2. 北京昭衍新药研究中心股份有限公司, 北京 100176
2. JOINN Laboratories(Beijing), INC, Beijing 100176, China
禽网状内皮组织增生病(reticuloendotheliosis,RE)是由禽网状内皮组织增生病病毒(reticuloendotheliosis virus,REV)引起的禽类以网状内皮组织增生为特征的综合征,主要表现为慢性淋巴细胞肿瘤和免疫抑制等[1-2]。1986年,国内首次分离出REV-C45毒株[3],证实了该病毒在我国的存在,随后在多个地区陆续被发现和报道。近年来,REV检出率呈现上升的趋势。此外,REV易与其他禽类病原发生混合感染,使患病动物免疫机能降低甚至丧失,从而影响疫苗的正常免疫应答,严重危害家禽养殖业的发展[4-5]。
细胞免疫主要是机体在T淋巴细胞的参与下抵御病原体入侵的相关免疫应答。T淋巴细胞可以分为不同的功能亚群,其中CD4+T淋巴细胞受到刺激后能分泌多种细胞因子,参与细胞和体液免疫应答[6];CD8+T淋巴细胞主要在对被感染细胞的杀伤及清除方面发挥作用[7]。有研究表明,REV感染SPF雏鸡后抑制外周血淋巴细胞增殖和免疫应答,而感染病毒后具体淋巴细胞亚型未见相关研究[8]。之前有关T淋巴细胞的研究大都局限在胸腺、脾、法氏囊等免疫器官,局部淋巴组织作为机体防御病原入侵的重要免疫屏障[9],其T淋巴细胞免疫也发挥着不可或缺的作用。因此,本试验通过检测雏鸡外周血和局部淋巴组织哈德尔腺(Hader’s gland,HG)、派伊尔结(Peyer’s patch,PP)和盲肠扁桃体(caecal tonsil,CT)中T淋巴细胞数量,以此研究机体在抗病毒感染时的细胞免疫状态。IL-2、IFN-γ和TNF-α在机体抗病毒免疫时发挥重要的作用,能够在一定程度上反映机体对抗病毒感染过程中的作用机制[10]。因此,本研究主要探讨REV感染对SPF雏鸡外周血CD4+和CD8+ T细胞数量、比值,局部淋巴组织T淋巴细胞数量和相关细胞因子表达量的影响,为进一步阐述REV对家禽的致病机制提供参考依据。
1 材料与方法 1.1 材料1.1.1 实验动物 1日龄SPF雏鸡,购自中国农业科学院哈尔滨兽医研究所SPF实验动物中心。
1.1.2 REV毒株 REV-T株,购自中国兽医微生物菌种保藏管理中心(CVCC No.CACCAV107)。病毒TCID50为10-4.62·0.1 mL-1。
1.1.3 主要试剂和仪器 Trizol Reagent(美国Invitrogen公司);cDNA第一链合成试剂盒、荧光定量相关材料(日本TaKaRa公司);鸡外周血淋巴细胞分离液(北京索莱宝公司,P8740-200);鼠抗鸡CD4-FITC(CAT No.8210-02)和CD8α-PE(CAT No.8220-09)抗体(美国Southern Biotech公司);FACSAria流式细胞仪(美国BD公司);Light Cycler 2.0荧光定量PCR仪(美国Roche公司);显微病理成像系统(日本NIKON公司)。
1.2 方法1.2.1 实验动物分组及其处理 将96只1日龄SPF雏鸡随机分为REV感染组(I组)和对照组(C组)。其中,I组雏鸡于1日龄时,经腹腔注射100 TCID50的病毒液[11];C组雏鸡于1日龄时经相同途径注射等量的无菌生理盐水。两组雏鸡严格隔离,按照SPF雏鸡饲养标准饲养。
1.2.2 被检材料采取及其处理 C组和I组分别在感染后第1、7、14、21、28和35天随机选取8只雏鸡,无菌采取1 mL心脏抗凝血液后处死,相应处理:1)将鸡外周血淋巴细胞分离液分离得到的淋巴细胞用于CD4+ /CD8+T淋巴细胞数量及其比值变化的检测;2)快速采取哈德尔腺、派伊尔结、盲肠扁桃体,将部分组织用PBS洗2次,放入预冷的浸透液中,于4 ℃冰箱中浸透24 h,用于ANAE+T淋巴细胞数的检测;3)另取部分哈德尔腺、派伊尔结、盲肠扁桃体,称重后,液氮速冻,于-80 ℃冰箱保存,用于总RNA的提取。
1.2.3 检测指标及方法1.2.3.1 外周血CD4+、CD8+T细胞检测 取上述分离的淋巴细胞,无菌PBS洗3次,调整细胞浓度至1×106 · mL-1,按照说明书加入相应浓度anti-CD4-FITC和anti-CD8α-PE 4 ℃孵育30 min,同时,设置空白对照和单染对照。
1.2.3.2 局部淋巴组织HG、PP和CT中ANAE+T细胞数量检测 取上述固定的组织,分别于丙酮和二甲苯中脱水、透明,用常规方法制成石蜡切片,烘干。二甲苯脱蜡后经丙酮梯度水化;37 ℃恒温箱内孵育染色2 h;PBS冲洗后,用2 %甲基绿复染;水洗后烘箱干燥8 h以上;最后中性树胶封片。光学显微镜下,计5个油镜视野下的ANAE+T淋巴细胞数,并计算其均值。
1.2.3.3 局部淋巴组织HG、PP和CT中IL-2、IFN-γ和TNF-α mRNA表达 取-80 ℃冻存的组织各50 mg,按Trizol reagent法提取组织总RNA,根据Primer ScripTM试剂盒反转录成cDNA,-20 ℃保存待用。表 1为IL-2、IFN-γ、TNF-α和β-actin引物序列,β-actin为管家基因。各组设置3个重复孔,记录各孔Ct值,并采用2-ΔΔCt法对数据进行分析。
![]() |
表 1 所用基因引物及其扩增片段大小 Table 1 Primers sequences and amplification fragments sizes of genes were used |
所有数据均运用Graphpad Prism 6.0软件处理,采用独立样本t检验分析组间差异,并应用其作图。差异显著性判断标准:P<0.01为差异极显著,P<0.05为差异显著。所有数据均以“ x±s”表示。
2 结果 2.1 REV对SPF雏鸡外周血CD4+、CD8+T细胞数及其比值的影响与对照组相比,感染组雏鸡外周血CD4+T细胞数在第7~35天显著或极显著(P < 0.01或P < 0.05)降低,其余时间点统计学差异不显著(P>0.05);CD8+T细胞数量在第7~28天显著或极显著升高(P < 0.01或P < 0.05),其他时间点未见统计学差异(P>0.05);外周血CD4+/CD8+T细胞比值第7~28天显著或极显著(P < 0.01或P < 0.05)降低(表 2、图 1)。
![]() |
表 2 雏鸡在REV感染后外周血液中CD4+、CD8+T淋巴细胞数及其比值变化(x±s) Table 2 Number and ratio of CD4+ and CD8+ T lymphocytes in peripheral blood of chicks after REV infection (x±s) |
![]() |
A1~A3为C组雏鸡在第28天时外周血CD4+、CD8+T细胞数量及其比值变化;B1~B3为Ⅰ组在第28天时的相应变化。每组取材3只雏鸡 A1-A3 was the change of CD4+ and CD8+ T cells and their ratio in peripheral blood of group C chicks at day 28; B1-B3 was the corresponding change of group I at day 28. Three chicks were taken from each group 图 1 REV对SPF雏鸡外周血CD4+、CD8+T细胞数量及其比值的影响 Fig. 1 Effect of REV on the number of CD4+, CD8+ T cells and their ratio in peripheral blood of SPF chicks |
与对照组相比,感染组雏鸡ANAE+T细胞数在HG、PP和CT中分别于第21~28、14~28和14~ 28天极显著降低(P < 0.01),分别在第14、7和35天时显著降低(P < 0.05),其他时间点无统计学差异(P>0.05),详见图 2、3。
![]() |
A.对照组(第28天);B.感染组(第28天)。如箭头标记处含有棕红色颗粒(因黑白印刷,照片细节不能很好地展示,彩图可见OSID服务的开放科学数据与内容)的细胞为ANAE+T淋巴细胞 A. The control group (day 28); B. The infection group (day 28). For example, cells with brown-red particles at the arrow mark are ANAE + T lymphocytes (The details of the pictures can't be displayed well due to black-and-white printing. The color pictures can be found in the open scientific data and content of the OSID service) 图 2 REV对SPF雏鸡盲肠扁桃体中ANAE+T淋巴细胞数量的影响 Fig. 2 Effect of REV on the number of ANAE+T lymphocytes in the cecal tonsil of SPF chicks |
![]() |
A.哈德尔腺;B.派伊尔结;C.盲肠扁桃体。所有数据均以“x±s”表示(n=8)。*.与对照组相比差异显著(P < 0.05),**.与对照组相比差异极显著(P < 0.01),无标记者差异不显著(P>0.05),下同 A. Hader's gland; B. Peyer's patch; C. Caecal tonsil. All data are presented as "x±s" (n=8). Compared with the control group, *. P < 0.05 (the difference is significant), **. P < 0.01 (the difference is extremely significant), and the difference is not significant for those without markers (P>0.05), the same as below 图 3 REV对SPF雏鸡局部淋巴组织中T淋巴细胞数的影响 Fig. 3 Effect of REV on the number of T lymphocytes in local lymphoid tissue of SPF chicks |
与对照组相比,感染组IL-2 mRNA表达量在HG中第14~21天、PP中第28天、CT中第7~21天极显著升高(P < 0.01);HG中第7和28天、PP中第21天显著升高(P < 0.05) (图 4 A)。与对照组相比,感染组IFN-γ mRNA表达量在HG中第14天、CT中第7天极显著升高(P < 0.01);HG中第21~28天、PP中第7~14天以及CT中第14~28天显著升高(P < 0.05)(图 4 B)。与对照组相比,感染组TNF-α mRNA表达量在HG和PP中第14~35天、CT中第21~35天极显著升高(P < 0.01)(图 4 C)。
![]() |
A. IL-2;B. IFN-γ; C. TNF-α; C.Control, I.Infection 图 4 REV对SPF雏鸡哈德尔腺(HG)、派伊尔结(PP)、盲肠扁桃体(CT)中细胞因子mRNA表达的影响 Fig. 4 Effect of REV on the mRNA expression of cytokines in Hader's gland (HG), Peyer's patch (PP) and caecal tonsil (CT) of SPF chicks |
细胞免疫在机体抵御病毒入侵、免疫监视和抗肿瘤免疫等过程中发挥着不可替代的作用。其中,CD4+T淋巴细胞活化后主要分化为Th1和Th2,参与机体的细胞和体液免疫应答[12-13];CD8+T淋巴细胞主要通过直接杀伤或介导靶细胞凋亡发挥细胞免疫作用[14-15],两者的数量和功能的改变直接影响机体免疫状态。付礼胜等[16]研究发现,SPF雏鸡在REV感染后,其中枢免疫器官凋亡相关基因表达明显升高,致使免疫器官淋巴细胞数显著降低。随后有研究报道,REV感染可以激活淋巴细胞p53和FOXO信号通路抑制细胞G1/S期的过渡,从而显著降低外周血淋巴细胞的增殖能力[8]。本研究发现,REV感染组雏鸡外周血中CD4+T淋巴细胞数量较对照组明显减少,可能与REV感染引起免疫器官中CD4+T淋巴细胞凋亡增多,导致进入血液的CD4+T淋巴细胞大量减少有关。同时本研究发现,REV感染组雏鸡外周血CD8+T淋巴细胞数明显高于对照组。由于细胞毒性T细胞(cytotoxic T lymphocytes, CTL)是CD8+T淋巴细胞的主要功能亚群,推测外周血升高的CD8+T淋巴细胞与病毒感染早期CTL快速分裂,参与抗病毒细胞免疫应答密切有关。有研究报道,雏鸡在同为反转录病毒的J亚群白血病病毒(avian leukosis virus subgroup J,ALV-J)感染早期,外周免疫器官CD8+T淋巴细胞数出现不同程度的升高[17]。
局部黏膜是病原微生物入侵机体的主要门户,黏膜免疫系统中淋巴细胞数比其他部位的总和还要多,其中超过60%的免疫细胞为T淋巴细胞[18-19]。病原微生物与局部黏膜接触时,会刺激局部淋巴组织中的T淋巴细胞快速增殖、分化,在第一时间对入侵病原进行清除。同时,局部淋巴组织中活化的T淋巴细胞还可以介导全身免疫系统对入侵病原的免疫应答[20-21]。因此,局部黏膜淋巴组织中T淋巴细胞数和功能状态可以较大程度上反映出机体细胞免疫功能状态。本研究发现,REV感染后,感染组哈德尔腺、派伊尔结和盲肠扁桃体中ANAE+T淋巴细胞数均不同程度的低于对照组,表明REV通过降低感染雏鸡局部黏膜淋巴组织免疫水平,进一步削弱机体细胞免疫状态,为其他有害病原菌的入侵提供有利条件。
研究证实,IL-2、IFN-γ和TNF-α等细胞因子在家禽抗病毒细胞免疫应答中发挥重要的作用,如鸡传染性法氏囊病毒(infectious bursal disease virus,IBDV)[22]、鸡贫血病毒(chicken anemia virus,CAV)[23]、马立克病毒(Marek’s disease virus,MDV)[24]等。其中,IL-2通过与淋巴细胞表面IL-2R结合,促进T淋巴细胞增殖、分化及成熟,因而在机体细胞免疫中起到重要的调节作用[25]。本研究发现REV感染后第7~28天,感染组雏鸡局部淋巴组织中IL-2 mRNA表达量显著高于对照组,然而局部淋巴组织中T淋巴细胞并未表现明显增殖,反而是细胞数明显低于对照组。推测本试验中表达升高的IL-2来自于病毒活化的T淋巴细胞,但是大部分IL-2却未能与淋巴细胞表面IL-2R相结合,从而影响局部淋巴组织中T淋巴细胞增殖效率。最近有研究证实,REV通过显著降低感染雏鸡外周血淋巴细胞IL-2R的表达,造成感染雏鸡细胞免疫功能明显减弱[8]。IFN-γ在抵抗病毒感染、诱导巨噬细胞活化和促进T淋巴细胞分化等方面起着不可或缺的作用[26]。Zheng等[27]研究发现,雏鸡脾淋巴细胞感染REV后,细胞上清液中IFN-γ含量高于对照组5倍。在本研究中,局部淋巴组织中IFN-γ mRNA表达量在REV感染的早期明显升高,提示在病毒感染早期,局部淋巴组织中高表达的IFN-γ与宿主细胞抗病毒免疫功能密切相关。TNF-α主要由活化的巨噬细胞产生,在与靶细胞表面死亡受体结合后可以激活Caspase家族,诱导靶细胞凋亡,因而在抗病毒、抗肿瘤细胞免疫过程中发挥重要作用[28]。有研究发现,猪瘟病毒感染仔猪后,淋巴结中升高的TNF-α可以介导被感染的淋巴细胞大量凋亡[29]。本研究发现,REV感染的雏鸡局部淋巴组织中TNF-α mRNA表达显著升高。由于REV入侵的主要靶细胞是淋巴细胞[30],提示高表达的TNF-α可能通过Caspase途径促进靶细胞的凋亡,进一步减少局部淋巴组织中T淋巴细胞的数,在感染早期控制病毒复制具有重要的意义,但是TNF-α持续过高的表达,会引起过多的T淋巴细胞凋亡,从而加重REV感染引起的免疫抑制。
4 结论REV引起雏鸡外周血中CD4+ T淋巴细胞数降低、CD4+ /CD8+T淋巴细胞比例失衡、局部淋巴组织中T淋巴细胞数相对减少及细胞因子TNF-α表达持续升高是REV造成感染雏鸡细胞免疫功能显著降低、发生免疫抑制的重要机制之一。
[1] | GAO S, JIANG H, SUN J, et al. Integrated analysis of miRNA and mRNA expression profiles in spleen of specific pathogen-free chicken infected with avian reticuloendotheliosis virus strain SNV[J]. Int J Mol Sci, 2019, 20(5): 1041. DOI: 10.3390/ijms20051041 |
[2] | WOŹNIAKOWSKI G, FRANT M, MAMCZUR A. Avian reticuloendotheliosis in chickens-an update on disease occurrence and clinical course[J]. J Vet Res, 2018, 62(3): 257–260. DOI: 10.2478/jvetres-2018-0036 |
[3] |
宏虎, 陈溥言, 蔡宝祥. 禽网状内皮组织增殖病病毒的分离鉴定[J]. 中国畜禽传染病, 1988(2): 1–3.
HONG H, CHEN P Y, CAI B X. Isolation and identification of avian reticuloendotheliosis virus[J]. Chinese Journal of Preventive Veterinary Medicine, 1988(2): 1–3. (in Chinese) |
[4] | SUN G R, ZHANG Y P, ZHOU L Y, et al. Co-infection with Marek's disease virus and reticuloendotheliosis virus increases illness severity and reduces Marek's disease vaccine efficacy[J]. Viruses, 2017, 9(6): 158. DOI: 10.3390/v9060158 |
[5] | FU L S, WANG X Y, ZHAI J, et al. Changes in apoptosis, proliferation and T lymphocyte subtype on thymic cells of SPF chickens infected with reticuloendotheliosis virus[J]. Mol Immunol, 2019, 111: 87–94. DOI: 10.1016/j.molimm.2019.04.003 |
[6] | LÓPEZ-YGLESIAS A H, BURGER E, ARAUJO A, et al. T-bet-independent Th1 response induces intestinal immunopathology during Toxoplasma gondii infection[J]. Mucosal Immunol, 2018, 11(3): 921–931. DOI: 10.1038/mi.2017.102 |
[7] | HWANG E S, SZABO S J, SCHWARTZBERG P L, et al. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3[J]. Science, 2005, 307(5708): 430–433. DOI: 10.1126/science.1103336 |
[8] | BI Y L, XU L, QIU L L, et al. Reticuloendotheliosis virus inhibits the immune response acting on lymphocytes from peripheral blood of chicken[J]. Front Physiol, 2018, 9: 4. DOI: 10.3389/fphys.2018.00004 |
[9] | MARTENS E C, NEUMANN M, DESAI M S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier[J]. Nat Rev Microbiol, 2018, 16(8): 457–470. DOI: 10.1038/s41579-018-0036-x |
[10] | NISHIMORI A, KONNAI S, OKAGAWA T, et al. In vitro and in vivo antivirus activity of an anti-programmed death-ligand 1 (PD-L1) rat-bovine chimeric antibody against bovine leukemia virus infection[J]. PLoS One, 2017, 12(4): e0174916. DOI: 10.1371/journal.pone.0174916 |
[11] |
刘文超. REV感染对雏鸡血液主要类型细胞及CyclinD1、p27 mRNA表达的影响[D].哈尔滨: 东北农业大学, 2016.
LIU W C. The influence of main types cells and CyclinD1, p27 mRNA expression in blood of chicks infected with REV[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10224-1016106301.htm |
[12] | RAD F R, AJDARY S, OMRANIPOUR R, et al. Comparative analysis of CD4+ and CD8+ T cells in tumor tissues, lymph nodes and the peripheral blood from patients with breast cancer[J]. Iran Biomed J, 2015, 19(1): 35–44. |
[13] | HE H Q, GENOVESE K J, KOGUT M H. Modulation of chicken macrophage effector function by TH1/TH2 cytokines[J]. Cytokine, 2011, 53(3): 363–369. DOI: 10.1016/j.cyto.2010.12.009 |
[14] | CARPENTER G W, BREEDEN L, CARR D J J. Acute exposure to morphine suppresses cytotoxic T-lymphocyte activity[J]. Int J Immunopharmacol, 1995, 17(12): 1001–1006. DOI: 10.1016/0192-0561(95)00094-1 |
[15] | OSTROUMOV D, FEKETE-DRIMUSZ N, SABOROWSKI M, et al. CD4 and CD8 T lymphocyte interplay in controlling tumor growth[J]. Cell Mol Life Sci, 2018, 75(4): 689–713. DOI: 10.1007/s00018-017-2686-7 |
[16] |
付礼胜, 侯宁, 王晓燕, 等. SPF雏鸡感染REV后中枢免疫器官细胞凋亡及相关因子的变化[J]. 畜牧兽医学报, 2017, 48(10): 1983–1989.
FU L S, HOU N, WANG X Y, et al. Changes of cell apoptosis and relevant factor in central immune organs of SPF chicks infected with reticuloendotheliosis virus[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(10): 1983–1989. DOI: 10.11843/j.issn.0366-6964.2017.010.022 (in Chinese) |
[17] | WANG G H, WANG Z Z, ZHUANG P P, et al. Exosomes carring gag/env of ALV-J possess negative effect on immunocytes[J]. Microb Pathog, 2017, 112: 142–147. DOI: 10.1016/j.micpath.2017.09.013 |
[18] | SANCHEZ-GUZMAN D, LE GUEN P, VILLERET B, et al. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity[J]. Biomaterials, 2019, 217: 119308. DOI: 10.1016/j.biomaterials.2019.119308 |
[19] | AHLUWALIA B, MAGNUSSON M K, ÖHMAN L. Mucosal immune system of the gastrointestinal tract:maintaining balance between the good and the bad[J]. Scand J Gastroenterol, 2017, 52(11): 1185–1193. DOI: 10.1080/00365521.2017.1349173 |
[20] | SHACKLETT B L. Mucosal immunity in HIV/SIV infection:T cells, B cells and beyond[J]. Curr Immunol Rev, 2019, 15(1): 63–75. DOI: 10.2174/1573395514666180528081204 |
[21] | WANG T, YIN H Q, LI Y, et al. Vaccination with recombinant adenovirus expressing multi-stage antigens of Toxoplasma gondii by the mucosal route induces higher systemic cellular and local mucosal immune responses than with other vaccination routes[J]. Parasite, 2017, 24: 12. DOI: 10.1051/parasite/2017013 |
[22] | QIN Y, XU Z C, WANG Y Q, et al. VP2 of Infectious bursal disease virus induces apoptosis via triggering oral cancer overexpressed 1 (ORAOV1) protein degradation[J]. Front Microbiol, 2017, 8: 1351. DOI: 10.3389/fmicb.2017.01351 |
[23] | LAI G H, LIEN Y Y, LIN M K, et al. VP2 of chicken anaemia virus interacts with apoptin for down-regulation of apoptosis through de-phosphorylated threonine 108 on apoptin[J]. Sci Rep, 2017, 7(1): 14799. |
[24] | WAN X R, YANG R X, LIU G L, et al. Downregulation of cellular prion protein inhibited the proliferation and invasion and induced apoptosis of Marek's disease virus-transformed avian T cells[J]. J Vet Sci, 2016, 17(2): 171–178. DOI: 10.4142/jvs.2016.17.2.171 |
[25] | XU H T, YAO Y X, SMITH L P, et al. microRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines[J]. Cancer Cell Int, 2010, 10: 15. |
[26] | RAFTERY N, STEVENSON N J. Advances in anti-viral immune defence:revealing the importance of the IFN JAK/STAT pathway[J]. Cell Mol Life Sci, 2017, 74(14): 2525–2535. DOI: 10.1007/s00018-017-2520-2 |
[27] | ZHENG Y S, CUI Z Z, ZHAO P, et al. Effects of reticuloendotheliosis virus and Marek's disease virus infection and co-infection on IFN-gamma production in SPF chickens[J]. J Vet Med Sci, 2007, 69(2): 213–216. DOI: 10.1292/jvms.69.213 |
[28] | NI H M, MCGILL M R, CHAO X J, et al. Caspase inhibition prevents tumor necrosis factor-α-induced apoptosis and promotes necrotic cell death in mouse hepatocytes in vivo and in vitro[J]. Am J Pathol, 2016, 186(10): 2623–2636. DOI: 10.1016/j.ajpath.2016.06.009 |
[29] | CHOI C, HWANG K K, CHAE C. Classical swine fever virus induces tumor necrosis factor-α and lymphocyte apoptosis[J]. Arch Virol, 2004, 149(5): 875–889. DOI: 10.1007/s00705-003-0275-6 |
[30] | GAO S, WANG Z Z, JIANG H, et al. Transcriptional analysis of host responses related to immunity in chicken spleen tissues infected with reticuloendotheliosis virus strain SNV[J]. Infect Genet Evol, 2019, 74: 103932. |