畜牧兽医学报  2020, Vol. 51 Issue (5): 1126-1137. DOI: 10.11843/j.issn.0366-6964.2020.05.024    PDF    
牦牛瘤胃微生物抗生素抗性基因对3种外源性刺激因子的响应
赵佳琦1, 文勇立1, 安雅静1, 李子谦1, 齐沛森1, 李强2, 候定超3     
1. 西南民族大学青藏高原研究院, 成都 610041;
2. 四川省畜牧总站, 成都 610041;
3. 金川县畜牧兽医服务中心, 金川 624100
摘要:通过给牦牛投喂硫酸头孢喹肟(CEF)、盐酸二氟沙星(DIF)和黄曲霉毒素B1(AFB1),并进行瘤胃微生物宏基因组测序,旨在揭示这3种外源性刺激因子对抗生素抗性基因(ARGs)种类、抗性类型、抗性机制等的影响,对于深入研究微生物抗性组特征和抗性机制具有重要价值。选取15头牦牛,随机分5组。Cef组和Dif组分别根据说明书推荐剂量按体重计算、灌服CEF 1 mg·kg-1和DIF 1 mL·kg-1;E1组和E2组分别按采食量投喂AFB120、60 μg·kg-1;C组为对照组。处理7 d后,采集瘤胃液,提取DNA,Illumina HiSeq测序,对reads counts进行标准化得到TPM值,并进行方差分析。结果显示,对照组共获得132种ARGs,分属30种抗性类型,其中,四环素类tetQtetW基因丰度较高;Cef组tetW基因丰度增加(P < 0.05),Dif组tetQ丰度增加(P < 0.05);Cef组四环素类和头孢菌素类抗性基因丰度增加(P < 0.05),Dif组四环素类和氨基香豆素类抗性基因丰度增加(P < 0.05),E1组氨基香豆素和青霉烯类抗性基因丰度增加(P < 0.05),E2组青霉烯类、头孢菌素类等9类抗性基因丰度均增多(P < 0.05);Dif组Erm基因23S核糖体RNA甲基转移酶丰度增加(P < 0.05),E2组中ATP结合盒超家族等3种抗性机制相关基因的丰度增加(P < 0.05);3种因子均显著增加四环素类ARGs宿主的种类。结论:瘤胃是蕴含丰富ARGs的储藏库,其中,四环素类抗生素抗性基因tetQtetW是主要的ARGs。不仅CEF和DIF使部分ARGs的种类、抗性类型以及耐药机制相关酶等的丰度升高,增加瘤胃微生物的耐药性,而且AFB1也具有类似作用,且高剂量AFB1对抗性类型的影响范围较抗生素大。这3种因子还导致携带四环素类ARGs宿主微生物的种类数量增加,从而强化横向转移机制,加快ARGs传播,增强微生物对四环素类的耐药性。
关键词瘤胃微生物    抗生素抗性基因(ARGs)    宏基因组    二氟沙星    头孢喹肟    黄曲霉毒素B1    牦牛    
Response of Antibiotic Resistance Genes (ARGs) in Rumen of Yak to Three Exogenous Stimulating Factors
ZHAO Jiaqi1, WEN Yongli1, AN Yajing1, LI Ziqian1, QI Peisen1, LI Qiang2, HOU Dingchao3     
1. Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China;
2. Sichuan Animal Husbandry Station, Chengdu 610041, China;
3. Animal Husbandry and Veterinary Service Center of Jinchuan Country, Jinchuan 624100, China
Abstract: This study aimed to analyze the effects of three exogenous stimulating factors on the species, resistance types, and resistance mechanisms, etc. of antibiotic resistance genes (ARGs) by feeding yak with cefquinome (CEF), difloxacin (DIF), and aflatoxin B1 (AFB1), and sequence the rumen microorganisms by metagenomics. It is important to study the characteristics and resistance mechanisms of microbial antibiotic resistome or resistance reservoirs. Fifteen yaks were selected and randomly divided into 5 groups. According to the recommended dosage of the instructions, the Cef group and the Dif group were orally administered with CEF 1 mg·kg-1 and DIF 1 mL·kg-1, respectively. E1 groups and E2 groups were fed AFB1 20 and 60 μg·kg-1, respectively. Group C was the control group. The rumen fluid samples of yaks were collected 7 days after treatment and DNA was extracted. The DNA was sequenced by Illumina HiSeq. After standardizing the reads counts, the TPM was obtained. An analysis of variance was performed on the TPM. The results showed that 132 ARGs were obtained in the control group, belonging to 30 resistance types, among which the abundance of tetracycline tetQ and tetW genes was higher. The abundance of tetW gene in Cef group increased (P < 0.05). The abundance of tetQ in Dif group increased (P < 0.05). The abundance of tetracycline antibiotic and cephalosporin antibiotic resistance genes in Cef group increased (P < 0.05). The abundance of tetracycline antibiotic and aminocoumarin antibiotic resistance genes in Dif group increased (P < 0.05). The abundance of aminocoumarin antibiotic and penem antibiotic resistance genes in the E1 group increased (P < 0.05). The abundances of 9 resistance genes such as penems antibiotic and cephalosporins antibiotic in E2 group increased (P < 0.05). The abundance of Erm 23S ribosomal RNA methyltransferase in Dif group increased (P < 0.05). The abundance of three resistance mechanisms such as ATP-binding cassette (ABC) antibiotic efflux pump in E2 group increased (P < 0.05). All three treatments significantly increased the host species of tetracycline antibiotic resistance genes. In conclusion:The rumen is a rich library of ARGs, in which tetQ and tetW are dominant ARGs. Not only CEF, DIF increase the abundance of some ARGs species, resistance types and enzymes related to resistance mechanisms, thereby increasing rumen microbial resistance, but also AFB1 has a similar effect. Moreover, the high-dose AFB1 has a greater range of effects on antibiotic resistance than antibiotics. These three factors also increase types of host microorganisms carrying tetracycline antibiotic resistance gene, thereby enhancing the horizontal gene transfer, accelerating the spread of ARGs, and enhancing the resistance of microorganisms to tetracycline antibiotics.
Key words: rumen microorganisms    antibiotic resistance genes (ARGs)    metagenome    difloxacin    cefquinome    aflatoxin B1    yak    

抗生素抗性基因(antibiotic resistance genes,ARGs)是指某些环境微生物本身携带或者从其他菌株获得的能够通过编码不同功能的蛋白质以去除抗生素效应的基因[1]。长期使用或滥用抗生素可以提高ARGs的突变频率,并导致携带ARGs的微生物加速扩散到新的环境,再通过基因横向转移(HGT)等机制传递给病原菌,加速耐药菌(ARB)和ARGs在环境中的传播,从而对生态环境[2]和人类健康[3-4]造成广泛而严重的危害,此现象已成为全球性问题[5]。ARGs存在于整个微生物界,除动物肠道[6]、粪便[7]、土壤[8]等抗生素抗性组外,推测,反刍动物瘤胃也可能是一个重要的ARGs库[9]。有关抗性产生机制,有观点认为各类ARGs可通过降解抗生素、取代活性基团或修饰抗生素结合靶位等表现出其抗性;还有人认为,当细菌受到一些毒性因子刺激时,也可通过外排泵机制将抗生素和其他毒素排出细胞使其免受损伤,并在消耗能量的同时减缓细胞生长,进而增加突变机会[10];此外,由于外源刺激因子的作用,细菌外排泵的表达量增加,DNA错配修复系统受到抑制[10],诱导产生ARGs。某些ARGs早在人们使用抗生素前就存在于自然界中[11],可能是因为环境中存在天然刺激因子所致。有研究显示,某些真菌类有毒代谢产物,如分布较广的黄曲霉毒素B1(aflatoxin B1,AFB1)能够通过DNA碱基错配、DNA单链断裂(single-strand break,SSB)和双链断裂(double-strand break,DSB)等多种机制诱发DNA损伤[12]。既然如此,那么AFB1是否也对ARGs具有与抗生素相类似的作用,即刺激ARGs产生或变异?目前尚不清楚。采用抗生素治疗的黄牛,其消化道内特定ARGs的丰度会发生变化[13]。在抗生素使用频繁或受人为活动干扰多的环境中,ARGs的丰度要明显高于抗生素使用少或是受人类活动干扰少的环境[14]。而有关瘤胃微生物在外源性抗生素等因子作用下,其ARGs如何变化却未见报道。由于青藏高原环境受抗生素污染相对较少,生活于此的牦牛对抗生素等外源性因子的刺激可能较敏感,因此本文以牦牛为研究对象将有利于观测试验效果。本研究通过对牦牛施用硫酸头孢喹肟(cefquinome,CEF)、盐酸二氟沙星(difloxacin,DIF)和黄曲霉毒素B1(AFB1),采用宏基因组测序方法,分析瘤胃微生物ARGs的种类、抗性类型及抗性机制类型等的不同变化,研究结果对于认识外源性刺激因子对瘤胃微生物ARGs影响的机制有重要意义,也为ARGs的污染防治提供参考。

1 材料与方法 1.1 试验动物与样品采集

于2017年8月,在四川省阿坝藏族羌族自治州金川县庆宁牦牛养殖场,选取15头牦牛,放牧加补饲。饲料为本地产,精粗比1:3.6,粗饲料为玉米秸秆,精料为豆粕(40%)和玉米粉(60%)。供试牦牛42月龄,雄性,平均体重为(209.80±41.98)kg,健康、发育良好,试验前未使用抗生素。预试期20 d,随机分为5组,每组3头。硫酸头孢喹肟和盐酸二氟沙星按说明书推荐剂量,黄曲霉毒素B1剂量参考GB 13078—2017[15]和文献[16],均空腹投喂,动物分组与处理情况见表 1。空腹采样,采用负压采集器,吸管伸入到瘤胃中部吸取瘤胃液,弃去前一部分,经4层灭菌纱布过滤,取100 mL,液氮保存。

表 1 试验动物分组与处理 Table 1 Group of test animals
1.2 DNA提取及建库测序

解冻样品,取250 mg,采用PowerFecalTM Fecal DNA Kit(美国MOBIO)粪便试剂盒提取DNA。涡旋,离心柱过滤纯化,琼脂糖凝胶电泳定量(胶浓度1%、电压120 V、时间30 min),Nanodrop检测浓度和纯度,Agilent 2100检测DNA完整性。全部样品DNA总量均大于1 μg,OD260 nm/OD280 nm≥1.8,条带未见降解。采用试剂盒NGS Fast DNA Library Prep Set for Illumina对纯化后的DNA进行350 bp小片段DNA文库构建,并对文库进行浓度、插入片段大小、摩尔浓度精确度检测。对检测合格的文库,采用Illumina HiSeq测序平台进行测序。

1.3 宏基因组测序

采用FastQC(V0.11.5)评估原始数据碱基质量,采用Trimmomatic(版本0.36)修剪序列并去除接头,窗口大小设置为4个碱基,阈值设置为15,最小长度设置为36 bp;采用bmtagger(版本3.102)序列比对引擎去除宿主DNA序列,以牦牛(GCF_000298355.1_BosGru_v2.0)基因组为参考构建bmtagger索引后完成宿主序列过滤。

基于clean reads,采用MEGAHI(版本1.0.6)进行宏基因组组装,最小序列长度不小于200 bp。将组装后的contigs进行开放阅读框(ORF)预测。将非冗余蛋白序列集与CARD数据库[17]中的蛋白序列进行BLASTP比对,从结果中筛选出E值最低(< 10-5)的蛋白序列,获得各蛋白功能注释信息及丰度,并以基因类型、抗性类型、抗性机制以及抗性基因物种归属,对注释结果进行汇总。

1.4 数据统计分析

采用Salmon(版本0.11.3)对ARGs的read counts进行标准化(normalization),获得每百万reads转录本数(transcripts per million reads,TPM),该指标揭示基因转录本占样本中所有转录本的百分比,本文以TPM表示ARGs的相对表达丰度。采用SPSS18.0进行多因素方差分析,LSD法进行组间差异分析,P<0.05表示差异显著。

2 结果 2.1 不同处理对ARGs种类及抗性类型的影响

测序获得原始数据共185.3 G,质量控制后为74.2 G。共获得909 634 554条reads,组装了9 171 462个contigs,预测到11 933 585个ORF。3种外源因子对ARGs和抗性类型的影响见图 1。由图 1可知,各组间基因表达丰度差异显著(P<0.05),且组间差异大于组内差异。

A.ARGs种类基因表达丰度;B.ARGs抗性类型基因表达丰度。C.对照组;Cef.硫酸头孢喹肟组;Dif.盐酸二氟沙星组;E1.20 μg·kg-1黄曲霉毒素B1组;E2.60 μg·kg-1黄曲霉毒素B1组,以下图表同此 A. Gene expression abundance of ARGs species; B. Gene expression abundance of ARGs resistance types. C. Control group; Cef. Cef group; Dif. Dif group; E1.20 μg·kg-1 AFB1 group; E2.60 μg·kg-1 AFB1 group, the same as below 图 1 ARGs种类和抗性类型的组间差异 Fig. 1 Differences of ARGs species and resistance types between groups

对样品中ARGs注释数量统计见表 2(限于篇幅未具体列出全部ARGs种类,具体内容参见OSID服务),各组中ARGs种类(仅列出5组共有ARGs)和抗性类型(仅列出全部样品中丰度较高的前20种,剩余为其他)基因表达丰度在其所属样品中的比例见图 2。由表 2可知,全部样品共得到595种ARGs,分属于37种抗性类型。其中,对照组中共得到132种ARGs,分属于30种抗性类型。如图 2A所示,对照组中tetQtetW丰度较高,其次为tetOchrB等;如图 2B所示,对照组中四环素类(tetracycline antibiotic)抗性基因的丰度较高,其次是青霉烷类(penam)、大环内酯类(macrolide antibiotic)和氟喹诺酮类(fluoroquinolone antibiotic)等。表明,牦牛瘤胃是含有丰富的ARGs库,其中,四环素类抗生素抗性基因tetQtetW是主要的ARGs,而对其他种类抗生素的耐药性相对较低。

表 2 ARGs宏基因组注释统计 Table 2 Metagenomic annotation statistics for ARGs
A.共有ARGs种类基因表达丰度在其所属样品中的占比;B.各组抗性类型基因表达丰度在其所属样品中的占比,ARGs抗性类型名称中文对照见OSID服务 A. Proportion of gene expression abundance of mutual ARGs species in their samples; B. Proportion of gene expression abundance of ARGs resistance types in each group. The Chinese name of the ARGs resistance type in the figure is shown in supporting information (see OSID) 图 2 各组ARGs基因种类和抗性类型的比例 Fig. 2 Proportion of ARGs species and resistance types in each group

图 2可知,各组基因种类比较,Cef组和Dif组的tetQtetW丰度较高。各组抗性类型比较,Cef组和Dif组的四环素类抗性基因丰度较高。

各组基因种类的丰度差异分析见图 3tetQ基因中,Cef组高于C组、E1组和E2组(P>0.05),低于Dif组(P>0.05);Dif组高于C组和E2组(P<0.05),高于E1组(P>0.05);E1组低于C组(P>0.05),高于E2组;E2组低于C组(P>0.05)。tetW基因中,Cef组丰度高于其他4组(P<0.05),其余4组未见明显变化。表明,DIF和CEF的作用增加了抗生素的选择性压力从而使ARGs丰度升高,但AFB1对基因种类影响不大。

图中标注字母不同表示差异显著(P<0.05),字母相同表示差异不显著(P>0.05),下同 The different letters marked in the figure indicate significant differences (P < 0.05), and the same letter indicate that the difference is not significant (P>0.05), the same as below 图 3 tetQtetW基因表达丰度差异 Fig. 3 Differences of gene expression abundance of tetQ and tetW

较高丰度抗性类型差异分析见图 4,由图 4可知,四环素类抗生素抗性基因中,Cef组丰度高于C组和E2组(P<0.05),高于Dif组和E1组(P>0.05);Dif组丰度高于C组和E2组(P<0.05),高于E1组(P>0.05);E1组高于C组和E2组(P>0.05);E2组高于C组(P>0.05)。青霉烷类、氟喹诺酮类和碳青霉烯类抗性基因中,E2组丰度高于C组、Cef组、Dif组和E1组(P<0.05),其余4组之间未见明显变化。头孢菌素类抗性基因中,Cef组丰度高于C组(P<0.05),高于Dif组和E1组(P>0.05),低于E2组(P>0.05);Dif组低于C组、E1组(P>0.05)和E2组(P<0.05);E1组高于C组(P>0.05),低于E2组(P>0.05);E2组高于C组(P<0.05)。氨基糖苷类抗性基因中,Cef组丰度高于C组、Dif组和E1组(P>0.05),低于E2组(P<0.05);Dif组高于C组和E1组(P>0.05),低于E2组(P>0.05);E1组高于C组(P>0.05),低于E2组(P>0.05);E2组高于C组(P<0.05)。氯霉素类和二氨基嘧啶类抗性基因中E2组高于C组、Cef组和Dif组(P<0.05),高于E1组(P>0.05),其余4组之间未见明显变化。林可酰胺类抗性基因中,E2组高于C组(P<0.05),高于Cef组、Dif组和E1组(P>0.05),其余4组之间未见明显变化。氨基香豆素类抗性基因中,Cef组高于C组(P>0.05),低于Dif组、E1组和E2组(P>0.05);Dif组高于C组(P<0.05),高于E2组(P>0.05),低于E1组(P>0.05);E1组高于C组(P<0.05),高于E2组(P>0.05);E2组高于C组(P>0.05)。青霉烯类抗性基因中,E1组和E2组高于C组(P<0.05),其余3组未见明显变化。以上结果显示,CEF使四环素类和头孢菌素类ARGs丰度增加;DIF使四环素类和氨基香豆素类丰度增加;在AFB1添加量为20 μg·kg-1时,氨基香豆素类和青霉烯类丰度增加;60 μg·kg-1时青霉烷类、头孢菌素类等9类ARGs的丰度均增加,表明在DIF、CEF和AFB1作为选择压力下,多种ARGs的抗性类型均发生较大改变,且相比之下,高剂量AFB1对耐药基因的影响范围更大。

图 4 不同抗性类型基因表达丰度差异比较 Fig. 4 Differences of gene expression abundance among different ARGs resistance types
2.2 不同处理对ARGs耐药机制类型的影响

全部ARGs的抗性机制类型丰度见图 5,由图 5可知,对照组中主要的抗性机制为抗生素特异外排泵(在该组中的占比为35.96%),其次为抗生素靶位点保护(29.79%)、抗生素失活(19.54%)、抗生素靶位点改变(13.54%)、抗生素靶位点替换(1.17%);Cef组、Dif组和E1组中主要的抗性机制为抗生素靶位点保护(44.29%、44.57%、35.68%);E2组中主要为抗生素特异外排泵(32.28%)。基于抗性类型丰度的差异分析见图 6,由图 6可知,ABC外排泵、OXA型β-内酰胺酶和防御素抗性mprF(多肽抗性因子)中,E2组丰度均高于其他4组(P<0.05)。Erm基因23S核糖体RNA甲基转移酶中,Dif组高于C组(P<0.05),其余3组未见明显变化。四环素抗性核糖体保护蛋白中,Cef组高于C组和E2组(P<0.05),高于Dif组和E1组(P>0.05);Dif组高于C组和E2组(P<0.05),高于E1组(P>0.05);E1组高于C组和E2组(P>0.05);E2组低于C组(P>0.05)。表明,在60 μg·kg-1 AFB1时,ABC外排泵、OXA型β-内酰胺酶和防御素抗性mprF的耐药机制增强;在DIF的作用下,Erm基因23S核糖体RNA甲基转移酶的耐药机制较强;而四环素抗性核糖体保护蛋白则受CEF和DIF的影响较大,使其对抗生素靶位点的保护作用增强。

左侧图例由上到下依次为抗生素靶位点保护、抗生素失活、抗生素特异外排泵;右侧图例由上到下依次为抗生素靶位点改变、抗生素靶位点替换、降低抗生素的渗透性 图 5 瘤胃微生物不同耐药机制类型的基因表达丰度比例 Fig. 5 Proportion of gene expression abundance of different resistance mechanism types in rumen microorganisms
图 6 不同抗性机制类型的基因表达丰度差异比较 Fig. 6 Differences of gene expression abundance among different resistance mechanism types
2.3 ARGs与宿主微生物的关联性

丰度较高的四环素类抗性基因的宿主微生物分布见图 7,由图 7可知,主要的宿主为拟杆菌(Bacteroides)。与对照组相比,处理组中宿主出现多个新的种类。此外,统计瘤胃微生物中优势物种拟杆菌和普雷沃菌(Prevotella)携带的ARGs见图 8,由图 8可知,与对照组相比,拟杆菌中,Dif组携带ARGs的抗性类型明显增多,而Cef组、E1组和E2组减少;普雷沃菌中,Cef组和E1组携带ARGs的抗性类型明显增多,Dif组减少,E2组未见明显变化。两种细菌所携带抗性类型的占比均有不同程度的改变。以上两种分析也在一定程度上表明,在外源刺激因子的选择作用下,可能促进了基因的横向转移机制,加速ARGs在物种间的交流,使瘤胃中土著微生物携带更多ARGs,从而增加微生物耐药性。

图例(按首字母排序,仅列出有对应中文名称的菌):不动杆菌(Acinetobacter);红孢子虫属(Anaplasma);芽胞杆菌(Bacillus);拟杆菌(Bacteroides);双歧杆菌(Bifidobacterium);布劳特菌(Blautia);丁酸弧菌(Butyrivibrio);弯曲杆菌(Campylobacter);衣原体(Chlamydia);梭菌(Clostridium);柯林斯菌(Collinsella);粪芽胞菌(Coprobacillus);粪球菌(Coprococcus);埃希杆菌属(Escherichia);真细菌(Eubacterium);粪杆菌属(Faecalibacterium);束缚杆菌属(Haliscomenobacter);支原体属(Mycoplasma);泛菌属(Pantoea);浮丝藻(Planktothrix);普雷沃菌(Prevotella);假交替单胞菌(Pseudoalteromonas);瘤胃球菌(Ruminococcus);盟微菌属(Salinimicrobium);施氏菌属(Schwartzia);消化链球菌(Sedimentibacter)链球菌属(Streptococcus);链霉菌属(Streptomyces);鼠孢菌属(Succiniclasticum);密螺旋体(Treponema);锥体虫属(Trypanosoma) 图 7 携带四环素类抗生素抗性基因的宿主分布 Fig. 7 Distribution of hosts carrying tetracycline antibiotic resistance genes
A.拟杆菌携带的ARGs抗性类型占比;B.普雷沃菌携带的ARGs抗性类型占比。ARGs抗性类型名称中文对照见OSID服务 A. The proportion of ARGs resistant types carried by Bacteroides; B. The proportion of ARGs resistance types carried by Prevotella. The Chinese name of the ARGs resistance type in the figure is shown in supporting information (see OSID) 图 8 优势菌携带的ARGs抗性类型 Fig. 8 Types of ARGs resistance carried by dominant bacteria
3 讨论 3.1 牦牛瘤胃微生物抗生素抗性特征

在未添加外源因子的对照组(C组)瘤胃微生物中获得了丰富的ARGs,达132种,这些不同类型的基因分属于30种抗性类型,与Hitch等[9]发现瘤胃微生物对30种抗生素具有耐药性的结果吻合,进一步表明,反刍动物瘤胃是蕴含丰富ARGs的储藏库。其中,四环素类抗性基因是主要的抗性类型,这与Haley等[18]的研究结果一致,也支持了先前四环素耐药基因在微生物中广泛存在[19-20]的观点。但是,针对水牛[21-22]和绵羊[10]瘤胃ARGs的宏基因组分析,分别检测到氟喹诺酮类和达托霉素为丰度较高的抗性类型,与本研究有所不同,这可能是由于动物的生存环境不同[23],从而长期暴露于不同的抗生素选择压力下,导致ARGs优势类型不同,有待进一步研究。而属于该类的tetQtetW基因为瘤胃中主要的ARGs种类,在反刍动物的粪便[24-25]和其饮水环境[26]中也得到相似结果。不同ARGs抗性类型具有不同的抗性机制[27]。ARGs是介导微生物耐药机制的基础,例如抗生素靶位点的修饰、产生使抗菌药物失活或促使抗生素排出细胞的酶等[28]。本试验对照组中主要的抗性机制类型是抗生素特异外排泵机制,与先前的报道[21-22]一致。

3.2 ARGs及耐药机制类型对不同处理的响应

DIF和CEF的作用分别使四环素类抗性基因及所属该类的tetQtetW基因表达丰度显著增加(图 3图 4),已有研究显示,在添加不同剂量的抗生素时,tetQtetW丰度随抗生素使用的增加而增加[29],且短期饲喂抗生素仍会使部分四环素类ARGs表现出明显变化[30-31]tetQtetW基因主要编码核糖体保护蛋白,与核糖体结合后改变核糖体构象,使四环素不能与之结合,从而引起对四环素的耐药性[32]。本研究发现,DIF和CEF的作用也能够使四环素抗性核糖体保护蛋白的表达丰度显著增加,从另一角度证实了这两种抗生素可使四环素类ARGs的表达丰度增加。

奶牛粪便的宏基因组分析[33]显示,在头孢噻呋处理下,β-内酰胺类和多药耐药基因的丰度显著增加,与本试验结果一致。CEF和头孢噻呋都是典型的β-内酰胺类头孢菌素,通过抑制细胞壁的合成达到杀菌效果[34]。该类抗性基因最常见耐药机制为产生β-内酰胺酶(包括青霉素酶、头孢菌素酶等),使抗生素在到达结合位点前水解失活,从而失去抗菌效果。同时,本试验Cef组中OXA型β-内酰胺酶的表达量也明显增加,使CEF对头孢菌素类抗性基因存在影响的结果得到进一步证实。本试验还发现,Dif处理组中,氨基香豆素类抗性基因丰度显著增加,但DIF属喹诺酮类抗生素,可见,抗菌药物作用于微生物不仅对同类ARGs产生一定影响,对其他类ARGs也会产生影响。这是由于使用抗生素后,ARGs在微生物组中的丰度和多样性明显增加,引起某些基因的富集,从而赋予微生物对其他抗生素的抗性[7]。AFB1与大多数抗生素相似,是自然环境中真菌代谢产生的次级代谢产物[35]。AFB1进入机体后快速形成加合物,发挥其基因毒性,导致DNA碱基错配[12],并诱发细胞外排泵功能[36]。据报道,外排泵表达较高的细胞,其抗生素耐药性也较高[37],修复错配的功能则降低,增加细胞突变机会[38]。本试验AFB1添加量为20 μg·kg-1时,仅见氨基香豆素和青霉烯2类抗生素抗性基因表达丰度显著增加,而60 μg·kg-1时,青霉烯类、头孢菌素类等9类抗性基因和ABC外排泵相关基因的丰度显著增加。证实,AFB1可能通过上述机制影响瘤胃微生物ARGs和外排泵耐药机制相关基因丰度,且浓度较高影响更大。

3.3 不同处理对四环素类ARGs宿主微生物的影响

宿主微生物种群结构的变化是决定ARGs多样性的重要因素之一[39]。本试验不同处理均使四环素类ARGs宿主微生物种类增多,较丰富的微生物多样性则会导致ARGs通过横向转移机制在更多宿主间相互传播[40],这些特定菌群的富集可能是在抗菌药物的作用下,其他菌群代偿消耗的结果[41-42],进而改变某些ARGs宿主微生物的结构,加快ARGs传播,提高微生物耐药性。还有研究显示,AFB1能够改变部分肠道微生物的相对丰度,造成菌群失调[43],这也是在AFB1的作用下,ARGs宿主微生物结构改变的主要原因。

4 结论

瘤胃是蕴含丰富抗生素抗性基因(ARGs)的储藏库,其中,四环素类抗生素抗性基因tetQtetW是主要的ARGs。不仅头孢喹肟(CEF)和二氟沙星(DIF)使部分ARGs的种类、抗性类型以及耐药机制相关酶等的丰度升高,增加瘤胃微生物的耐药性,而且黄曲霉毒素B1(AFB1)也具有类似作用,且高剂量AFB1对抗性类型的影响范围较抗生素大。这3种因子还导致携带四环素类ARGs宿主微生物的种类数量增加,从而强化横向转移机制,加快ARGs传播,增强微生物对四环素类的耐药性。四环素类ARGs主要的宿主为拟杆菌。

参考文献
[1] MARTÍNEZ J L, COQUE T M, BAQUERO F. What is a resistance gene?Ranking risk in resistomes[J]. Nat Rev Microbiol, 2015, 13(2): 116–123. DOI: 10.1038/nrmicro3399
[2] LIU L M, SU J Q, GUO Y Y, et al. Large-scale biogeographical patterns of bacterial antibiotic resistome in the waterbodies of China[J]. Environ Int, 2018, 117: 292–299. DOI: 10.1016/j.envint.2018.05.023
[3] ZHOU Z C, FENG W Q, HAN Y, et al. Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments[J]. Environ Int, 2018, 121: 1155–1161. DOI: 10.1016/j.envint.2018.10.032
[4] TELLO A, AUSTIN B, TELFER T C. Selective pressure of antibiotic pollution on bacteria of importance to public health[J]. Environ Health Perspect, 2012, 120(8): 1100–1106. DOI: 10.1289/ehp.1104650
[5] MARTÍNEZ J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887): 365–367. DOI: 10.1126/science.1159483
[6] LOOFT T, JOHNSON T A, ALLEN H K, et al. In-feed antibiotic effects on the swine intestinal microbiome[J]. Proc Natl Acad Sci U S A, 2012, 109(5): 1691–1696. DOI: 10.1073/pnas.1120238109
[7] DURSO L M, HARHAY G P, BONO J L, et al. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach[J]. J Microbiol Methods, 2011, 84(2): 278–282. DOI: 10.1016/j.mimet.2010.12.008
[8] SU J Q, WEI B, XU C Y, et al. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China[J]. Environ Int, 2014, 65: 9–15. DOI: 10.1016/j.envint.2013.12.010
[9] HITCH T C A, THOMAS B J, FRIEDERSDORFF J C A, et al. Deep sequence analysis reveals the ovine rumen as a reservoir of antibiotic resistance genes[J]. Environ Pollut, 2018, 235: 571–575. DOI: 10.1016/j.envpol.2017.12.067
[10] EL MEOUCHE I, DUNLOP M J. Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation[J]. Science, 2018, 362(6415): 686–690. DOI: 10.1126/science.aar7981
[11] D'COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient[J]. Nature, 2011, 477(7365): 457–461. DOI: 10.1038/nature10388
[12] 龙喜带, 唐月浩, 曲德英, 等. 黄曲霉毒素B1毒性及其发挥与DNA修复(修复相关酶)[J]. 右江民族医学院学报, 2006, 28(2): 278–280.
LONG X D, TANG Y H, QU D Y, et al. Aflatoxin B1 toxicity and its function with DNA repair (repair related enzymes)[J]. Journal of Youjiang Medical College for Nationalities, 2006, 28(2): 278–280. DOI: 10.3969/j.issn.1001-5817.2006.02.092 (in Chinese)
[13] KANWAR N, SCOTT H M, NORBY B, et al. Impact of treatment strategies on cephalosporin and tetracycline resistance gene quantities in the bovine fecal metagenome[J]. Sci Rep, 2015, 4: 5100. DOI: 10.1038/srep05100
[14] PEI R T, KIM S C, CARLSON K H, et al. Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water Res, 2006, 40(12): 2427–2435. DOI: 10.1016/j.watres.2006.04.017
[15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.饲料卫生标准: GB 13078—2017[S].北京: 中国标准出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB 13078—2017 Hygienical standard for feeds[S]. Beijing: China Standard Press, 2017. (in Chinese)
[16] 谢文梅, 周丽丽, 吴蓉, 等. 2017年饲料及原料霉菌毒素分析报告[J]. 养猪, 2018(2): 25–28.
XIE W M, ZHOU L L, WU R, et al. Analysis report of feed and raw mycotoxins in 2017[J]. Swine Production, 2018(2): 25–28. (in Chinese)
[17] JIA B F, RAPHENYA A R, ALCOCK B, et al. CARD 2017:expansion and model-centric curation of the comprehensive antibiotic resistance database[J]. Nucleic Acids Res, 2017, 45(D1): D566–D573. DOI: 10.1093/nar/gkw1004
[18] HALEY B J, KIM S W, CAO H, et al. Genomic and metagenomic analysis of antibiotic resistance in dairy animals[J]. J Anim Sci, 2017, 95(S4): 131.
[19] ROBERTS M C. Update on acquired tetracycline resistance genes[J]. FEMS Microbiol Lett, 2005, 245(2): 195–203. DOI: 10.1016/j.femsle.2005.02.034
[20] ALEXANDER T W, YANKE L J, TOPP E, et al. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle[J]. Appl Environ Microbiol, 2008, 74(14): 4405–4416. DOI: 10.1128/AEM.00489-08
[21] REDDY B, SINGH K M, PATEL A K, et al. Insights into resistome and stress responses genes in Bubalus bubalis rumen through metagenomic analysis[J]. Mol Biol Rep, 2014, 41(10): 6405–6417. DOI: 10.1007/s11033-014-3521-y
[22] SINGH K M, JAKHESARA S J, KORINGA P G, et al. Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis)[J]. Gene, 2012, 507(2): 146–151. DOI: 10.1016/j.gene.2012.07.037
[23] AUFFRET M D, DEWHURST R J, DUTHIE C A, et al. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle[J]. Microbiome, 2017, 5: 159. DOI: 10.1186/s40168-017-0378-z
[24] PATTERSON A J, COLANGELI R, SPIGAGLIA P, et al. Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection[J]. Environ Microbiol, 2007, 9(3): 703–715. DOI: 10.1111/j.1462-2920.2006.01190.x
[25] SANTAMARÍA J, LÓPEZ L, SOTO C Y. Detection and diversity evaluation of tetracycline resistance genes in grassland-based production systems in Colombia, South America[J]. Front Microbiol, 2011, 2: 252.
[26] PEAK N, KNAPP C W, YANG R K, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies[J]. Environ Microbiol, 2007, 9(1): 143–151. DOI: 10.1111/j.1462-2920.2006.01123.x
[27] 朱阵, 曹明泽, 张吉丽, 等. 细菌耐药性研究进展[J]. 中国畜牧兽医, 2015, 42(12): 3371–3376.
ZHU Z, CAO M Z, ZHANG J L, et al. Research progress on bacterial resistance[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(12): 3371–3376. (in Chinese)
[28] GOMEZ-ALVAREZ V, REVETTA R P, SANTO DOMINGO J W. Metagenomic analyses of drinking water receiving different disinfection treatments[J]. Appl Environ Microbiol, 2012, 78(17): 6095–6102. DOI: 10.1128/AEM.01018-12
[29] XIONG W G, WANG Y L, SUN Y X, et al. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes[J]. Microbiome, 2018, 6(1): 34. DOI: 10.1186/s40168-018-0419-2
[30] LI H Z, CHU Q P, XU F L, et al. Combination of antibiotics suppressed the increase of a part of ARGs in fecal microorganism of weaned pigs[J]. Environ Sci Pollut Res, 2016, 23(18): 18183–18191. DOI: 10.1007/s11356-016-7004-7
[31] AGGA G E, SCOTT H M, AMACHAWADI R G, et al. Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs[J]. Prev Vet Med, 2014, 114(3-4): 231–246. DOI: 10.1016/j.prevetmed.2014.02.010
[32] FORSBERG K J, PATEL S, GIBSON M K, et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 2014, 509(7502): 612–616. DOI: 10.1038/nature13377
[33] CHAMBERS L, YANG Y, LITTIER H, et al. Metagenomic analysis of antibiotic resistance genes in dairy cow feces following therapeutic administration of third generation cephalosporin[J]. PLoS One, 2015, 10(8): e0133764. DOI: 10.1371/journal.pone.0133764
[34] UNEY K, ALTAN F, ELMAS M. Development and validation of a high-performance liquid chromatography method for determination of cefquinome concentrations in sheep plasma and its application to pharmacokinetic studies[J]. Antimicrob Agents Chemother, 2011, 55(2): 854–859. DOI: 10.1128/AAC.01126-10
[35] ALONSO A, SÁNCHEZ P, MARTÍNEZ J L. Environmental selection of antibiotic resistance genes[J]. Environ Microbiol, 2001, 3(1): 1–9. DOI: 10.1046/j.1462-2920.2001.00161.x
[36] BLAIR J M A, WEBBER M A, BAYLAY A J, et al. Molecular mechanisms of antibiotic resistance[J]. Nat Rev Microbiol, 2015, 13(1): 42–51. DOI: 10.1038/nrmicro3380
[37] BERGMILLER T, ANDERSSON A M C, TOMASEK K, et al. Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity[J]. Science, 2017, 356(6335): 311–315. DOI: 10.1126/science.aaf4762
[38] UPHOFF S, LORD N D, OKUMUS B, et al. Stochastic activation of a DNA damage response causes cell-to-cell mutation rate variation[J]. Science, 2016, 351(6277): 1094–1097. DOI: 10.1126/science.aac9786
[39] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481–487.
SU J Q, HUANG F Y, ZHU Y G. Antibiotic resistance genes in the environment[J]. Biodiversity Science, 2013, 21(4): 481–487. (in Chinese)
[40] HUANG K, XIA H, WU Y, et al. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting[J]. Bioresour Technol, 2018, 259: 32–39. DOI: 10.1016/j.biortech.2018.03.021
[41] ANTONOPOULOS D A, HUSE S M, MORRISON H G, et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation[J]. Infect Immun, 2009, 77(6): 2367–2375. DOI: 10.1128/IAI.01520-08
[42] YOUNG V B, SCHMIDT T M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota[J]. J Clin Microbiol, 2004, 42(3): 1203–1206.
[43] WANG Y L, WANG B J, LIU M, et al. Aflatoxin B1 (AFB1) induced dysregulation of intestinal microbiota and damage of antioxidant system in pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture, 2018, 495: 940–947. DOI: 10.1016/j.aquaculture.2018.06.065