畜牧兽医学报  2020, Vol. 51 Issue (5): 1149-1157. DOI: 10.11843/j.issn.0366-6964.2020.05.026    PDF    
蜂胶对细菌脂多糖刺激下奶牛乳腺上皮细胞炎症相关基因mRNA转录水平和紧密连接蛋白的影响
欧爱群1,2, 王凯2, 吴黎明2, 李江红1, 彭文君2     
1. 福建农林大学动物科学学院(蜂学学院), 福州 350002;
2. 中国农业科学院蜜蜂研究所, 北京 100093
摘要:本试验旨在研究中国蜂胶乙醇提取物(ethanol extract of Chinese propolis,EECP)对细菌脂多糖(lipopolysaccharide,LPS)刺激下体外培养奶牛乳腺上皮细胞炎症相关基因mRNA转录水平和紧密连接渗透性的影响。EECP中总酚酸和总黄酮含量测定采用福林酚法和硝酸铝法,并建立LPS诱导奶牛乳腺上皮细胞(bovine mammary epithelial cells,MAC-T)炎症模型,采用CCK-8法测定EECP对MAC-T相对增殖率的影响,利用实时荧光定量PCR(RT-qPCR)评估EECP对LPS诱导的MAC-T细胞炎症相关因子(IL-6、IL-8、TNF-α和IL-1β)相对mRNA转录水平;以及对紧密连接蛋白(occludin、ZO-1)相对mRNA转录水平进行检测,并进一步利用免疫荧光技术对紧密连接膜蛋白进行定位,确定EECP对LPS诱导MAC-T细胞炎症紧密连接渗透性的影响。结果显示:EECP中总酚酸含量为106.35 mg没食子酸当量(GAE)·g-1、总黄酮含量为320.85 mg芦丁当量(RE)·g-1;CCK-8结果显示EECP的安全浓度为0~15 μg·mL-1,并可有效提高LPS刺激下MAC-T的活力;LPS刺激显著增加了细胞炎症相关因子IL-6、IL-8、TNF-α和IL-1β mRNA的转录量(P < 0.001);但2.5~15.0 μg·mL-1 EECP预处理显著降低了IL-6、IL-8、TNF-α和IL-1β mRNA的转录量;与此类似,LPS刺激显著抑制了紧密连接蛋白基因(occludin、ZO-1)mRNA的转录量(P < 0.01),而EECP预处理后紧密连接蛋白基因(occludinZO-1)mRNA的转录量显著增加(P < 0.05);免疫荧光染色试验也证实EECP能通过上调紧密连接蛋白(occludin、ZO-1)的表达,缓解LPS诱导的乳腺上皮细胞屏障功能紊乱。该结果证实,EECP对细菌脂多糖诱导奶牛乳腺上皮细胞炎症具有良好的保护作用,这为利用中国蜂胶预防奶牛乳腺炎提供了试验基础。
关键词中国蜂胶    抗炎    紧密连接    奶牛乳腺上皮细胞    
Effects of Propolis on Transcript Levels of Inflammation-related Genes and Tight Junction Proteins of Bovine Mammary Epithelial Cells Stimulated by Bacterial Lipopolysaccharide
OU Aiqun1,2, WANG Kai2, WU Liming2, LI Jianghong1, PENG Wenjun2     
1. College of Animal Science(College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
2. Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
Abstract: This study aimed to investigate the effects of ethanol extract of Chinese propolis (EECP) on transcript levels of inflammation-related genes and tight junctional permeability in bovine mammary epithelial cells stimulated by bacterial endotoxin (lipopolysaccharide, LPS). The total content of phenolic acids and flavonoids in the EECP was determined by Folin-phenol method and ALNO3 colorimetry, respectively. Moreover, the inflammatory model of bovine mammary epithelial cells (MAC-T) was induced by bacterial lipopolysaccharide and the effect of EECP on the relative cell proliferation rate was detected via CCK-8 method. Real-time quantitative PCR (RT-qPCR) was used to evaluate LPS-induced bovine mammary epithelial cells inflammatory factors (IL-6, IL-8, TNF-α and IL-1β) relative mRNA transcription levels. To determine the effect of EECP on LPS-induced MAC-T cell, inflammation tight junction permeability. We used RT-qPCR to detect the relative mRNA transcription levels of tight junction proteins (occludin, ZO-1), and further used immunofluorescence to localize tight junction membrane proteins. The results showed that the content of total phenolic acids and total flavonoids in EECP were 106.35 mg GAE·g-1 and 320.85 mg RE·g-1, respectively. CCK-8 results showed that the safe concentration of EECP was 0-15 μg·mL-1, and can effectively increase the viability of MAC-T cells under LPS stimulation. LPS stimulation significantly increased the mRNA transcription levels of cellular inflammation-related factors IL-6, IL-8, TNF-α and IL-1β (P < 0.001). However, the mRNA transcription of IL-6, IL-8, TNF-α and IL-1β were significantly reduced under pretreatment with 2.5-15.0 μg·mL-1 EECP. Similarly, the LPS model group significantly inhibited (P < 0.01) the mRNA transcription of tight junction proteins (ZO-1 and occludin), while the mRNA transcription of tight junction proteins was increased by EECP pretreatment (P < 0.05). Immunofluorescence staining experiments also confirmed that EECP could alleviate LPS-induced mammary epithelial barrier dysfunction by up-regulating the expression of tight junction proteins occludin and ZO-1. The results confirmed that EECP has a good protective effect on bacterial lipopolysaccharide-induced inflammation of bovine mammary epithelial cells, which provides a basis for the use of Chinese propolis to prevent mastitis in dairy cows.
Key words: Chinese propolis    anti-inflammatory    tight junction    bovine mammary epithelial cells    

奶牛乳腺炎是奶牛的一种易发性疾病,能够造成其乳腺损伤、产奶量和奶产品质量下降以及泌乳期缩短[1]。大肠杆菌是引起奶牛急性乳腺炎的关键致病菌,其主要的毒素因子为脂多糖(lipopolysaccharide, LPS),细菌侵入乳头管后,就会释放LPS造成乳腺组织损伤,进而诱发炎症[2-3]。研究发现,LPS能够改变乳腺上皮细胞内稳态,提高炎症因子的表达,如肿瘤坏死因子α(TNF-α)、白细胞介素6(IL-6)和白细胞介素1β(IL-1β);降低超氧化物歧化酶(SOD)活性;升高丙二醛(MDA)浓度;并造成血乳屏障破坏[4-6]。紧密连接(tight junction,TJ)又称为闭锁小带,是上皮细胞最顶端的细胞间连接,同时又是血乳屏障的重要组成部分,其主要功能是防止奶牛泌乳期时乳汁泄露到血液中[6]。ZO-1(zonula occluden-1)以及闭合蛋白(occludin)作为特征性紧密连接分子的完整膜蛋白,在构成紧密连结结构的过程中起到尤为重要的作用,能够有效调节乳腺和乳汁间的紧密连接[7]

目前,防治奶牛乳腺炎最主要的方法是采用抗生素,但易产生耐药性,并且会在牛奶中残留进而影响牛奶的质量。故采用天然、绿色无残留的中草药来防治奶牛乳腺炎已成为一个新的研究热点。蜂胶作为一种天然的物质,是由意大利蜜蜂(Apis mellifera L.)工蜂采集植物树胶并混合其上颚腺、蜡腺等分泌物所构成的胶状物质[8]。其主要的活性成分为酚酸和黄酮,具有抑菌、抗炎、抗氧化、抗肿瘤、降脂、增强机体免疫功能等作用[9-13]。研究报道,中国蜂胶提取物在RAW 264.7细胞中抑制了LPS诱导的IL-1β和IL-6的mRNA表达,抑制NF-κB信号通路的激活[14-15]。另外,中国蜂胶乙醇提取物能够提高人肠上皮Caco-2细胞紧密连接蛋白基因(occludinZO-1)的表达,并激活磷酸腺苷蛋白激酶(AMPK)、胞外调节蛋白激酶(ERK)信号通路来增强肠道屏障功能[16]。这表明中国蜂胶具有抗炎和提高细胞紧密连接蛋白表达的作用。但关于中国蜂胶对LPS诱导的奶牛乳腺上皮细胞炎症有无保护作用尚不清楚。乳腺上皮细胞是乳腺组织的最外层细胞,不仅是乳腺行使泌乳功能的基础,同时也是研究在外来毒素刺激下其炎症反应和血乳屏障功能变化的载体。本试验中笔者利用奶牛乳腺上皮细胞作为细胞模型,研究中国蜂胶对脂多糖诱导奶牛乳腺上皮细胞中炎症相关因子和紧密连接蛋白的影响来探究中国蜂胶是否发挥保护乳腺上皮细胞抵御LPS入侵的作用,为蜂胶在动物生产上的应用提供一定的科学依据。

1 材料与方法 1.1 实验材料、试剂与仪器

蜂胶样品于2017年10月采自山东泰安,-20 ℃储存。

试剂:没食子酸、芦丁、脂多糖(lipopolysaccharide来源于大肠杆菌0111:B4)、碱性磷酸酶结合二次抗体(IgG)以及BSA等购自美国Sigma公司;高糖培养基DMEM、胎牛血清(FBS)、0.25% Trysin-EDTA等购自美国Gibco公司;青链霉素混合液(100×)购自中国北京索莱宝科技有限公司;CCK-8试剂盒购自中国北京佳利恒达生物科技有限公司;PCR引物均由中国生工生物(上海)股份有限公司合成;PrimeScript RT Master kit试剂盒,TB GreenTM Premix Ex TaqTM(TaKaRa)均购自北京宝日医生物有限公司;ZO-1、occludin特异性抗体购自美国Proteintech公司。

仪器:BioTek酶标仪购自美国伯腾仪器有限公司;NanoDrop 2000超微量分光光度计、荧光定量PCR仪均购自美国赛默飞世尔科技有限公司;PCR仪购自中国杭州博日科技有限公司;激光共聚焦扫描显微镜购自中国上海仁科生物科技有限公司。

1.2 方法 1.2.1 样品前处理

称取200 g的粗蜂胶,加入95%无水乙醇2 L,40 ℃超声3 h,静置过夜后,取上清。重复以上操作3次,混合3次上清液减压旋蒸至恒重,-20 ℃避光保存备用。

1.2.2 总酚酸黄酮含量测定

EECP中总酚酸含量采用福林酚法进行测定[17]。取150 μL蜂胶样本溶液与150 μL福林酚试剂于1.5 mL离心管中振荡混匀,避光反应5 min后加入450 μL 2%碳酸钠溶液,混匀避光反应2 h后,在765 nm波长下测定其OD值(在96孔板中测定,设置3个重复,200 μL ·孔-1)。结果用没食子酸当量(GAE)·样品(g)-1表示。

EECP中总黄酮含量采用硝酸铝法进行测定[17]。取300 μL蜂胶样本溶液、20 μL醋酸钾(9.8 g ·L-1)溶液和20 μL硝酸铝(100 g ·L-1)溶液于1.5 mL离心管中振荡混匀后加入660 μL去离子水,混匀避光反应1 h后,在415 nm波长下测定其OD值(在96孔板中测定,设置3个重复,200 μL ·孔-1)。结果用芦丁当量(RE)·样品(g)-1表示。

1.2.3 EECP毒性测定

奶牛乳腺上皮细胞系(MAC-T)由美国佛蒙特大学赵凤启教授惠赠,培养在含10%FBS和1%双抗(青霉素和链霉素混合液)的DMEM高糖培养基中,并放置在37 ℃、5% CO2培养箱环境中孵育。每3 d传一代,至第3代开始试验。将1×105个·mL-1MAC-T接种到96孔板中,随机分为6组,每组6个重复。待细胞汇合度达到70%,分别加入浓度为0.0、2.50、5.0、10.0、15.0、20.0 μg ·mL-1的EECP处理24 h后,每孔加10 μL的CCK-8溶液,37 ℃孵育2 h,用酶标仪测定450 nm处的OD值,以未做处理组作为对照计算细胞相对增殖率。相对增殖率(%) =[(试验组OD450 nm-空白组OD450 nm)/(对照组OD450 nm-空白组OD450 nm)]× 100。

1.2.4 细胞活性测定

细胞活性测定也采用CCK-8试验方法。将处于对数生长期MAC-T随机分为6组(分组详情请参见结果部分),对照组采用培养基培养,处理组分别加入试验安全浓度的EECP预处理2 h后,加入1 μg·mL-1LPS继续处理24 h,其他步骤与“1.2.2”相同。最后计算细胞相对增殖率来判断EECP对LPS刺激下细胞活性的影响。

1.2.5 RNA提取与RT-qPCR

脂多糖刺激MAC-T炎症模型参照实验室先前发表的论文[18]。将10×104个·mL-1 MAC-T接种在6孔板中,随机分为6个组,分别为空白组、LPS刺激组、EECP处理组(分组详情请参见结果部分),每组3个重复。待细胞汇合度达到70%,LPS刺激组加入浓度为1 μg ·mL-1脂多糖孵育12 h,EECP处理组预先加入2.5、5.0、10.0、15.0 μg ·mL-1EECP孵育2 h,经1 μg ·mL-1脂多糖处理12 h后收集细胞。细胞总RNA提取采用RNA pure kit试剂盒,并使用NanoDrop 2000测定RNA的浓度及纯度,最终以1 μg总RNA作为模板量,采用PrimeScript RT Master kit试剂盒反转录成cDNA。RT-qPCR采用TB GreenTM Premix Ex TaqTM试剂盒完成,所用引物如表 1所示。基因相对表达量用2-△△Ct计算。

表 1 RT-qPCR引物序列 Table 1 The primer sequence of genes in RT-qPCR
1.2.6 紧密连接蛋白(occliudin、ZO-1)免疫荧光定位

将1×104个·mL-1 MAC-T均匀接种到激光共聚焦小皿中,随机分为空白组、LPS刺激组、EECP处理组,待细胞汇合度达到50%,LPS刺激组加入浓度为1 μg ·mL-1脂多糖孵育24 h,EECP处理组先用15.0 μg ·mL-1EECP预处理2 h,紧接着加入1 μg ·mL-1LPS处理24 h后,经固定液固定、0.5% Triton X-100透化、10%驴血清封闭、一抗二抗孵育、DAPI染核、荧光淬灭剂封片等步骤后,置于激光共聚焦显微镜下观察,并对结果进行分析与处理。

1.3 数据处理与分析

试验重复至少3次,结果以“平均值±标准差(x±s)”表示,采用SPSS 23.0进行数据差异显著性分析,并采用Graphpad Prism7.0软件作图。P<0.05表示差异显著,P<0.01表示差异极显著。

2 结果 2.1 EECP中总酚酸和总黄酮的含量

对中国山东杨树型蜂胶乙醇提取物中总酚酸黄酮含量进行测定,结果显示总酚酸含量为106.35 mg GAE ·g-1,总黄酮含量为320.85 mg RE ·g-1

2.2 EECP的细胞毒性

为探究试验剂量的EECP对MAC-T的毒性,采用CCK-8法检测在0.0~20.0 μg ·mL-1EECP对MAC-T相对增殖率的影响。结果如图 1所示,与空白组相比,在0~15 μg ·mL-1EECP对细胞相对增殖率没有表现出显著降低的效果,但经20.0 μg ·mL-1EECP处理下,细胞相对增殖率极显著下降(P<0.01)。因此,0.0~15.0 μg ·mL-1EECP为试验安全剂量范围。

与空白组比较,**. P<0.01 Compared with a blank group, **. P < 0.01 图 1 不同浓度EECP对MAC-T增殖率的影响 Fig. 1 Effects of different concentration of EECP on proliferation rate of MAC-T
2.3 EECP对LPS刺激下细胞活性的影响

图 2中可知,LPS刺激组MAC-T增殖率极显著低于空白组(P<0.01),但经2.5~10 μg ·mL-1的EECP预处理后,其细胞活性显著高于LPS刺激组(P<0.05)。结果表明,经LPS刺激处理会降低MAC-T的活性,而添加EECP处理后能够提高细胞活性。

与空白组相比,##.P<0.01;与模型组相比,*.P<0.05 Compared with a blank group, ##. P < 0.01; Compared with the model group, *. P < 0.05 图 2 不同浓度EECP对脂多糖刺激下MAC-T活性的影响 Fig. 2 Effects of different concentrations of EECP on the activity of MAC-T stimulated by lipopolysaccharide
2.4 EECP对MAC-T炎症相关因子mRNA转录的影响

图 3可知,与空白对照组相比,LPS处理组极显著上调其炎症因子(IL-6、IL-8、TNF-α和IL-1β) mRNA的转录水平(P<0.001),但经不同浓度的EECP处理下均能极显著降低其炎症因子的转录量,并且EECP处理浓度对IL-6、TNF-α以及IL-1β等炎症因子转录水平的抑制作用存在剂量依赖性(图 3ACD)。在2.5、5.0、10.0 μg ·mL-1EECP预处理下,IL-8 mRNA的转录量呈现出下降的趋势,但浓度达到15.0 μg ·mL-1时,转录量却上升(图 3B)。结果表明,2.5~15.0 μg ·mL-1的EECP预处理能显著抑制LPS刺激下的MAC-T相关炎症因子mRNA转录水平。

A. IL-6;B. IL-8;C. TNF-α;D.IL-1β。与空白组相比,#.P<0.01,##.P<0.001;与模型组相比,*.P<0.05,**. P<0.01,***.P<0.001;下同 A. IL-6;B. IL-8;C. TNF-α; D. IL-1β. Compared with a blank group, ##. P < 0.01, ##. P < 0.001. Compared with the model group, *. P < 0.05, **. P < 0.01, ***.P < 0.001. The same as below 图 3 不同浓度EECP对MAC-T中IL-6、IL-8、TNF-α以及IL-1β mRNA转录水平的影响 Fig. 3 Effects of different concentrations of EECP on IL-6, IL-8, TNF-α and IL-1β mRNA transcription levels in MAC-T
2.5 EECP在LPS引起的MAC-T紧密连接通透性增高中发挥的作用

利用RT-qPCR探究LPS和EECP对紧密连接蛋白occludinZO-1转录的影响,结果所示,LPS处理显著降低了紧密连接基因mRNA的转录量;而EECP浓度在5.0 μg ·mL-1以上预处理能够显著上调这两种紧密连接蛋白mRNA的转录量(图 4)。激光共聚焦扫描显微镜观察发现1 μg ·mL-1脂多糖处理,会导致膜上紧密连接蛋白(occludin、ZO-1)荧光信号的表达显著降低,但经过15.0 μg ·mL-1EECP预处理,能够有效缓解紧密连接蛋白信号的减弱(图 5)。

A.闭合蛋白基因; B.紧密连接蛋白1基因 A. occludin; B. ZO-1 图 4 不同浓度EECP对MAC-T在LPS刺激下occludinZO-1基因mRNA转录水平的影响 Fig. 4 Effects of different concentrations of EECP on transcription levels of occludin and ZO-1 genes in MAC-T stimulated by LPS
蓝色荧光.细胞核,绿色荧光.紧密连接蛋白 Blue fluorescence represents the nucleus, and green fluorescence represents the tight junction protein 图 5 EECP对MAC-T紧密连接蛋白(occludin、ZO-1)分布的影响(400×) Fig. 5 Effect of EECP on the distribution of tight junction proteins (occludin, ZO-1) in MAC-T (400×)
3 讨论

蜂胶具有多种生物活性成分以及生物学功能,在古代常被民间医学所使用。蜂胶发挥其功能活性的主要成分为酚酸类化合物、黄酮类化合物、挥发性成分以及一些微量元素,其中总酚酸黄酮的含量也是衡量蜂胶质量的有效指标。在本次试验中,利用福林酚法和硝酸铝法对EECP中总酚酸和总黄酮含量进行测定,结果发现,EECP中总酚酸含量低于文献[19]报道的193.53 μg ·mg-1,总黄酮含量高于文献[19]报道的256.56 μg ·mg-1。出现以上结果可能的原因是由于样品采集的季节[20]、地点[19]、植物来源[21]和蜂胶提取方式的不同[22]

LPS是一种重要的毒素因子,能够诱导奶牛发生乳腺炎,使乳腺组织发生损伤,并促进炎症因子TNF-α、IL-1β、IL-6的表达,使机体产生免疫应答。TNF-α是一种促炎细胞因子,在LPS诱导的乳腺免疫反应过程中,牛奶中会有大量的TNF-α分泌[23]。IL-6是一种多功能细胞因子,可调节免疫反应,造血功能,急性期反应,炎症和中枢神经系统[24]。IL-8是主要的趋化因子,能够指导中心粒细胞向炎症处募集[18]。IL-1β是由免疫细胞、基底细胞和肿瘤细胞分泌的重要炎症介质,能够促进促炎细胞因子的产生,以及调节炎性细胞的生长、分化和运动[25]。RT-qPCR结果显示,在EECP预处理条件下,奶牛乳腺上皮细胞炎症相关因子(TNF-α、IL-8、IL-6和IL-1β) mRNA的转录量显著下降。研究报道,蜂胶提取物中主要的多酚类化合物(咖啡酸苯乙酯、咖啡酸和槲皮素)能够抑制LPS诱导炎症相关因子(IL-1β、IL-6和TNF-α)的表达,降低核因子κB (NF-κB)的转录活性,发挥抗炎作用[26-28]。中国蜂胶能通过抑制细胞自身自噬和MAPK/NF-κB信号通路相关的机制抑制LPS诱导的人脐静脉血管内皮细胞中的氧化应激和炎症[10]

紧密连接是上皮细胞屏障功能的基础,由occludin、ZO-1、连接黏附分子(JAMs)以及胞质蛋白组成[29]。近年来的研究发现, occludin和ZO-1在维持和调节细胞上皮屏障功能、调节细胞物质转运、维持细胞极性以及信号传导等方面有重要作用,用来作为观察各种细胞以及组织紧密连接屏障功能和通透性功能的指标[30-31]。RT-qPCR结果显示,LPS能显著下调紧密连接蛋白occludinZO-1 mRNA的转录量,但经EECP处理后,紧密连接蛋白基因的表达量显著上升。而免疫荧光定位结果发现,15.0 μg·mL-1 EECP能够显著增加紧密连接蛋白(occludin、ZO-1)在细胞连接处的分布。这与中国蜂胶提取物处理人肠上皮Caco-2细胞后,其紧密连接蛋白基因(occludinZO-1)的表达量显著上升[16]、巴西蜂胶提取物能够上调DSS诱导小鼠结肠炎紧密连接蛋白基因(ZO-1、ZO-2=、occludinJAM-Aclaudin-3和claudin-4)表达水平的结果相一致[32]。这些结果进一步证实了EECP能够通过调节紧密连接蛋白mRNA的表达来达到对奶牛乳腺上皮细胞血乳屏障的保护作用。

4 结论

EECP可显著抑制在细菌脂多糖刺激下MAC-T炎症因子(IL-6、IL-8、TNF-α和IL-1β) mRNA的转录水平来缓解炎症反应。此外,EECP能够上调紧密连接蛋白(occludin、ZO-1)mRNA表达以及在膜上的分布达到保护乳腺上皮细胞抵御LPS入侵的效应。该结果可为利用中国蜂胶防控奶牛乳腺炎提供了试验依据,在奶牛养殖生产上具有良好的应用前景。

参考文献
[1] GOMES F, HENRIQUES M. Control of bovine mastitis: old and recent therapeutic approaches[J]. Curr Microbiol, 2016, 72(4): 377–382. DOI: 10.1007/s00284-015-0958-8
[2] ZHENG L H, XU Y Y, LU J Y, et al. Variant innate immune responses of mammary epithelial cells to challenge by Staphylococcus aureus, Escherichia coli and the regulating effect of taurine on these bioprocesses[J]. Free Radic Biol Med, 2016, 96: 166–180. DOI: 10.1016/j.freeradbiomed.2016.04.022
[3] GILBERT F B, CUNHA P, JENSEN K, et al. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system[J]. Vet Res, 2013, 44(1): 1–23. DOI: 10.1186/1297-9716-44-1
[4] HE X X, LIU W J, SHI M Y, et al. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells[J]. Res Vet Sci, 2017, 112: 7–12. DOI: 10.1016/j.rvsc.2016.12.011
[5] 占今舜, 谷德平, 胡利珍, 等. 苜蓿素对脂多糖刺激下体外培养奶牛乳腺上皮细胞活性和炎症相关基因表达的影响[J]. 动物营养学报, 2018, 30(2): 641–648.
ZHAN J S, GU D P, HU L Z, et al. Effects of tricin on viability and expressions of genes related to inflammation of bovine mammary epithelial cells stimulated by lipopolysaccharide in vitro[J]. Chinese Journal of Animal Nutrition, 2018, 30(2): 641–648. DOI: 10.3969/j.issn.1006-267x.2018.02.029 (in Chinese)
[6] KOBAYASHI K, OYAMA S, NUMATA A, et al. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions[J]. PLoS One, 2013, 8(4): e62187. DOI: 10.1371/journal.pone.0062187
[7] 孙志鹏.脂磷壁酸对乳腺上皮紧密连接蛋白表达的影响[D].大庆: 黑龙江八一农垦大学, 2017.
SUN Z P. Effects of Lipoteichoic acid on tight junction protein in mammary gland epithelial[D]. Daqing: Heilongjiang Bayi Agricultural University, 2017. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10223-1017153555.htm
[8] PASUPULETI V R, SAMMUGAM L, RAMESH N, et al. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits[J]. Oxid Med Cell Longev, 2017, 2017(2): Article ID 1259510.
[9] JANSEN-ALVES C, KRUMREICH F D, ZAND-ONÁ G P, et al. Production of propolis extract microparticles with concentrated pea protein for application in food[J]. Food Bioprocess Technol, 2019, 12: 729–740. DOI: 10.1007/s11947-019-2246-2
[10] XUAN H Z, YUAN W W, CHANG H S, et al. Anti-inflammatory effects of Chinese propolis in lipopolysaccharide-stimulated human umbilical vein endothelial cells by suppressing autophagy and MAPK/NF-κB signaling pathway[J]. Inflammopharmacology, 2019, 27: 561–571. DOI: 10.1007/s10787-018-0533-6
[11] CHEN W T, SUN Y K, LU C H, et al. Thermal cycling as a novel thermal therapy to synergistically enhance the anticancer effect of propolis on PANC-1 cells[J]. Int J Oncol, 2019, 55(3): 617–628.
[12] AL-HARIRI M. Immune's-boosting agent: Immunomodulation potentials of propolis[J]. J Family Community Med, 2019, 26(1): 57–60. DOI: 10.4103/jfcm.JFCM_46_18
[13] HESAMI S, HASHEMIPOUR S, SHIRI-SHAHSAVAR M R, et al. Administration of Iranian Propolis attenuates oxidative stress and blood glucose in type Ⅱ diabetic patients:a randomized, double-blind, placebo-controlled, clinical trial[J]. Caspian J Intern Med, 2019, 10(1): 48–54.
[14] ASGHARPOUR F, MOGHADAMNIA A A, MOTALLEBNEJAD M, et al. Propolis attenuates lipopolysaccharide-induced inflammatory responses through intracellular ROS and NO levels along with downregulation of IL-1β and IL-6 expressions in murine RAW 264.7 macrophages[J]. J Food Biochem, 2019, 43(8): e12926.
[15] WANG K, PING S, HUANG S, et al. Molecular mechanisms underlying the in vitro anti-inflammatory effects of a flavonoid-rich ethanol extract from Chinese propolis (Poplar type)[J]. Evid Based Com-plement Alternat Med, 2013, 2013: 127672.
[16] WANG K, JIN X L, CHEN Y F, et al. Polyphenol-rich propolis extracts strengthen intestinal barrier function by activating AMPK and ERK signaling[J]. Nutrients, 2016, 8(5): 272–283. DOI: 10.3390/nu8050272
[17] 王蓓, 常化松, 苏松坤, 等. 无刺蜂蜂胶乙醇提取物的体外抗氧化及抗炎活性[J]. 中国农业科学, 2019, 52(5): 939–948.
WANG B, CHANG H S, SU S K, et al. Antioxidative and anti-inflammatory activities of ethanol extract of geopropolis from stingless bees[J]. Scientia Agricultura Sinica, 2019, 52(5): 939–948. (in Chinese)
[18] WANG K, JIN X L, SHEN X G, et al. Effects of Chinese propolis in protecting bovine mammary epithelial cells against mastitis pathogens-induced cell damage[J]. Mediators Inflamm, 2016, 2016: 8028291.
[19] 赵亮亮, 王光新, 陈平, 等. 高效液相色谱法分析北方部分地区蜂胶醇提物成分[J]. 食品科学, 2012, 33(18): 143–148.
ZHAO L L, WANG G X, CHEN P, et al. Composition analysis in ethanol extracts of propolis samples from northern China[J]. Food Science, 2012, 33(18): 143–148. (in Chinese)
[20] 郭夏丽, 罗丽萍, 徐元君, 等. 不同季节中国蜂胶醇提物的化学成分及生物活性[J]. 食品科学, 2011, 32(17): 141–146.
GUO X L, LUO L P, XU Y J, et al. Chemical components and biological activity of Chinese propolis from different seasons[J]. Food Science, 2011, 32(17): 141–146. (in Chinese)
[21] WANG K, JIN X L, LI Q Q, et al. Propolis from different geographic origins decreases intestinal inflammation and Bacteroides spp. populations in a model of DSS-induced colitis[J]. Mol Nutr Food Res, 2018, 62(17): e1800080. DOI: 10.1002/mnfr.201800080
[22] 张红城, 吴正双.两种取胶方法对蜂胶提取物组分及其含量影响[C]//2012年全国蜂产品市场信息交流会论文集.盱眙: 2012: 212-217.
ZHANG H C, WU Z S. Effects of two methods of extracting glue on components and contents of propolis extract[C]//Proceding of the 2012 National Bee product market information exchange conference. Xuyi: 2012: 212-217. (in Chinese)
[23] WELLNITZ O, WALL S K, SAUDENOVA M, et al. Effect of intramammary administration of prednisolone on the blood-milk barrier during the immune response of the mammary gland to lipopolysaccharide[J]. Am J Vet Res, 2014, 75(6): 595–601. DOI: 10.2460/ajvr.75.6.595
[24] MIHARA M, HASHIZUME M, YOSHIDA H, et al. IL-6/IL-6 receptor system and its role in physiological and pathological conditions[J]. Clin Sci, 2012, 122(4): 143–159. DOI: 10.1042/CS20110340
[25] 苏渲迪, 汪阿美, 张文芳. 炎症因子在圆锥角膜发病机制中的研究进展[J]. 国际眼科杂志, 2019, 19(2): 244–247.
SU X D, WANG A M, ZHANG W F. A review on inflammation cytokines in pathogenesis of keratoconus[J]. International Eye Science, 2019, 19(2): 244–247. (in Chinese)
[26] CHANG H S, WANG Y H, YIN X S, et al. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy[J]. BMC Complement Altern Med, 2017, 17(1): 471–479. DOI: 10.1186/s12906-017-1984-9
[27] LIU M J, SONG S X, LI H R, et al. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide[J]. J Dairy Sci, 2014, 97(5): 2856–2865. DOI: 10.3168/jds.2013-7600
[28] WEI X Q, MENG X L, YUAN Y X, et al. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity[J]. Mol Cell Biochem, 2018, 446(1): 43–52.
[29] SUZUKI T, HARA H. Quercetin enhances intestinal barrier function through the assembly of zonnula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells[J]. J Nutr, 2009, 139(5): 965–974. DOI: 10.3945/jn.108.100867
[30] 甘元涛, 赵少勇. 肠黏膜屏障损伤与紧密连接蛋白ZO-1的关系研究进展[J]. 现代医药卫生, 2016, 32(7): 1027–1029.
GAN Y T, ZHAO S Y. Advances in research on relationship between intestinal mucosal barrier injury and tight junction protein ZO-1[J]. Modern Medicine & Health, 2016, 32(7): 1027–1029. DOI: 10.3969/j.issn.1009-5519.2016.07.023 (in Chinese)
[31] 方成堃, 何邵平, 贺建华. 闭合蛋白Occludin在畜禽肠道屏障中的调节作用[J]. 湖南饲料, 2016(2): 41–43.
FANG C K, HE S P, HE J H. Regulation of the closed protein Occludin in the intestinal barrier of livestock and poultry[J]. Hunan Feed, 2016(2): 41–43. DOI: 10.3969/j.issn.1673-7539.2016.02.021 (in Chinese)
[32] SHIMIZU Y, SUZUKI T. Brazilian propolis extract reduces intestinal barrier defects and inflammation in a colitic mouse model[J]. Nutr Res, 2019, 69: 30–41. DOI: 10.1016/j.nutres.2019.07.003