畜牧兽医学报  2020, Vol. 51 Issue (6): 1248-1259. DOI: 10.11843/j.issn.0366-6964.2020.009    PDF    
β防御素124沉默通过p38MAPK/AP1通路调控山羊附睾头细胞趋化因子和细胞因子的表达
孟繁荣, 邰苗苗, 董复成, 任有蛇, 刘文忠, 乔利英, 张春香     
山西农业大学动物科技学院, 太谷 030801
摘要:旨在研究山羊β防御素124(goat beta-defensin 124,gBD124)沉默对p38MAPK/AP1通路及下游细胞趋化因子和细胞因子表达的影响。本研究将设计的3条gBD124-shRNAs载入LV10-U6/RFP&Puro质粒载体,与包装质粒共转染到293T细胞中,用梯度稀释法测定病毒原液的滴度;将构建的3个LV10-gBD124和LV10-gBD124-NC载体转染到山羊附睾头细胞中,筛选有效沉默载体;然后用有效沉默载体联合转染附睾头细胞,设置了空白细胞对照组、LV10-NC组、有效沉默载体组,用2 μg·mL-1嘌呤霉素筛选后分别收集细胞和培养液,采用qRT-PCR、Western blot和ELISA检测gBD124、MAPK信号通路关键蛋白、细胞因子及趋化因子基因及蛋白表达情况。本研究构建了gBD124沉默慢病毒载体,筛选出LV10-gBD124-51和LV10-gBD124-161两个有效载体,并成功构建了gBD124沉默稳定转染的附睾头细胞株。与NC对照组相比,gBD124沉默显著降低了山羊附睾头细胞MAPK通路中MAPK1以及AP1的两个亚型c-JUNc-FOS基因表达(P < 0.05),显著增加了RASA1基因表达(P < 0.05);gBD124沉默显著降低了总p38MAPK、总c-JUN和总c-FOS蛋白表达,以及磷酸化p38MAPK和c-JUN蛋白表达(P < 0.05);gBD124沉默显著上调了MAPK通路下游IL-1β及其受体IL-1R2、IL-8和趋化因子CCL6和CCL21基因表达(P < 0.05),下调了CCL5和IL-1α基因表达(P < 0.05);gBD124沉默显著降低了细胞培养液中CCL5浓度(P < 0.05)。与空白对照组相比,gBD124沉默显著增加了培养液中IL-1β和IL-8浓度,降低了IL-1α浓度(P < 0.05)。gBD124基因沉默通过抑制p38MAPK/AP1信号通路调控附睾头细胞趋化因子和细胞因子的表达。
关键词附睾头细胞    β防御素124    shRNA慢病毒载体    p38MAPK/AP1通路    山羊    
Silencing of Goat Beta-defensin 124 Regulate the Expression of Cytokines and Chemokines in Epididymal Caput Cell by the p38MAPK/AP1 Signaling Pathway
MENG Fanrong, TAI Miaomiao, DONG Fucheng, REN Youshe, LIU Wenzhong, QIAO Liying, ZHANG Chunxiang     
College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
Abstract: The study was conducted to investigate the effects of silencing goat beta-defensin 124 (gBD124) on the expression of key genes in p38MAPK/AP1 pathway and their downstream target genes of the cytokines and chemokines. Three designed gBD124-shRNAs were loaded into LV10-U6/RFP&Puro shuttle plasmid, then cotransfected into 293T cell with packaging plasmid for lentivirus packaging. Virus titer was detected using the method of suspension gradient dilution. Three recombinant LV10-gBD124 vectors and LV10-gBD124-NC were transfected into epididymal caput cells of Taihang goat, respectively for screening the effective silent vectors. The effective recombinant LV10-gBD124 vectors were co-transfected into epididymal caput cells, and the blank cell group, LV10-NC group and effective silent vector group were setup, respectively. The epididymal caput cells and culture mediums were collected separately after screening by 2 μg·mL-1 puromycin. The mRNA and protein expression levels of gBD124, some key genes in MAPK signaling pathway, cytokines and chemokines were detected by qRT-PCR, Western blot and the high-specific ELISA kits, respectively. The results showed that LV10-gBD124 recombinant vectors were constructed and two valid recombinant vectors of LV10-gBD124-51 and LV10-gBD124-161 were screened for silencing gBD124. The epididymal caput cells with gBD124 silenced were successfully constructed. The results of qRT-PCR indicated that silencing of gBD124 in epididymal caput cells significantly decreased the expressions of MAPK1, c-JUN and c-FOS(P < 0.05), and significantly increased the expression of RASA1 in the MAPK signaling pathway(P < 0.05). The result of Western blot showed that protein levels of total p38MAPK, total c-JUN, total c-FOS, phosphor-p38MAPK and phosphor-c-JUN were significantly reduced in epididymal caput cells with gBD124 silenced (P < 0.05). The expressions of IL-1β, IL-1R2, IL-8, CCL6, CCL21 were markedly promoted (P < 0.05), the expressions of CCL5 and IL-1α were significantly reduced in epididymal caput cells with gBD124 silenced (P < 0.05). The concentration of CCL5 in the culture medium was significantly reduced in the group of silencing gBD124 (P < 0.05). Compared with the blank control group, the concentrations of IL-1β and IL-8 in the culture medium were enhanced, and the concentration of IL-1α was significantly decreased in the group of silencing gBD124(P < 0.05). The silencing of gBD124 in epididymal caput cells could regulate the expression of cytokines and chemokines through inhibiting the p38MAPK/AP1 signaling pathway.
Key words: epididymal caput cell    beta-defensin 124    shRNA-lentivirus vector    p38MAPK/AP1 pathway    goat    

附睾管壁上紧密连接的附睾上皮细胞形成血-附睾屏障[1-3],可阻止血液中免疫球蛋白、免疫细胞、病原微生物以及精子抗原等进入附睾管腔内[4-5],为精子成熟、运行和贮存提供独特管腔微环境[6-9]。因此,附睾具有独特的主动免疫系统。研究发现,30多种具有主动免疫功能的β防御素在附睾中高度特异表达[10-14],尤其是在附睾头中,它们保护附睾管中运行的精子免受外界物质的侵袭[15-17]。有研究显示,不同β防御素在不同组织细胞中发挥免疫作用的信号通路不同,目前,关于作用信号通路的研究最详尽的是β防御素2。人β防御素2和3可通过下调早期生长反应蛋白1(EGR)和c-FOS蛋白抑制巨噬细胞的自噬作用,增加对细菌的清除率[18],人β防御素2可激活单核细胞系(THP-1)细胞的趋化因子受体2(C-C chemokine receptor 2,CCR2)介导的核苷酸结合寡聚化结构域2(nucleotide binding oligomerization domain containing 2,NOD2)信号通路,诱导干扰素β表达及炎症反应发生[19]。人β防御素2、3和4可引起表皮角化细胞内钙动员,诱导表皮生长因子(epidermal growth factor receptor,EGFR)、信号转导和转录激活因子1和3(signal transducers and activators of transduction, STAT1和STAT3)磷酸化,促进细胞因子和趋化因子表达[20],也可以诱导MAPK(mitogen-activated protein kinases)通路中p38和ERK1/2蛋白磷酸化,促进细胞因子IL-18分泌[21]。另外,重组合成鼠BD123可以抑制LPS介导的MAPK通路中p38蛋白的磷酸化[22]。从以上研究可以看出,同一种β防御素也可通过不同的信号通路发挥主动免疫作用。张春香等[23]研究发现,山羊gBD124基因在太行山羊附睾头中高度表达,然而有关gBD124在附睾头细胞中的功能及发挥作用的信号通路还未见报道。

本研究将通过筛选gBD124稳定沉默的山羊附睾头细胞株来研究gBD124沉默对p38MAPK/AP1通路及下游细胞趋化因子和细胞因子表达的影响,为研究附睾头细胞gBD124的功能和揭示其作用机理奠定基础,为附睾特殊主动免疫系统的研究提供思路,为开发利用附睾头β防御素124提供理论依据。

1 材料与方法

本研究于2018—2019年在山西省重点学科山西农业大学动物遗传育种与繁殖实验室完成。

1.1 细胞系(株)和质粒

试验用太行山羊附睾头细胞由山西农业大学动物科技学院繁殖学实验室提供。T293细胞株购自中国科学院细胞库。pVSV-G、Rev及pGag/Polp包装质粒和LV-10重组穿梭质粒购自上海吉玛制药技术有限公司。

1.2 主要试剂

DNA限制性内切酶(Hpa Ⅰ、Xho Ⅰ和Nhe Ⅰ)、DNA连接酶、DNA marker购自加拿大Fermentas公司;细胞培养用DMEM(12100-046)、胎牛血清(FBS,10099-141)、胰蛋白酶(Trypsin-EDTA solution,25200-072)购自美国Gibco公司;RNAi-mate转染试剂购自上海吉玛制药技术有限公司;嘌呤霉素、Ampicillin、Kanamycin、Polybrene购自Sigma公司;DNA凝胶回收试剂盒、琼脂糖和大量抽提试剂盒等购自天根生化科技有限公司;Trizol试剂盒、反转录和PCR荧光定量PCR试剂盒均购自TaKaRa公司;蛋白裂解抽提液和SDS-PAGE蛋白上样缓冲液购自武汉博士德生物有限公司;4%~20% Precast Gels(Hepes)购自北京博奥森生物技术有限公司;Western blotting用一抗IκBα、p38 MAPK、Phospho-p38 MAPK-T180/Y182、c-Fos、c-Jun、p-c-Jun均购自武汉爱博泰克生物科技有限公司;Goat anti-Mouse IgG和Goat anti-Rabbit IgG二抗购自LI-COR Biosciences;gBD124抗体委托滨州绿都生物有限公司合成单克隆抗体;氯化钠、无乙水醇、异丙醇、丙三醇等无机试剂购自北京国药集团化学试剂有限公司。

1.3 试验方法与步骤

1.3.1 gBD124 shRNA设计与合成   应用Designer3.0(Genepharma)软件设计gBD124的3个shRNA和1个阴性对照shRNA(negative control,NC)。LV-10 shDNA模板茎环结构选用TTCAAGAGA,模板序列详见表 1,委托上海吉玛制药技术有限公司合成。将shDNA模板用TE溶解为100 μmol·L-1,取正义链和反义链各5 μL、10×shDNA退火缓冲液5 μL、ddH2O 35 μL,共50 μL体系,在PCR仪上退火后得到浓度为10 μmol·L-1的shRNA,稀释100倍后用于连接反应。

表 1 gBD124的shDNA序列 Table 1 Sequences of shDNA of gBD124 used in this study

1.3.2 LV10-gBD124-shRNA慢病毒载体的构建与鉴定   LV10-gBD124-shRNA合成和慢病毒包装参照刘秀敏等[24]的方法,并用有限稀释法检测病毒滴度后,保存备用。然后将传至第3~4代的对数生长期太行山羊附睾头细胞铺到48孔板中,试验处理组设计为:空白细胞组、基因转染增强剂(5 μg·mL-1 Polybrene)组、LV10-gBD124-NC载体+转染试剂组(LV10-NC)、LV10-gBD124-NC载体+转染试剂+ Polybrene组(LV10-NC+Polybrene)、LV10-gBD124-51载体组、LV10-gBD124-104载体组和LV10-gBD124-161载体组,gBD124的3个载体转染时添加Polybrene,每个处理有8个重复,共42孔(每孔105个细胞),前两组每孔培养基(无血清DMEM/F12)为200 μL,后面5个组每孔培养基为180 μL。当细胞融合率达到40%进行病毒感染时,按照MOI(multiply of infection)=1进行转染液配制,各取20 μL转染液加入各慢病毒转染孔中,再放回培养箱中继续培养,24 h后更换为含血清的完全培养基,转染72 h后观察荧光情况,并拍照保存图片。然后弃去培养基,用PBS清洗2次,加入Trizol后按照说明书要求提取细胞mRNA,用荧光定量PCR进行gBD124基因表达检测,确定沉默效果好的载体,用于后续试验。

1.3.3 gBD124-shRNA沉默对MAPK通路基因和蛋白表达的影响   将第3代山羊附睾头细胞铺到2个12孔板上, 待细胞长到30%~40%时进行转染,每板上试验处理:空白细胞组(1 mL的无血清培养基)、LV10-NC组(1 mL LV10-NC慢病毒稀释液)和有效沉默载体组(1 mL的沉默载体病毒稀释液),每组设置4个孔。转染24 h后换液,换成完全培养基培养,每48 h换1次培养液,直至融合率达到95%以上,然后加嘌呤霉素2 μg·mL-1筛选24 h,再培养96 h,细胞融合率达到95%,收集上清液保存,用ELISA方法测定细胞因子和趋化因子浓度。其中1板细胞在嘌呤霉素筛选后96 h收集细胞提取RNA,荧光定量PCR检测MAPK信号通路中关键基因:转化生长因子β活化激酶1结合蛋白2(TGF-beta activated kinase 1/MAP3K7 binding protein 2, TAB2)、丝裂原激活的蛋白激酶1(mitogen-activated protein kinase 1, MAPK1)、丝裂原激活的蛋白激酶8相互作用蛋白2(mitogen-activated protein kinase 8 interacting protein 2, MAPK8IP)、MAP激酶相互作用丝氨酸/苏氨酸激酶2(MAP kinase interacting serine/threonine kinase 2, MKNK2)、RAS激活蛋白1(RAS p21 protein activator 1, RASA1)、RAS鸟苷酸释放蛋白1(RAS guanyl releasing protein 1, RASGRP1)、热休克蛋白70-2(heat shock protein 70 member 2, HSP70)、Fos原癌基因(Fos proto-oncogene, AP-1 transcription factor subunit, c-FOS)、Jun原癌基因(Jun proto-oncogene, AP-1 transcription factor subunit, c-JUN);细胞因子:白细胞介素-1α, (interleukin 1α, IL-1α)、白细胞介素-1β(interleukin 1β, IL-1β)、白细胞介素-8(interleukin 8, IL-8)和白细胞介素-1受体2(interleukin 1 receptor 2, IL-1R2);趋化因子:C-C基序趋化因子配体5(C-C motif chemokine ligand 5, CCL5)、C-C基序趋化因子配体6(C-C motif chemokine ligand 6, CCL6)、C-C基序趋化因子配体21(C-C motif chemokine ligand 21, CCL21)。考虑到蛋白表达滞后性,另外1板细胞在嘌呤霉素筛选后120 h收集细胞用于蛋白提取,Western blot检测gBD124和MAPK通路关键蛋白质及磷酸化蛋白量(c-JUN、c-FOS、p-c-JUN、p-c-FOS、p38和p-p38)。

1.3.4 细胞RNA提取和实时荧光定量PCR   将Trizol按照说明书进行细胞RNA提取,然后用Nano-pod测定RNA浓度和完整性。利用反转录试剂盒将细胞RNA反转录成cDNA,测定浓度,将其浓度调整到500 ng·μL-1用于RT-PCR。参考NCBI网站上山羊mRNA序列(表 2),用Primer 3.0在线软件设计引物,引物序列见表 2,委托北京六合华大基因科技股份有限公司合成。实时荧光定量PCR反应体系20 μL:cDNA 2 μL、Rox Ⅰ 0.4 μL、SYBR Ⅱ 10 μL、上下游引物各0.6 μL、ddH2O 6.4 μL;反应条件:95 ℃预变性10 s;95 ℃ 5 s,60 ℃ 25 s,40个循环。用cDNA以10倍稀释做标准曲线。每个样品做3个技术重复。基因相对表达水平采用2-ΔΔCT法计算,每个试验重复2次。

表 2 试验中所用引物 Table 2 Primer sequences used in this study

1.3.5 gBD124蛋白和MAPK通路关键蛋白定量   将细胞用PBS冲洗2遍,每孔加入50 μL含有广谱磷酸酶抑制剂、蛋白酶抑制剂的蛋白裂解抽提液(蛋白裂解抽提液:蛋白酶抑制剂=500: 1),冰上裂解30 min,转移到1.5 mL的PE管中,分离上清,并定量蛋白浓度。取15 μg总蛋白加上蛋白上样缓冲液,按照4%~20% Precast Gels(Hepes)说明书进行SDS-PAGE电泳(150 V,30 min),电泳后gBD124蛋白用90 V电压转膜60 min,其他蛋白用100 V转膜60 min;然后5%脱脂奶粉封闭60 min,TBST洗3次,一抗孵育过夜(gBD124抗体稀释比例1:2 000;信号通路抗体稀释比例1:1 000);TBST洗3次,加入荧光二抗(稀释比例1:20 000),避光孵育60 min,TBST洗3次后,用Odyssey® CLX双色近红外成像系统(LI-COR Biosciences,美国)拍照。灰度值用Image Studio软件分析。

1.3.6 gBD124沉默细胞培养液中细胞因子和趋化因子定量分析   用酶联免疫法测定上清液总细胞因子IL-1α、IL-1β、IL-8和IL-1R2以及趋化因子CCL5和CCL6的浓度。试剂盒购自上海酶联生物科技有限公司,按照说明书步骤操作。

1.4 统计分析

用Excel整理数据。全部数据采用SPSS 18.0软件中单因素方差分析;结果用“均值±标准误”表示。采用Duncan进行多重比较,P < 0.05表示差异显著,P < 0.01表示差异极显著。

2 结果 2.1 gBD124-shRNA沉默慢病毒载体构建与筛选

2.1.1 gBD124-shRNA沉默慢病毒载体构建   构建的3个LV-10-gBD124-shRNA载体和LV10-gBD124-NC载体测序结果见图 1,可以看出,图中序列与表 1中所设计的发夹结构序列一致,且均为单峰,说明重组穿梭质粒载体构建成功。LV10-gBD124-shRNA重组穿梭质粒和pGag/Pol、pRev、pVSV-G包装质粒共转染293T细胞后病毒滴度的测定结果:构建LV10-gBD124-51、LV10-gBD124-104、LV10-gBD124-161和LV10-gBD124-NC病毒滴度分别为1×108、3×108、1×108和1×108 TU·mL-1, 可以满足后续试验的要求。

图 1 LV10-gBD124沉默载体的shRNA序列测序结果 Fig. 1 Sequence of LV10-gBD124-shRNA silencing vectors

2.1.2 gBD124-shRNA沉默慢病毒载体筛选   转染96 h后在荧光显微镜下观察红色荧光蛋白表达情况见图 2。空白细胞对照组(图 2A)和基因转染增强剂Polybrene组(图 2B)无荧光;图 2C2D转染效果相比,转染液中添加基因转染增强剂5 μg·mL-1Polybrene可提高慢病毒载体转染效果;从图 2E~G转染效果看,LV10-gBD124-51载体组、LV10-gBD124-104载体组和LV10-gBD124-161载体组的转染效率超过80%。转染96 h后, gBD124荧光定量PCR结果见图 3。从图 3可以看出,与空白细胞组、Polybrene组、LV10-NC载体组和LV10-gBD124-104组相比,LV10-gBD124-51组gBD124表达量极显著下降(P < 0.01),但与LV10-gBD124-161组gBD124表达量差异显著(P < 0.05)。因此,后续试验研究选择LV10-gBD124-51和LV10-gBD124-161慢病毒载体进行联合转染。

A~G依次为空白对照组、Polybrene组、LV10-NC组、LV10-NC+Polybrene组、LV10-gBD124-51组、LV10-gBD124-104组和LV10-gBD124-161组 A-G are blank control group, Polybrene group, LV10-NC group, LV10-NC+Polybrene group, LV10-gBD124-51 group, LV10-gBD124-104 group and LV10-gBD124-161 group, respectively 图 2 LV10-gBD124慢病毒转染附睾头细胞96 h后荧光表达情况(100×) Fig. 2 Fluorescent expression in epididymal caput cells after 96 h of LV10-gBD124 lentivirus infection (100×)
相邻小写字母表示差异显著(P < 0.05),相间小写字母表示差异极显著(P < 0.01)。下图同 The adjacent small letters mean significant difference(P < 0.05), the alternate small letters mean extremely significant difference(P < 0.01). The same as below 图 3 LV10慢病毒转染后96 h附睾头细胞gBD124相对表达量 Fig. 3 Relative expression of gBD124 in epididymal caput cells after 96 h of LV10 lentivirus transfection
2.2 附睾头细胞gBD124沉默对MAPK通路基因和蛋白表达的影响

2.2.1 LV10-gBD124沉默慢病毒载体对gBD124基因和蛋白表达的影响   经LV10-gBD124-51和LV10-gBD124-161联合干扰后, MAPK通路中关键基因mRNA和蛋白表达变化见图 4图 4A显示,联合转染96 h后附睾头细胞gBD124 mRNA表达量显著降低(P < 0.05);Western bolt结果(图 4B)显示,联合转染120 h后gBD124蛋白条带非常浅;图 4C的灰度值分析显示,联合转染后gDB124显著下降(P < 0.05)。

A.gBD124基因相对表达(96 h);B. gBD124蛋白Western blot结果(120 h);C.灰度值分析 A.Relative expression of gBD124 gene(96 h); B.Result of Western blot of gBD124 protein (120 h); C. Analysis of gray value 图 4 联合转染对附睾头细胞gBD124基因和蛋白表达的影响 Fig. 4 Effect of combined transfection on expression of gBD124 gene and protein in epididymal caput cells

2.2.2 gBD124沉默对MAPK通路关键基因表达的影响   荧光定量PCR结果(图 5)显示,gBD124沉默对附睾头细胞MAPK8IP和HSP70基因表达无显著影响(P>0.05)。gBD124沉默组和LV10-NC组TAB2基因表达量显著低于空白对照组(P < 0.05),但后者两组之间差异不显著(P>0.05);gBD124沉默组和LV10-NC组RASGRP1基因表达量显著高于空白对照组(P < 0.05),但LV10-NC和gBD124沉默组之间差异不显著(P>0.05);gBD124沉默组MAPK1基因表达极显著低于LV10-NC组(P < 0.01),显著低于空白对照组(P < 0.05),LV10-NC组MAPK1基因表达显著高于空白对照组(P < 0.05);gBD124沉默组MKNK2、c-JUNc-FOS基因表达显著低于LV10-NC组(P < 0.05),LV10-NC组显著高于空白对照组(P < 0.05);gBD124沉默组RASA1基因表达量显著高于LV10-NC组和空白对照组(P < 0.05),LV10-NC组与空白对照组差异不显著(P>0.05)。

图 5 gBD124沉默对附睾头细胞MAPK信号通路关键基因表达的影响 Fig. 5 Effect of gBD124 silencing on expression of the key genes in MAPK signaling pathway in epididymal caput cells

2.2.3 gBD124沉默对MAPK通路p38、c-JUN和c-FOS蛋白表达的影响   Western blot结果显示,gBD124沉默后附睾头细胞总p38蛋白(T-p38)、磷酸化p38(p-p38)、总c-JUN(T-c-JUN)、磷酸化c-JUN(p-c-JUN)和总c-FOS(T-c-FOS)蛋白条带变细颜色变浅(图 6A)。灰度值分析结果(图 6B)显示,gBD124沉默组T-p38蛋白表达量显著低于LV10-NC组(P < 0.05),与空白对照组差异不显著(P>0.05);gBD124沉默组p-p38、T-c-JUN和T-c-FOS蛋白表达量显著低于空白对照组和LV10- NC组(P < 0.05),但后者两组之间差异不显著(P> 0.05);gBD124沉默组p-c-JUN蛋白表达量极显著低于LV10-NC组(P < 0.01),显著低于空白对照组(P < 0.05),LV10-NC组p-c-JUN蛋白表达量显著高于空白对照组(P < 0.05)。

图 6 gBD124沉默对附睾头细胞p38、c-JUN和c-FOS蛋白表达的影响 Fig. 6 Effect of gBD124 silencing on protein expressions of p38, c-JUN and c-FOS in epididymal caput cells
2.3 gBD124沉默对附睾头细胞趋化因子和细胞因子基因和蛋白表达的影响

2.3.1 gBD124沉默对附睾头细胞趋化因子和细胞因子相关基因表达的影响   图 7显示,gBD124沉默组CCL5基因表达量显著低于LV10-NC组(P < 0.05),与空白对照组无显著差异(P>0.05);gBD124沉默组CCL6、IL-1β、IL-8和IL-1R2基因表达量显著高于LV10-NC组和空白对照组(P < 0.05);gBD124沉默组IL-1α基因表达显著低于LV10-NC组(P < 0.05),极显著低于空白对照组(P < 0.01)。gBD124沉默组和空白对照组CCL21基因表达显著高于LV10-NC组(P < 0.05),而gBD124沉默组和空白对照组差异不显著(P>0.05)。

图 7 gBD124沉默对附睾头细胞趋化因子和细胞因子mRNA表达的影响 Fig. 7 Effect of gBD124 silencing on mRNA expressions of chemokines and cytokines in epididymal caput cells

2.3.2 gBD124沉默对细胞培养上清液中细胞趋化因子和细胞因子浓度的影响   ELISA检测结果(表 3)显示,gBD124沉默组培养液中CCL5浓度显著低于LV10-NC组和空白对照组(P < 0.05);gBD124沉默组和LV10-NC组培养液中IL-1α浓度显著低于空白对照组(P=0.003);gBD124沉默组IL-1β、IL-8和IL-1R2浓度显著高于空白对照组(P < 0.05),从数值上看也高于LV10-NC组,但是差异不显著(P>0.05)。3个组培养液中CCL6浓度差异不显著(P>0.05)。

表 3 gBD124沉默对细胞培养液中趋化因子和细胞因子蛋白含量的影响 Table 3 Effect of gBD124 silencing on concentrations of chemokines and cytokines in culture medium of epididymal caput cells
3 讨论

哺乳动物附睾管壁的血-附睾屏障阻止血液中免疫球蛋白、免疫细胞、病原微生物以及精子抗原等进入附睾管腔内[1-5, 25]。β防御素是一类小分子阳离子肽,通过免疫信号调节、免疫趋化等作用[26]发挥其抗菌活性[22, 27]。有研究显示,人[12]、鼠[28]、绵羊[29]和山羊[11]附睾头部分别表达30、29、34和30种β防御素与附睾免疫反应有密切关系[30-32]。本实验室前期研究发现,gBD124在山羊附睾头区段高表达,其功能预测发现有多个磷酸化位点[23],其在免疫调节中的作用机理仍需进一步研究。本试验通过慢病毒介导gBD124沉默附睾头细胞模型研究其免疫作用通路。

3.1 gBD124沉默慢病毒载体构建与鉴定

与其他非病毒载体系统相比,慢病毒系统作为RNAi载体可以高效地对多种类型细胞的靶基因进行沉默,尤其是对普通质粒载体难以转染的细胞也能获得较好的效果。例如,张喆[33]构建了山羊Grp78基因慢病毒RNAi载体,在滴度为(5~10)×107 TU· mL-1时感染山羊子宫内膜上皮细胞,转染效率达70%。杨泳等[34]构建了乳脂球表皮生长因子-8基因干扰载体,在滴度(3~5)×108 TU·mL-1时感染乳腺癌细胞后其基因和蛋白表达量降低,显著抑制了乳腺癌细胞增殖。马啸等[35]将1×109 TU·mL-1和2×107 TU·mL-1LV-GFP慢病毒分别注入小鼠的曲细精管中,仅在高滴度组转染睾丸组织细胞中可以观察到绿色荧光;这说明慢病毒载体的滴度也影响着转染效率。本试验所用shRNA-gBD124慢病毒滴度为(1~3)×108 TU·mL-1,转染效率超过80%,在嘌呤霉素筛选96 h后gBD124 mRNA沉默效率达65%,可以作为研究gBD124基因沉默的稳定转染细胞株使用。

3.2 β防御素免疫调节的信号通路

MAPK信号通路是引起免疫反应的主要通路[36-37],MAPK信号通路(KEGG PATHWAY:Ko04010)有3条并行的信号通路:经典MAPK信号通路、JUK和p38MAPK信号通路和ERK5信号通路。本研究基于太行黑山羊幼龄(gBD124表达量低)和成年(gBD124表达量高)[38]附睾头转录组测序数据,选择了MAPK信号通路的差异表达基因:经典MAPK信号通路中RASA1RASGRP1、MKNK2和c-FOS;JUK和p38MAPK信号通路中:TAB2、MAPK1、MAPK8IP、HSP70和c-JUN,其中c-FOSc-JUN是AP1转录因子的亚型。从本研究结果看,慢病毒载体的阴性对照LV10-NC感染山羊附睾头细胞后影响了MAPK1、MKNK2、c-JUN、RASGRP1和c-FOS基因表达,Western blot结果显示,LV10-NC组p-c-JUN蛋白浓度增加,p-p38、T-c-JUN和T-c-FOS蛋白表达量从数值上增加,但没有达到统计学上的显著水平。gBD124沉默则是显著影响了MAPK通路中p38和转录因子AP1亚型c-FOS和c-JUN蛋白的表达及其磷酸化程度。从蛋白表达方面看,慢病毒载体侵染并没有影响附睾头细胞免疫反应,而gBD124沉默则显著影响了附睾头细胞免疫反应。

另外,β防御素可激活多个信号通路发挥免疫作用,不同β防御素在细胞膜上的配体不同,激活的信号通路也不同。有研究显示,人BD2与细胞膜上Kv3.1通道结合可抑制钾离子通道活性,下调Jurkat细胞和外周单核细胞的IL-2表达[39],还可与THP-1细胞膜上CCR2受体结合激活NOD2信号通路,诱导IFN-β表达[19]。人BD3通过CCR6作用激活caspases1、caspases4、Smad3、MAPKs和NF-κB的通路,增加皮肤角质细胞IL-37的表达[40],人BD3还可与细胞内膜磷酸肌醇4, 5二磷酸盐相互作用激活PI3K-Akt-NF-κB信号通路,诱导TNF和IL-6表达[41],重组猪BD3可以诱导ERK1/2蛋白磷酸化,促进猪卵巢颗粒细胞的增殖和迁移[42]。人β防御素2和3可通过下调EGR和c-FOS蛋白抑制巨噬细胞的自噬作用,增加对细菌的清除率[18],还可以通过增强细胞内CpG-DNA吸收,促进DNA诱导树突状细胞的IFN-α、IL-6等细胞因子合成[43]。人β防御素2、3和4可诱导EGFR、STAT1和STAT3磷酸化,促进IL-10、IL-6和单核细胞趋化蛋白1表达[20],也可以诱导MAPK通路中p38蛋白和ERK1/2蛋白磷酸化,促进细胞因子IL-18分泌[21]。另外,有广谱抗菌作用的重组鼠BD123可抑制LPS介导的MAPK通路中p38蛋白磷酸化,降低TNF-α分泌[22]。以上研究说明,β防御素除具有抗菌、抗病毒的直接作用外,还具有免疫调节功能,并且通过多条复杂的信号通路发挥免疫调节作用。本研究用gBD124沉默附睾头细胞模型研究发现,gBD124沉默通过降低p38MAPK和c-JUN蛋白磷酸化来下调CCL5和IL-1α基因表达,上调附睾头细胞因子IL-1β及其受体IL-1R2、IL-8和趋化因子CCL6、CCL21基因表达。这说明gBD124沉默可以通过p38MAPK/AP1信号通路调控细胞因子和趋化因子的表达。但还没有发现与gBD124结合的配体,需要进一步完善其作用通路,为开发利用附睾头β防御素124提供理论依据。

4 结论

本研究成功建立了gBD124沉默的稳定转染附睾头细胞株,发现gBD124沉默通过降低MAPK通路中关键转录因子AP1的亚型c-JUNc-FOS基因表达以及p38MAPK和c-JUN蛋白磷酸化,增加细胞因子IL-1β和IL-8分泌,降低CCL5和IL-1α分泌。gBD124可以通过p38MAPK/AP1信号通路调控附睾头细胞趋化因子和细胞因子的表达。

参考文献
[1] ROBAIRE B, HINTON B T.Chapter 17 - the epididymis[M]//PLANT T M, ZELEZNIK A J.Knobil and Neill's Physiology of Reproduction.4th ed.San Diego: Academic Press, 2015: 691-771.
[2] DUBÉ E, CYR D G. The blood-epididymis barrier and human male fertility[J]. Adv Exp Med Biol, 2012, 763: 218–236.
[3] GREGORY M, CYR D G. The blood-epididymis barrier and inflammation[J]. Spermatogenesis, 2014, 4(2): e979619. DOI: 10.4161/21565562.2014.979619
[4] WONG P Y D, TSANG A Y F, FU W O, et al. Restricted entry of an anti-rat epididymal protein IgG into the rat epididymis[J]. Int J Androl, 1983, 6(3): 275–282. DOI: 10.1111/j.1365-2605.1983.tb00541.x
[5] YEUNG C H, BERGMANN M, COOPER T G. Non-specific uptake of IgG by rat epididymal tubules in vitro[J]. Int J Androl, 1991, 14(5): 364–373. DOI: 10.1111/j.1365-2605.1991.tb01105.x
[6] ARAM R, CHAN P T K, CYR D G. Beta- defensin126 is correlated with sperm motility in fertile and infertile men[J]. Biol Reprod, 2020, 102(1): 92–101.
[7] LYONS A, NARCIANDI F, DONNELLAN E, et al. Recombinant β-defensin 126 promotes bull sperm binding to bovine oviductal epithelia[J]. Reprod Fertil Dev, 2018, 30(11): 1472–1481. DOI: 10.1071/RD17415
[8] YUDIN A I, TOLLNER T L, TREECE C A, et al. β-defensin 22 is a major component of the mouse sperm glycocalyx[J]. Reproduction, 2008, 136(6): 753–765. DOI: 10.1530/REP-08-0164
[9] ZHANG C B, ZHOU Y C, XIE S S, et al. CRISPR/Cas9-mediated genome editing reveals the synergistic effects of β-defensin family members on sperm maturation in rat epididymis[J]. FASEB J, 2018, 32(3): 1354–1363. DOI: 10.1096/fj.201700936R
[10] JOHNSTON D S, JELINSKY S A, BANG H J, et al. The mouse epididymal transcriptome:transcriptional profiling of segmental gene expression in the epididymis[J]. Biol Reprod, 2005, 73(3): 404–413. DOI: 10.1095/biolreprod.105.039719
[11] 张春香, 张国林, 郭丽娜, 等. 基于高通量转录组测序的山羊睾丸和附睾头差异表达基因分析[J]. 畜牧兽医学报, 2014, 45(3): 391–401.
ZHANG C X, ZHANG G L, GUO L N, et al. Study on differentially expressed genes between caprine testis and epididymis caput based on transcriptomes with high-throughput RNA-seq technology[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(3): 391–401. (in Chinese)
[12] PATIL A A, CAI Y B, SANG Y M, et al. Cross-species analysis of the mammalian β-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract[J]. Physiol Genomics, 2005, 23(1): 5–17.
[13] CHOI M K, LE M T, NGUYEN D T, et al. Genome-level Identification, gene expression, and comparative analysis of porcine β-defensin genes[J]. BMC Genet, 2012, 13: 98.
[14] NARCIANDI F, LLOYD A T, CHAPWANYA A, et al. Reproductive tissue-specific expression profiling and genetic variation across a 19 gene bovine β-defensin cluster[J]. Immunogenetics, 2011, 63(10): 641–651. DOI: 10.1007/s00251-011-0551-7
[15] SADEGHZADEH M, SHIRPOOR A, NADERI R, et al. Long-term ethanol consumption promotes changes in β-defensin isoform gene expression and induces structural changes and oxidative DNA damage to the epididymis of rats[J]. Mol Reprod Dev, 2019, 86(6): 624–631. DOI: 10.1002/mrd.23138
[16] YU H G, DONG J, GU Y H, et al. The novel human β-defensin 114 regulates Lipopolysaccharide (LPS)-mediated inflammation and protects sperm from motility loss[J]. J Biol Chem, 2013, 288(17): 12270–12282. DOI: 10.1074/jbc.M112.411884
[17] YENUGU S, HAMIL K G, RADHAKRISHNAN Y, et al. The androgen-regulated epididymal sperm-binding protein, human β-defensin 118 (DEFB118) (formerly ESC42), is an antimicrobial β-defensin[J]. Endocrinology, 2004, 145(7): 3165–3173. DOI: 10.1210/en.2003-1698
[18] WU Y J, LI D D, WANG Y, et al. Beta-Defensin 2 and 3 promote bacterial clearance of Pseudomonas aeruginosa by inhibiting macrophage autophagy through Downregulation of early growth response gene-1 and c-FOS[J]. Front Immunol, 2018, 9: 211. DOI: 10.3389/fimmu.2018.00211
[19] KIM J, YANG Y L, JANG Y S. Human β-defensin 2 is involved in CCR2-mediated Nod2 signal transduction, leading to activation of the innate immune response in macrophages[J]. Immunobiology, 2019, 224: 502–510. DOI: 10.1016/j.imbio.2019.05.004
[20] NIYONSABA F, USHIO H, NAKANO N, et al. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines[J]. J Invest Dermatol, 2007, 127(3): 594–604. DOI: 10.1038/sj.jid.5700599
[21] NIYONSABA F, USHIO H, NAKANO I, et al. The human β- defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes[J]. J Immunol, 2005, 175(3): 1776–1784. DOI: 10.4049/jimmunol.175.3.1776
[22] MOTZKUS D, SCHULZ-MARONDE S, HEITLAND A, et al. The novel β-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo[J]. FASEB J, 2006, 20(10): 1701–1702. DOI: 10.1096/fj.05-4970fje
[23] 张春香, 杜海燕, 张彩霞, 等. 山羊睾丸和附睾头β防御素家族的表达谱及生物信息学分析[J]. 畜牧兽医学报, 2015, 46(7): 1122–1133.
ZHANG C X, DU H Y, ZHANG C X, et al. Expression profiles and bioinformatics analysis of beta-defensin family genes in the testes and epididymal caput of bucks[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(7): 1122–1133. (in Chinese)
[24] 刘秀敏, 潘云, 宁春萌, 等. 慢病毒介导的shRNA靶向干扰NSD2三阴乳腺癌稳定细胞株的建立[J]. 临床与病理杂志, 2019, 39(11): 2349–2355.
LIU X M, PAN Y, NING C M, et al. Establishment of a triple-negative breast cancer cell line with stable knockdown of NSD2 gene via Lentivirus-mediated interference[J]. Journal of Clinical and Pathological Research, 2019, 39(11): 2349–2355. DOI: 10.3978/j.issn.2095-6959.2019.11.002 (in Chinese)
[25] WU D, HUANG C J, JIAO X F, et al. Bisphenol AF compromises blood-testis barrier integrity and sperm quality in mice[J]. Chemosphere, 2019, 237: 124410. DOI: 10.1016/j.chemosphere.2019.124410
[26] SEMPLE F, DORIN J R. β-Defensins:multifunctional modulators of infection, inflammation and more?[J]. J Innate Immun, 2012, 4(4): 337–348. DOI: 10.1159/000336619
[27] CASAROTO A R, DA SILVA R A, SALMERON S, et al. Candida albicans-cell interactions activate innate immune defense in human palate epithelial primary cells via Nitric Oxide (NO) and β-Defensin 2 (hBD-2)[J]. Cells, 2019, 8(7): 707. DOI: 10.3390/cells8070707
[28] JELINSKY S A, TURNER T T, BANG H J, et al. The rat epididymal transcriptome:comparison of segmental gene expression in the rat and mouse epididymides[J]. Biol Reprod, 2007, 76(4): 561–570. DOI: 10.1095/biolreprod.106.057323
[29] HALL T J, MCQUILLAN C, FINLAY E K, et al. Comparative genomic identification and validation of β-defensin genes in the Ovis aries genome[J]. BMC Genomics, 2017, 18(1): 278. DOI: 10.1186/s12864-017-3666-x
[30] ZHAO Y, DIAO H, NI Z M, et al. The epididymis-specific antimicrobial peptide β-defensin 15 is required for sperm motility and male fertility in the rat (Rattus norvegicus)[J]. Cell Mol Life Sci, 2011, 68(4): 697–708. DOI: 10.1007/s00018-010-0478-4
[31] SHIMIZU M, WATANABE Y, ISOBE N, et al. Expression of avian β-defensin 3, an antimicrobial peptide, by sperm in the male reproductive organs and oviduct in chickens:an immunohistochemical study[J]. Poult Sci, 2008, 87(12): 2653–2659. DOI: 10.3382/ps.2008-00210
[32] TANG C H, NI M J, XIE S S, et al. DICER1 regulates antibacterial function of epididymis by modulating transcription of β-defensins[J]. J Mol Cell Biol, 2019, 11(5): 408–420. DOI: 10.1093/jmcb/mjy048
[33] 张喆.山羊Grp78基因过表达和shRNA干扰慢病毒载体的构建及鉴定[D].杨凌: 西北农林科技大学, 2015.
ZHANG Z.Construction and expression of lentiviral vectors enconding recombinant goat GRP78 in EEC cells[D].Yangling: Northwest A & F University, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10712-1016010423.htm
[34] 杨泳, 李杰宝, 宋旗, 等. 短发卡RNA干扰乳脂球表皮生长因子-8基因慢病毒载体构建及其对乳腺癌细胞干扰的影响[J]. 中华实验外科杂志, 2019, 36(5): 816–819.
YANG Y, LI J B, SONG Q, et al. Construction of short hairpin RNA interfering milk fat globule-epidermal growth factor 8 gene lentiviral vector and its effect on inhibition of breast cancer cells[J]. Chinese Journal of Experimental Surgery, 2019, 36(5): 816–819. DOI: 10.3760/cma.j.issn.1001-9030.2019.05.008 (in Chinese)
[35] 马啸, 叶华虎, 杜小燕, 等. 慢病毒载体感染小鼠曲细精管的研究[J]. 实验动物科学, 2010, 27(1): 5–9, 12.
MA X, YE H Y, DU X Y, et al. Sperm-mediated gene transfer by injection of lentiviral vector into mouse siminferous tubules[J]. Laboratory Animal Science, 2010, 27(1): 5–9, 12. DOI: 10.3969/j.issn.1006-6179.2010.01.002 (in Chinese)
[36] SUN Y D, XU W Q, LI D, et al. p38 Mitogen-Activated Protein Kinases (MAPKs) are involved in intestinal immune response to bacterial muramyl dipeptide challenge in Ctenopharyngodon idella[J]. Mol Immunol, 2020, 118: 79–90. DOI: 10.1016/j.molimm.2019.12.007
[37] LIU Y S, SHEPHERD E G, NELIN L D. MAPK phosphatases - regulating the immune response[J]. Nat Rev Immunol, 2007, 7(3): 202–212. DOI: 10.1038/nri2035
[38] 杜海燕, 邰苗苗, 姜玉锁, 等. 公山羊β防御素124的表达谱分析及其在繁殖器官中的定位[J]. 畜牧兽医学报, 2017, 48(3): 454–461.
DU H Y, TAI M M, JIANG Y S, et al. Expression pattern analysis of goat beta-defensin 124 and its location in the reproductive organs[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(3): 454–461. (in Chinese)
[39] YANG W S, FENG J, XIANG F, et al. Endogenous animal toxin-like human β-defensin 2 inhibits own K+ channels through interaction with channel extracellular pore region[J]. Cell Mol Life Sci, 2015, 72(4): 845–853. DOI: 10.1007/s00018-014-1715-z
[40] SMITHRITHEE R, NIYONSABA F, KIATSURAYANON C, et al. Human β-defensin-3 increases the expression of interleukin-37 through CCR6 in human keratinocytes[J]. J Dermatol Sci, 2015, 77(1): 46–53. DOI: 10.1016/j.jdermsci.2014.12.001
[41] PHAN T K, LAY F T, HULETT M D. Importance of phosphoinositide binding by human β-defensin 3 for Akt-dependent cytokine induction[J]. Immunol Cell Biol, 2018, 96(1): 54–67. DOI: 10.1111/imcb.1017
[42] LIU C Y, PAN B, YANG L, et al. Beta defensin 3 enhances ovarian granulosa cell proliferation and migration via ERK1/2 pathway in vitro[J]. Biol Reprod, 2019, 100(4): 1057–1065. DOI: 10.1093/biolre/ioy246
[43] TEWARY P, DE LA ROSA G, SHARMA N, et al. β-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-α production by human plasmacytoid dendritic cells, and promote inflammation[J]. J Immunol, 2013, 191(2): 865–874.