在家畜体外胚胎生产中,来源于小腔卵泡的卵母细胞不能被有效利用,其中一个主要原因是小腔卵泡卵母细胞的体外成熟(in vitro maturation, IVM)质量较差,发育能力较低[1]。在体内,卵泡中的卵母细胞要经历复杂的细胞变化过程才能发育成熟,卵母细胞成熟质量的好坏直接影响着其受精以及胚胎发育的能力[2]。在卵母细胞成熟过程中,其自身发育程序与来自体细胞的因子间存在着复杂的相互作用。在这些体细胞中,壁层颗粒细胞和卵丘细胞的作用尤为突出,它们会对促性腺激素也就是促卵泡激素(follicle stimulating hormone, FSH)和促黄体激素(luteinizing hormone, LH)的刺激做出反应。
在卵泡中,FSH激活腺苷酸环化酶,随后刺激环磷酸腺苷的合成[3],促使蛋白激酶A活化,从而激活关键转录因子[4]。此外,FSH也可以刺激表皮生长因子(epidermal growth factor, EGF)类因子的合成,导致颗粒细胞EGF受体(epidermal growth factor receptor, EGFR)的激活,随后引起细胞外信号调节激酶1/2(extracellular signal-regulated kinases,ERK1/2)的磷酸化[5]。有研究表明,来自猪小腔卵泡卵丘-卵母细胞复合体(cumulus-oocyte complexes, COCs)的ERK1/2信号通路不能充分激活,这可能是由于小腔卵泡COCs的EGFR表达较低的缘故[6]。双调蛋白(amphiregulin, AREG)等EGF类因子最初在壁层颗粒细胞中表达,然后在壁层颗粒和卵丘细胞上结合并进一步激活EGFR[7]。另有报道表明,卵母细胞分泌因子(oocyte-secreted factors, OSFs),如骨形态发生蛋白15(bone morphogenetic protein 15, BMP15)和生长分化因子9(growth differentiation factor 9, GDF9),可以调节小鼠卵泡卵丘细胞中EGFR的表达[8]。随着卵泡的发育,COCs对葡萄糖的摄取逐渐增加[9]。卵丘细胞通过糖酵解代谢葡萄糖产生丙酮酸传递给卵母细胞,卵母细胞利用这些丙酮酸产生能量,这个过程也受到OSFs的调控[10]。在牛的研究中发现,AREG结合OSFs可以促进COCs的糖酵解和发育能力[11]。
目前关于EGF类因子作用的研究大多针对中腔卵泡的卵母细胞,对于小腔卵泡来源的卵母细胞作用如何,目前报道还较少。因此,本试验以绵羊小腔卵泡卵母细胞为试验材料,研究AREG和OSFs对小腔卵泡卵母细胞体外成熟的影响,从而为提高卵母细胞的发育能力提供理论基础。
1 材料与方法 1.1 试剂与药品本试验所用化学药品和生化试剂若无特殊说明均购自Sigma公司。TCM-199基础培养液、磷酸盐缓冲液(dulbecco’s phosphate-buffered saline, DPBS)、青链霉素合剂(penicillin-strepto,PS)均购自Gibco公司;促卵泡素(FSH)购自Bioniche公司;AREG、GDF9和BMP15购自R&D Systems公司;线粒体膜电位检测试剂盒(JC-1)购自北京索莱宝公司。
1.2 绵羊卵母细胞的收集试验所需绵羊卵巢取自呼和浩特屠宰场。将绵羊卵巢用含有1%青链霉素合剂的生理盐水清洗。在卵巢表面分别选取中腔卵泡(直径2~6 mm,如图 1A-a)和小腔卵泡(直径<2 mm,如图 1A-b),使用带有9#、7#针头的10 mL注射器分别抽取中、小腔卵泡内容物。于体视显微镜下挑选抽取获得的卵母细胞,选择胞质均匀且外周包裹有3层以上卵丘细胞的COCs(图 1B, 1C),用于后续试验。
![]() |
a.中腔卵泡(直径2~6 mm);b.小腔卵泡(直径小于2 mm) a. Medium antral follicles (diameter 2-6 mm); b. Small antral follicles (diameter < 2 mm) 图 1 绵羊卵巢表面不同直径的卵泡(A)以及来源于中腔卵泡(B)(100×)和小腔卵泡的COCs(C)(100×) Fig. 1 Follicles of different diameters on the surface of sheep ovary(A), COCs from medium antral follicles(B)(100×) and small antral follicles(C)(100×) |
基础成熟液为TCM-199+10 μg·mL-1 FSH +3 mg·mL-1 BSA +1%青链霉素合剂,按照试验设计在基础成熟液中分别添加不同组合的AREG、AREG+GDF9、AREG+BMP15、AREG+GDF9+BMP15、GDF9+BMP15。将COCs放入成熟液中,在38.6 ℃,5%CO2,95%空气,饱和湿度下培养24 h。
根据Vanderhyden等[12]的评分规则,判定成熟后卵丘细胞扩展指数(cumulus expansion index, CEI):0级代表卵丘细胞未发生扩展;Ⅰ级代表卵丘细胞虽然未发生扩展,但卵丘细胞已呈现圆形;Ⅱ级代表卵丘细胞最外层细胞发生扩展;Ⅲ级代表卵丘细胞除了放射冠部位外,其余的卵丘细胞都已发生扩展;Ⅳ级代表卵丘细胞完全发生了扩展。计算每组30枚COCs卵丘扩展等级的平均数作为该组COCs的CEI。此外,以卵母细胞第一极体的排出作为核成熟的标志,统计卵母细胞成熟后第一极体排出率(MII%)。
1.4 卵母细胞内氧化还原态检测用0.1%透明质酸酶处理COCs以去除全部的卵丘细胞,将卵母细胞转移到35 mm的共焦皿中,并在激光共聚焦显微镜(FV10i,Olympus, Tokyo, Japan)下观察。检测氧化态FAD++(Ex: 490 nm; Em: 540 nm)和还原态NAD(P)H(Ex: 420 nm; Em: 460 nm)水平。每组处理30枚卵母细胞,使用FV10-ASW 4.2 Viewer软件进行图像分析。
1.5 卵母细胞线粒体膜电位检测根据线粒体膜电位(JC-1)试剂说明书进行试验操作。用0.1%透明质酸酶处理COCs以去除全部的卵丘细胞,在JC-1染色工作液微滴中,培养箱37 ℃孵育20 min。孵育结束后,将卵母细胞用JC-1染色缓冲液洗涤2次。在激光共聚焦显微镜下检测FITC(Ex: 495 nm; Em: 519 nm)和Cy3(Ex: 547 nm; Em: 567 nm)。每组处理30枚卵母细胞,使用FV10-ASW 4.2 Viewer软件进行图像分析。
1.6 绵羊卵母细胞的体外受精及胚胎培养成熟的卵母细胞用0.1%透明质酸酶处理,去除部分卵丘细胞,将卵母细胞移入受精液滴中。39 ℃水浴解冻冻精,在受精液中上游精子30 min,将上浮的精子加入受精液滴内与卵母细胞共同孵育,精子浓度调整为约1×106个·mL-1。精-卵共孵育20 h后,除去颗粒细胞及黏附在颗粒细胞上的精子,将受精卵移入胚胎发育液,在38. 6 ℃、5% CO2: 5% O2:90% N2饱和湿度的密封气袋内进行体外培养。在体外受精后48 h统计卵裂率,在168 h统计囊胚率。受精液成分为mSOFaa液+2%发情羊血清+6 IU·mL-1肝素钠盐;胚胎发育液成分为mSOFaa液+3 mg·mL-1 BSA。
1.7 统计分析所有试验重复3次,结果表示为“平均值±SEM”,使用SAS9.2软件进行统计分析。成熟率、卵裂率和囊胚率使用Chi-square检验分析。CEI、相对荧光强度采用GLM方差分析,之后用Tukey检验进行分析。P<0.05表示差异显著。
2 结果 2.1 不同直径绵羊卵泡卵母细胞的NAD(P)H、FAD++水平、线粒体膜电位及体外成熟质量本研究检测了不同直径绵羊卵泡卵母细胞的自发荧光NAD(P)H和FAD++水平,如图 2所示,成熟前,小腔卵泡卵母细胞内的FAD++水平显著低于中腔卵泡卵母细胞(P<0.05),而两组间的NAD(P)H水平差异不显著(P>0.05)。检测了不同直径绵羊卵泡卵母细胞的线粒体膜电位,如图 3所示,成熟前,小腔卵泡卵母细胞内的线粒体膜电位显著低于中腔卵泡卵母细胞(P<0.05)。将不同直径卵泡卵母细胞进行体外成熟培养,如图 4所示,小腔卵泡卵母细胞的CEI和MII%分别为(1.25±0.05)和(59.25±4.58)%,显著低于中腔卵泡卵母细胞((3.29±0.22)和(83.45±5.26)%,P<0.05),以上结果表明,绵羊小腔卵泡卵母细胞的代谢水平和IVM质量均差于中腔卵泡卵母细胞。
![]() |
在各图中腔卵泡组的值标记为1,其他各组平均值为该值的相对值。不同字母上标表示显著差异,P<0.05。下同 Within each graph, the value of medium antral follicle group was assigned as 1 and means of other groups were all expressed relatively to this value. Different superscripts indicated significant difference, P < 0.05.The same as below 图 2 不同直径卵泡卵母细胞内NAD(P)H(A)和FAD++(B)相对荧光强度 Fig. 2 NAD(P)H (A) and FAD++ (B) relative fluorescence intensity of oocytes from different diameter follicles |
![]() |
红色荧光(JC-1聚合物)与绿色荧光(JC-1单体)的比值反映卵母细胞线粒体膜电位的髙低。图 6同 The ratio of red fluorescence (JC-1 aggregate) to green fluorescence (JC-1 monomer) indicates the level of oocyte mitochondrial membrane potential.The same as figure 6 图 3 不同直径卵泡的卵母细胞内线粒体膜电位 Fig. 3 Mitochondrial membrane potential in oocytes from different diameter follicles |
![]() |
A.中腔卵泡COCs(100×);B.小腔卵泡COCs(100×);C.卵丘扩展指数;D.第一极体排出率 A.COCs from medium antral follicles(100×); B. COCs from small antral follicles(100×); C. Cumulus expansion index; D. The first polar body expulsion rate 图 4 不同直径卵泡的COCs体外成熟后卵丘扩展指数及第一极体排出率 Fig. 4 Cumulus expansion index and the first polar body expulsion rate of COCs from different diameter follicles after IVM |
在体外成熟液中分别添加AREG、GDF9和BMP15的不同组合(AREG、AREG+ GDF9、AREG+BMP15、AREG+GDF9+BMP15、GDF9+ BMP15),比较其对绵羊小腔卵泡卵母细胞IVM质量的影响,并检测卵母细胞线粒体膜电位和NAD(P)H、FAD++水平。如图 5所示,与对照组相比,AREG+ GDF9+BMP15显著提高了小腔卵泡卵母细胞的CEI和MII%(CEI:(1.33±0.08)和(3.14±0.13),MII%:(56.72±2.99)%和(81.64±3.14)%,P<0.05),且与中腔卵泡卵母细胞组差异不显著(CEI:(3.14±0.11),MII%:(81.14±2.14)%,P>0.05)。另外,与对照组相比,AREG+ GDF9显著提高了小腔卵泡卵母细胞的CEI(2.17±0.11,P<0.05),但显著低于AREG+GDF9+BMP15组(P<0.05)。如图 6所示,与对照组相比,AREG+BMP15和AREG+GDF9+BMP15显著提高了小腔卵泡卵母细胞的线粒体膜电位(分别为(0.72±0.02)、(0.84± 0.02)和(1.11±0.05),P<0.05),其中AREG+GDF9+BMP15组显著高于AREG+BMP15组(P<0.05),且与中腔卵泡卵母细胞组差异不显著((1.00±0.04),P>0.05)。如图 7所示,与对照组相比,AREG+GDF9+BMP15显著提高了小腔卵泡卵母细胞的NAD(P)H和FAD++水平(分别为(0.76±0.12)、(0.59±0.12)和(0.95±0.059)、(0.89±0.092),P<0.05),且与中腔卵泡卵母细胞组差异不显著((1±0.076)和(1±0.09),P>0.05)。
![]() |
图 5 卵母细胞经体外成熟后的卵丘扩展指数(A)及第一极体排出比率(B) Fig. 5 Cumulus expansion index(A)and the first polar body expulsion rates(B) of oocytes after IVM |
![]() |
图 6 卵母细胞体外成熟后的线粒体膜电位 Fig. 6 Mitochondrial membrane potential of oocytes after IVM |
![]() |
图 7 体外成熟后卵母细胞内NAD(P)H(A)和FAD++相对荧光强度(B) Fig. 7 NAD(P)H (A) and FAD++ (B) relative fluorescence intensity of oocytes after IVM |
在绵羊小腔卵泡卵母细胞体外成熟液中同时添加AREG+GDF9+BMP15, 比较其对绵羊小腔卵泡卵母细胞体外受精后发育的影响,如表 1所示,与对照组相比,AREG+GDF9+BMP15可以明显提高小腔卵泡卵母细胞体外受精后的卵裂率和囊胚率(分别为(43.79±3.69)%、(28.54±4.31)%和(78.99±1.12)%、(47.46±2.50)%,P<0.05),而且与中腔卵泡卵母细胞组无显著差异(分别为(78.62±1.56)%,(54.86±1.46)%,P>0.05)。
![]() |
表 1 成熟液中添加AREG、GDF9和BMP15对小腔卵泡卵母细胞发育能力的影响 Table 1 The effect of AREG, GDF9 and BMP15 supplemented in maturation medium on the developmental ability of oocytes from small antral follicle |
在体内,哺乳动物卵母细胞的发育能力是在卵泡生长过程中逐渐获得的,不同大小腔卵泡来源的卵母细胞所处的发育阶段不同[13-14]。随着卵泡直径的增大,卵母细胞的发育能力随之增强[15-16]。本研究结果也表明,小腔卵泡的卵母细胞发育能力明显低于中腔卵泡,而且来源于绵羊小腔卵泡的卵母细胞胞质以及周围的卵丘细胞颜色较浅,这可能与其较低的代谢水平有关。对于完整的COCs,卵丘细胞通过糖酵解代谢分解葡萄糖,产生的中间产物(如丙酮酸)可以传递给卵母细胞。在卵母细胞内,丙酮酸在线粒体中转化为乙酰辅酶A,后者进入三羧酸循环和线粒体电子传递链产生ATP[17-18]。
线粒体是卵母细胞胞质中含量最丰富的细胞器,为卵母细胞发育提供能量, 线粒体的功能与卵母细胞的发育能力密切相关[19-20]。线粒体膜电位反映线粒体活性以及电子传递链的活跃程度[21],影响卵母细胞中NAD(P)H向FAD++的转化效率及ATP产生的能力[22]。结果显示,小腔卵泡卵母细胞在常规体外成熟前、后的线粒体膜电位和FAD++水平以及体外成熟后的NAD(P)H水平均均显著低于中腔卵泡卵母细胞,表明小腔卵泡卵母细胞的代谢水平较低。本研究通过在IVM体系中添加AREG、GDF9和BMP15的组合,不仅提高了小腔卵泡卵母细胞的线粒体膜电位和FAD++水平,也提高了NAD(P)H水平。这表明,在IVM过程中,AREG和OSFs结合提高了小腔卵泡卵丘细胞向卵母细胞传递代谢物的能力,进而提高了小腔卵泡卵母细胞的代谢水平。在牛卵母细胞相关研究中也发现,AREG与OSFs的共同作用可以增强牛卵母细胞的FAD++和NAD(P)H水平[11]。
卵母细胞成熟和排卵由EGF类因子(AREG、EREG和BTC)介导[7]。这些EGF类因子激活的EGFR信号网络在卵母细胞的生长、成熟及受精后的胚胎发育中发挥重要的作用[23]。在小鼠的研究中,与EGF或FSH相比,利用EGF类因子培养卵母细胞可以促进卵母细胞产生更强的线粒体活性,而且其卵丘细胞中的己糖胺生物合成途径活性明显提高[24]。在人类辅助生殖的研究中[25],利用AREG为多囊卵巢综合征的患者提供了一种新的IVM方案。在猪的研究中,使用AREG进行培养的卵母细胞表现出更高的发育能力[26]。对于绵羊而言,只添加AREG对小腔卵泡卵母细胞的成熟发育没有明显的促进作用,这可能是不同大小腔卵泡卵母细胞对EGF类因子敏感性不同,从而无法有效地激活EGFR信号通路。不同大小腔卵泡中的卵母细胞发育程度不同,OSFs水平也存在较大差异,例如小腔卵泡卵母细胞的GDF9和BMP15表达较低[27],而GDF9和BMP15参与调节了卵母细胞的成熟、受精和胚胎发育过程中多个重要信号通路[28]。在本研究中,在成熟液中添加AREG+GDF9或AREG+BMP15分别提高小腔卵泡卵母细胞的CEI和线粒体膜电位,但是在成熟液中同时添加AREG、GDF9和BMP15时,对于小腔卵泡卵母细胞的成熟效果最好,不仅显著提高了小腔卵泡卵母细胞的CEI和线粒体膜电位,还显著提高了第一极体排出率,有效增强了绵羊小腔卵泡卵细胞的代谢水平及发育能力,其受精后的卵裂率、囊胚率与中腔卵泡卵母细胞没有明显的差异。另外,在本研究中,去除AREG只添加GDF9+BMP15,对小腔卵泡卵母细胞的CEI、MII%和线粒体膜电位均无显著提高。因此,GDF9和BMP15可能以不同方式提高了小腔卵泡卵母细胞对AREG的敏感性,从而协同增强了小腔卵泡卵母细胞的EGFR信号通路。GDF9和BMP15是两个重要的OSFs,GDF9可以促进卵母细胞成熟和卵丘细胞的增殖扩展[29],这可能是AREG+GDF9提高小腔卵泡卵母细胞CEI的原因。BMP15有增强间隙连接的作用[11],促进卵丘细胞向卵母细胞代谢物的传递,从而引起小腔卵泡卵母细胞线粒体膜电位的增强,但这种代谢水平的增加仍不足以促进卵母细胞减数分裂的恢复,需要GDF9的协同才能完成。GDF9和BMP15的协同作用可以激活卵丘细胞上的Samd信号通路[30],也有报道表明,GDF9和BMP15共同存在时会产生异源二聚效应,从而发挥更强的生物活性[31]。但是GDF9和BMP15是如何协同调节绵羊小腔卵泡卵母细胞的EGFR信号通路以及影响其代谢过程的,还有待进一步研究。
4 结论绵羊小腔卵泡卵母细胞的代谢水平及IVM质量较低,AREG在GDF9与BMP15的协同作用下可以显著提高小腔卵泡卵母细胞的代谢水平及IVM质量,并进一步提高小腔卵泡卵母细胞体外受精后的发育能力。
[1] | EPPIG J J, SCHROEDER A C, O'BRIEN M J. Developmental capacity of mouse oocytes matured in vitro:effects of gonadotrophic stimulation, follicular origin and oocyte size[J]. J Reprod Fertil, 1992, 95(1): 119–127. |
[2] | GILCHRIST R B, THOMPSON J G. Oocyte maturation:emerging concepts and technologies to improve developmental potential in vitro[J]. Theriogenology, 2007, 67(1): 6–15. DOI: 10.1016/j.theriogenology.2006.09.027 |
[3] | GLOAGUEN P, CRÉPIEUX P, HEITZLER D, et al. Mapping the follicle-stimulating hormone-induced signaling networks[J]. Front Endocrinol (Lausanne), 2011, 2: 45. |
[4] | MEANS A R, HUCKINS C. Coupled events in the early biochemical actions of FSH on the Sertoli cells of the testis[J]. Curr Top Mol Endocrinol, 1974, 1: 145–165. |
[5] | PROCHAZKA R, BLAHA M, NEMCOVA L. Signaling pathways regulating FSH- and amphiregulin-induced meiotic resumption and cumulus cell expansion in the pig[J]. Reproduction, 2012, 144(5): 535–546. DOI: 10.1530/REP-12-0191 |
[6] | RITTER L J, SUGIMURA S, GILCHRIST R B. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence[J]. Endocrinology, 2015, 156(6): 2299–2312. DOI: 10.1210/en.2014-1884 |
[7] | PARK J Y, SU Y Q, ARIGA M, et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle[J]. Science, 2004, 303(5658): 682–684. DOI: 10.1126/science.1092463 |
[8] | SU Y Q, SUGIURA K, LI Q L, et al. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling[J]. Mol Endocrinol, 2010, 24(6): 1230–1239. |
[9] | LEQUARRE A S, VIGNERON C, RIBAUCOUR F, et al. Influence of antral follicle size on oocyte characteristics and embryo development in the bovine[J]. Theriogenology, 2005, 63(3): 841–859. DOI: 10.1016/j.theriogenology.2004.05.015 |
[10] | SU Y Q, SUGIURA K, EPPIG J J. Mouse oocyte control of granulosa cell development and function:paracrine regulation of cumulus cell metabolism[J]. Semin Reprod Med, 2009, 27(1): 32–42. DOI: 10.1055/s-0028-1108008 |
[11] | SUGIMURA S, RITTER L J, SUTTON-MCDOWALL M L, et al. Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence:effects on gap junction-mediated metabolite supply[J]. Mol Hum Reprod, 2014, 20(6): 499–513. DOI: 10.1093/molehr/gau013 |
[12] | VANDERHYDEN B C, CARON P J, BUCCIONE R, et al. Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation[J]. Dev Biol, 1990, 140(2): 307–317. |
[13] | YOKOO M, SATO E. Cumulus-oocyte complex interactions during oocyte maturation[J]. Int Rev Cytol, 2004, 235: 251–291. DOI: 10.1016/S0074-7696(04)35006-0 |
[14] | SUGIMURA S, KOBAYASHI N, OKAE H, et al. Transcriptomic signature of the follicular somatic compartment surrounding an oocyte with high developmental competence[J]. Sci Rep, 2017, 7(1): 6815. |
[15] | BAGG M A, NOTTLE M B, ARMSTRONG D T, et al. Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs[J]. Reprod Fertil Dev, 2007, 19(7): 797–803. DOI: 10.1071/RD07018 |
[16] | SANCHEZ F, LE A H, HO V N A, et al. Biphasic in vitro maturation (CAPA-IVM) specifically improves the developmental capacity of oocytes from small antral follicles[J]. J Assist Reprod Genet, 2019, 36(10): 2135–2144. DOI: 10.1007/s10815-019-01551-5 |
[17] |
毛晓燕, 丘瑾. 人卵母细胞成熟过程中卵丘细胞与卵母细胞关系的研究进展[J]. 同济大学学报:医学版, 2018, 39(5): 123–127.
MAO X Y, QIU J. Recent research progress on interaction between cumulus cells and oocytes in process of human oocyte maturation[J]. Journal of Tongji University:Medical Science, 2018, 39(5): 123–127. (in Chinese) |
[18] | SCOTT R, ZHANG M, SELI E. Metabolism of the oocyte and the preimplantation embryo:implications for assisted reproduction[J]. Curr Opin Obstet Gynecol, 2018, 30(3): 163–170. |
[19] | ROTH Z. Symposium review:Reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function[J]. J Dairy Sci, 2018, 101(4): 3642–3654. DOI: 10.3168/jds.2017-13389 |
[20] | XU D J, WU L, JIANG X H, et al. SIRT2 inhibition results in meiotic arrest, mitochondrial dysfunction, and disturbance of redox homeostasis during bovine oocyte maturation[J]. Int J Mol Sci, 2019, 20(6): 1365. DOI: 10.3390/ijms20061365 |
[21] | AL-ZUBAIDI U, LIU J, CINAR O, et al. The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation[J]. Mol Hum Reprod, 2019, 25(11): 695–705. DOI: 10.1093/molehr/gaz055 |
[22] | BERTOLDO M J, LISTIJONO D R, HO W H J, et al. NAD+ repletion rescues female fertility during reproductive aging[J]. Cell Rep, 2020, 30(6): 1670–1681. DOI: 10.1016/j.celrep.2020.01.058 |
[23] | RICHANI D, GILCHRIST R B. The epidermal growth factor network:role in oocyte growth, maturation and developmental competence[J]. Hum Reprod Update, 2018, 24(1): 1–14. DOI: 10.1093/humupd/dmx029 |
[24] | RICHANI D, SUTTON-MCDOWALL M L, FRANK L A, et al. Effect of epidermal growth factor-like peptides on the metabolism of in vitro- matured mouse oocytes and cumulus cells[J]. Biol Reprod, 2014, 90(3): 49. |
[25] | SÁNCHEZ F, LOLICATO F, ROMERO S, et al. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield[J]. Hum Reprod, 2017, 32(10): 2056–2068. DOI: 10.1093/humrep/dex262 |
[26] | PROCHÁZKA R, PETLACH M, NAGYOVÁ E, et al. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro:comparison with gonadotropins[J]. Reproduction, 2011, 141(4): 425–435. DOI: 10.1530/REP-10-0418 |
[27] | LIN Z L, LI Y H, XU Y N, et al. Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes[J]. Reprod Domest Anim, 2014, 49(2): 219–227. DOI: 10.1111/rda.12254 |
[28] | LI Y, LI R Q, OU S B, et al. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans[J]. Reprod Biol Endocrinol, 2014, 12: 81. DOI: 10.1186/1477-7827-12-81 |
[29] |
欧阳效晴, 杨淑青, 张春强, 等. 生长分化因子9在牛卵丘卵母细胞复合体体外成熟过程中的表达[J]. 畜牧兽医学报, 2013, 44(10): 1569–1575.
OUYANG X Q, YANG S Q, ZHANG C Q, et al. Expression of growth differentiation factor-9 in bovine COCs during in vitro maturation[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(10): 1569–1575. (in Chinese) |
[30] | LIU C, YUAN B, CHEN H Y, et al. Effects of MiR-375-BMPR2 as a key factor downstream of BMP15/GDF9 on the Smad1/5/8 and Smad2/3 signaling pathways[J]. Cell Physiol Biochem, 2018, 46(1): 213–225. |
[31] | PENG J, LI Q L, WIGGLESWORTH K, et al. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions[J]. Proc Natl Acad Sci USA, 2013, 110(8): E776–E785. DOI: 10.1073/pnas.1218020110 |