表达,干预子代病毒颗粒的组装过程[33]。根据本研究的结果推测连翘可能通过抑制病毒复制所需的酶的活性来抑制病毒蛋白的合成,从而起到抗病毒的作用。
流感病毒感染过程中产生大量的炎性因子是导致急性肺损伤和多系统病理损伤发生的重要原因[34],因此,抑制炎性因子的过量产生是对抗流感病毒感染性炎症的重要手段。笔者的前期研究表明[4],H5N1和H9N2禽流感病毒感染DF-1细胞会显著激活多种趋化因子和细胞因子的表达,而这些趋化因子和细胞因子是流感病毒引起机体炎症风暴发生的最重要的原因之一。在本研究中,笔者发现连翘提取物可以显著抑制多种炎症趋化因子和细胞因子的表达。在用连翘水提液处理18 h后,H5N1 AIV感染组中趋化因子和细胞因子CX3CL1、IL8L1、CCL5、SCYA4、IL-1β、IL-6、TNF-α的表达显著降低,H9N2 AIV感染组中CX3CL1、IL8L1、CCL5、IFN-β、IL-6和TNF-α的表达也有类似的下降趋势。显然,这些炎性因子的表达与连翘提取物激活细胞的天然免疫有关,详细的分子机制有待于进一步解析。连翘是否可激活动物机体的先天免疫功能,在体内是否也可以发挥良好的抗禽流感病毒增殖及抑制炎症发生的作用有待于进一步的动物模型试验进行验证。
4 结论连翘水提液可以显著抑制H5N1和H9N2 AIVs在DF-1细胞上的增殖,并抑制因H5N1和H9N2 AIVs感染而介导的多种趋化因子和细胞因子的表达。研究结果为进一步筛选连翘提取物中独特的抗炎和抗病毒候选药物提供基础数据。
[1] | LEE C W, SUAREZ D L, TUMPEY T M, et al. Characterization of highly pathogenic H5N1 avian influenza a viruses isolated from South Korea[J]. J Virol, 2005, 79(6): 3692–3702. DOI: 10.1128/JVI.79.6.3692-3702.2005 |
[2] | TO K F, CHAN P K, CHAN K F, et al. Pathology of fatal human infection associated with avian influenza a H5N1 virus[J]. J Med Virol, 2001, 63(3): 242–246. DOI: 10.1002/1096-9071(200103)63:3<242::AID-JMV1007>3.0.CO;2-N |
[3] | VENKATESH D, POEN M J, BESTEBROER T M, et al. Avian influenza viruses in wild birds:virus evolution in a multihost ecosystem[J]. J Virol, 2018, 92(15): e00433–18. |
[4] | LUO C, LIU J X, QI W B, et al. Dynamic analysis of expression of chemokine and cytokine gene responses to H5N1 and H9N2 avian influenza viruses in DF-1 cells[J]. Microbiol Immunol, 2018, 62(5): 327–340. DOI: 10.1111/1348-0421.12588 |
[5] | YU X F, JIN T, CUI Y J, et al. Influenza H7N9 and H9N2 viruses:coexistence in poultry linked to human H7N9 infection and genome characteristics[J]. J Virol, 2014, 88(6): 3423–3431. DOI: 10.1128/JVI.02059-13 |
[6] | YAMAJI R, YAMADA S, LE M Q, et al. Identification of PB2 mutations responsible for the efficient replication of H5N1 influenza viruses in human lung epithelial cells[J]. J Virol, 2015, 89(7): 3947–3956. DOI: 10.1128/JVI.03328-14 |
[7] | RAHIMIRAD S, ALIZADEH A, ALIZADEH E, et al. The avian influenza H9N2 at avian-human interface:a possible risk for the future pandemics[J]. J Res Med Sci, 2016, 21: 51. DOI: 10.4103/1735-1995.187253 |
[8] | WESTENIUS V, MÄKELÄ S M, JULKUNEN I, et al. Highly pathogenic H5N1 influenza a virus spreads efficiently in human primary monocyte-derived macrophages and dendritic cells[J]. Front Immunol, 2018, 9: 1664. DOI: 10.3389/fimmu.2018.01664 |
[9] | ZHANG H, LI X Y, GUO J, et al. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus[J]. J Gen Virol, 2014, 95(4): 779–786. DOI: 10.1099/vir.0.061721-0 |
[10] | ZHAO G, GU X B, LU X L, et al. Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China[J]. PLoS One, 2012, 7(9): e46183. DOI: 10.1371/journal.pone.0046183 |
[11] | BI Y H, MEI K, SHI W F, et al. Two novel reassortants of avian influenza A (H5N6) virus in China[J]. J Gen Virol, 2015, 96(5): 975–981. DOI: 10.1099/vir.0.000056 |
[12] | SHEN Y Y, KE C W, LI Q, et al. Novel reassortant avian influenza A(H5N6) viruses in Humans, Guangdong, China, 2015[J]. Emerg Infect Dis, 2016, 22(8): 1507–1509. DOI: 10.3201/eid2208.160146 |
[13] | QI W, ZHOU X, SHI W, et al. Genesis of the novel human-infecting influenza A(H10N8) virus and potential genetic diversity of the virus in poultry, China[J]. Euro Surveill, 2014, 19(25): 20841. DOI: 10.2807/1560-7917.ES2014.19.25.20841 |
[14] | CHEN H Y, YUAN H, GAO R B, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection:a descriptive study[J]. Lancet, 2014, 383(9918): 714–721. DOI: 10.1016/S0140-6736(14)60111-2 |
[15] | TRIPP R A, TOMPKINS S M. Virus-vectored influenza virus vaccines[J]. Viruses, 2014, 6(8): 3055–3079. DOI: 10.3390/v6083055 |
[16] | NICHOL K L, TREANOR J J. Vaccines for seasonal and pandemic influenza[J]. J Infect Dis, 2006, 194(S2): S111–S118. DOI: 10.1086/507544 |
[17] | PARK K J, KWON H I, SONG M S, et al. Rapid evolution of low-pathogenic H9N2 avian influenza viruses following poultry vaccination programmes[J]. J Gen Virol, 2011, 92(1): 36–50. DOI: 10.1099/vir.0.024992-0 |
[18] | JÄRHULT J D. Oseltamivir (Tamiflu®) in the environment, resistance development in influenza A viruses of dabbling ducks and the risk of transmission of an oseltamivir-resistant virus to humans- a review[J]. Infect Ecol Epidemiol, 2012, 2(1): 18835. |
[19] | GILLMAN A, MURADRASOLI S, SÖDERSTRÖM H, et al. Oseltamivir-resistant influenza A (H1N1) virus strain with an H274Y mutation in neuraminidase persists without drug pressure in infected mallards[J]. Appl Environ Microbiol, 2015, 81(7): 2378–2383. DOI: 10.1128/AEM.04034-14 |
[20] | DONG G Y, LUO J, ZHOU K, et al. Characterization of the amantadine-resistant H5N1 highly pathogenic avian influenza variants isolated from quails in Southern China[J]. Virus Genes, 2014, 49(2): 223–232. DOI: 10.1007/s11262-014-1084-6 |
[21] | KUNG Y Y. H1N1 influenza:is traditional Chinese medicine effective and safe?[J]. J Chin Med Assoc, 2016, 79(5): 237–238. DOI: 10.1016/j.jcma.2015.12.002 |
[22] | AI H X, WU X W, QI M Y, et al. Study on the mechanisms of active compounds in traditional Chinese medicine for the treatment of influenza virus by virtual screening[J]. Interdiscip Sci:Comput Life Sci, 2018, 10(2): 320–328. DOI: 10.1007/s12539-018-0289-0 |
[23] | LI T, PENG T. Traditional Chinese herbal medicine as a source of molecules with antiviral activity[J]. Antiviral Res, 2013, 97(1): 1–9. DOI: 10.1016/j.antiviral.2012.10.006 |
[24] | LI Z T, LI L, ZHOU H X, et al. Radix isatidis polysaccharides inhibit influenza a virus and influenza a virus-induced inflammation via suppression of host TLR3 signaling in vitro[J]. Molecules, 2017, 22(1): 116. DOI: 10.3390/molecules22010116 |
[25] | LIN C J, LIN H J, CHEN T H, et al. Polygonum cuspidatum and its active components inhibit replication of the influenza virus through toll-like receptor 9-induced interferon beta expression[J]. PLoS One, 2015, 10(2): e0117602. DOI: 10.1371/journal.pone.0117602 |
[26] | JIN J, CHEN Y J, WANG D C, et al. The inhibitory effect of sodium baicalin on oseltamivir-resistant influenza A virus via reduction of neuraminidase activity[J]. Arch Pharm Res, 2018, 41(6): 664–676. DOI: 10.1007/s12272-018-1022-6 |
[27] | DING Y, CHEN L, WU W, et al. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway[J]. Microbes Infect, 2017, 19(12): 605–615. DOI: 10.1016/j.micinf.2017.08.009 |
[28] | LIN C J, LIN H J, CHEN T H, et al. Polygonum cuspidatum and its active components inhibit replication of the influenza virus through toll-like receptor 9-induced interferon beta expression[J]. PLoS One, 2015, 10(2): e0117602. DOI: 10.1371/journal.pone.0117602 |
[29] | LI H W, WU J F, ZHANG Z W, et al. Forsythoside a inhibits the avian infectious bronchitis virus in cell culture[J]. Phytother Res, 2011, 25(3): 338–342. |
[30] | QU H, ZHANG Y, CHAI X, et al. Isoforsythiaside, an antioxidant and antibacterial phenylethanoid glycoside isolated from Forsythia suspensa[J]. Bioorg Chem, 2012, 40: 87–91. DOI: 10.1016/j.bioorg.2011.09.005 |
[31] | QIAN W J, KANG A, PENG L X, et al. Gas chromatography-mass spectrometry based plasma metabolomics of H1N1-induced inflammation in mice and intervention with Flos Lonicerae Japonica-Fructus Forsythiae herb pair[J]. J Chromatogr B, 2018, 1092: 122–130. DOI: 10.1016/j.jchromb.2018.05.047 |
[32] | ZHOU W, YIN A L, SHAN J J, et al. Study on the rationality for antiviral activity of Flos Lonicerae Japonicae-fructus forsythiae herb couple preparations improved by chito-oligosaccharide via integral pharmacokinetics[J]. Molecules, 2017, 22(4): 654. DOI: 10.3390/molecules22040654 |
[33] | LAW A H Y, YANG C L H, LAU A S Y, et al. Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit against influenza A virus through reduction of viral M1 protein[J]. J Ethnopharmacol, 2017, 209: 236–247. DOI: 10.1016/j.jep.2017.07.015 |
[34] | YANG Y, TANG H. Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia[J]. Cell Mol Immunol, 2016, 13(4): 432–442. DOI: 10.1038/cmi.2016.1 |