畜牧兽医学报  2020, Vol. 51 Issue (5): 1091-1100. DOI: 10.11843/j.issn.0366-6964.2020.05.020    PDF    
牦牛源志贺菌分离鉴定、毒力基因检测与分型
张立伟, 张逸博, 郝贺, 汪文雅, 时欣欣, 韩旺, 仝星, 张永英, 石玉祥, 朱阵     
河北工程大学 生命科学与食品工程学院, 邯郸 056038
摘要:本试验旨在阐明牦牛源志贺菌致病性及分子流行特性,为探索志贺菌流行途径,制定合理的防控策略提供新思路。2017年在甘肃、青海、西藏三省(区)共采集牦牛肛门棉拭子样品1 396份,通过选择培养基筛选、生化鉴定、血清凝集试验对分离菌株进行系统鉴定,应用PCR方法检测分离株中ipaHipaBCDialsenset1Aset1Bstx七种毒力基因流行情况。参照McMLST网站数据库提供的15对管家基因序列进行MLST分型;并参考美国CDC的PulseNet实验方法,用限制性内切酶NotⅠ和XbaⅠ分别对福氏志贺菌和宋内志贺菌染色体进行酶切,对这些分离菌株进行PFGE分析。结果显示,41株分离株符合志贺菌生化特征,分为4个生化表型,B3(36.59%)和B4(32.35%)为主要生化表型。血清凝集试验鉴定23株为福氏志贺菌,包括四个血清型1a(n=2)、2a(n=16)、2b(n=3)、Xv(n=2);18株为宋内志贺菌,分为Ⅰ相(n=12)和Ⅱ相(n=6)。共检测到6种毒力基因ipaHipaBCDialsenset1Aset1B,携带率分别为100%、92.68%、73.17%、70.73%、26.83%、26.83%。具有7种毒力基因型,其中VT5和VT7型为主要流行型,分别占43.9%和24.39%,同时携带两种及以上毒力基因的志贺菌占92.68%。41株志贺菌共分为10个ST型,其中ST100、ST116、ST155型为主要流行型。Not Ⅰ酶切的福氏志贺菌分为13个PT型,而Xba Ⅰ酶切的宋内志贺菌分为14个PT型。综上所述,牦牛源志贺菌生化表型、血清型、ST型和PT既存在多态性,又有优势流行型。本试验分离的志贺菌与人源志贺菌携带相同的毒力基因,其中ipaHipaBCDialsen基因携带率较高,对公共安全具有潜在的威胁。
关键词志贺菌    牦牛    毒力基因    多位点序列分型    脉冲场凝胶电泳    
Isolation, Identification, Virulence Gene Detection and Typing of Shigella from Yak
ZHANG Liwei, ZHANG Yibo, HAO He, WANG Wenya, SHI Xinxin, HAN Wang, TONG Xing, ZHANG Yongying, SHI Yuxiang, ZHU Zhen     
Collge of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
Abstract: The purpose of this experiment is to clarify the pathogenicity and molecular epidemic characteristics of Shigella from yak, and to provide new ideas for exploring the epidemic ways of Shigella and formulating reasonable control strategies. In 2017, 1 396 samples of yak anal cotton swabs were collected in Gansu, Qinghai and Tibet, and isolates were systematically identified by selective medium screening, biochemical identification and serum agglutination test. Seven virulence genes (ipaH, ipaBCD, ial, sen, set1A, set1B and stx) were detected by PCR. MLST typing of 15 pairs of housekeeping gene sequences provided by Mc MLST website database was carried out. Referring to the PulseNet experimental method of CDC in the United States, The chromosome of S. flexneri and S. sonnei were digested by restriction endonuclease NotⅠ and XbaⅠ, and PFGE analysis was performed on these isolates. The results showed that 41 strains were consistent with the biochemical characteristics of Shigella. They were divided into 4 biochemical phenotypes, B3 (36.59%) and B4 (32.35%) were the main biochemical phenotypes. Serum agglutination test identified 23 strains of S. flexneri, including four serotypes 1a (n=2), 2a (n=16), 2b (n=3), Xv (n=2); 18 strains were S. sonnei bacteria are divided into phase Ⅰ (n=12) and phase Ⅱ (n=6). A total of six virulence genes ipaH, ipaBCD, ial, sen, set1A, and set1B were detected, and the carrying rates were 100%, 92.68%, 73.17%, 70.73%, 26.83%, and 26.83%, respectively. There are 7 virulence genotypes, of which VT5 and VT7 are the main epidemic types, accounting for 43.9% and 24.39%, respectively, while Shigella carrying two or more virulence genes account for 92.68%. Fourty-one strains of Shigella were divided into 10 types of ST, of which ST100, ST116 and ST155 were the main epidemic types. S. flexneri of NotⅠ enzyme digestion was divided into 13 PTs, while S. sonnei was divided into 14 PTs by XbaⅠ enzyme digestion. The biochemical phenotype, serotype, ST, and PT type of Shigella isolated from yaks are both polymorphic and prevalent. The Shigella isolates carried the same virulence genes as human, and carrying rates of ipaH, ipaBCD, ial, and sen genes were higher, which posing a potential threat to public safety.
Key words: Shigella    yak    virulence genes    multilocus sequence typing    pulsed field gel elect-rophoresis    

志贺菌(Shigella)是革兰阴性兼性肠侵袭性病原体,其定植于人和灵长类动物肠上皮并引起传染性腹泻[1-2]。志贺菌为食源性病原菌,通过被污染的水和食物经口感染,其发病率和病死率居世界腹泻病首位,主要易感人群为5岁以下儿童和免疫障碍人群,严重危害人类健康和生命安全,是国际公认的重要传染病之一[3-6]。在我国志贺菌引起腹泻的报道主要集中在甘肃、新疆、宁夏等西部不发达地区,而广州、上海、浙江、福建、江苏等东南部发达地区鲜有报道[7]。依据志贺菌生化特征及菌体O抗原表位差异,可将其分为4大血清群超过50个血清型:A群痢疾志贺菌(S. dysenteriae);B群福氏志贺菌(S. flexneri);C群鲍氏志贺菌(S. boydii);D群宋内志贺菌(S. sonnei)[8]。各群志贺菌致病性、致死率及流行地域有所不同, 但在我国以B群福氏志贺菌(2a、1a、1b、2b、X、Y、F6、Xv)和D群宋内志贺菌为主[9]

志贺菌的天然宿主为人和灵长类动物,但志贺菌感染新宿主的报道逐渐增多[10]。目前猴、兔、牛、猪、狐狸、鸡、鱼等动物上都分离到了志贺菌[10-15]。因此,通过对动物源志贺菌分子流行特征分析,有利于对感染病例分离菌进行有效溯源及完善志贺菌传播途径研究。同时分析菌株的毒力因子携带情况, 可以评估志贺菌的危害性,便于采取相应的控制措施。本研究对2017年在甘肃、青海、西藏分离的志贺菌进行了系统鉴定及毒力基因检测,多位点序列分型(multilocus sequence typing, MLST)和脉冲场凝胶电泳(pulsed field gel electrophoresis, PFGE)分型分析,旨在阐明牦牛源志贺菌致病性及分子流行特征。

1 材料与方法 1.1 材料

试验样品由中国农业科学院兰州畜牧与兽药研究所采集,课题组于2017年在甘肃(甘南n=511;天祝n=457)、青海(玉树n=176;西宁n=158)、西藏(n=94)三省(区)牦牛放牧区共采集犊牛腹泻牦牛肛门棉拭子样品1 396份。

1.2 菌株分离培养

将采集的样品接种于SS培养基上,37 ℃恒温培养18~24 h。挑取无色、半透明、光滑、湿润、边缘整齐、圆形菌株,纯化培养后进行生化及血清型鉴定。

1.3 生化鉴定

将纯化好的可疑菌株接种于血平板上(购自广东环凯微生物科技有限公司),37 ℃过夜培养,用吸管挑取单个纯菌落到0.85%的API NaCl培养基中,调整细菌浓度为0.5麦氏单位,加入API20E生化鉴定试剂盒(购自法国梅里埃)中,37 ℃孵育18~24 h。依据APIweb TMM鉴定软件读取结果。

1.4 血清学鉴定

生化鉴定为志贺菌的菌株接种于血平板中增菌,采用玻片凝集法,进行多价血清鉴定,阳性凝集者,分别进行相应的单价血清玻片凝集试验。具体步骤参照试剂盒说明书进行。

1.5 毒力基因检测 1.5.1 DNA模板制备

刮取血平板培养基上经18~24 h生长的细菌培养物至400 μL TE缓冲液中,100 ℃水浴15 min,然后12 000 r·min-1离心10 min,吸取200 μL上清液至另一无菌EP管,置-20 ℃冰箱备用[16]

1.5.2 PCR反应及电泳

志贺菌分离株分别检测7个常见的毒力基因,引物均参考已发表文献合成(表 1)。PCR反应体系、反应条件及电泳,参照文献报道[17-19]

表 1 毒力基因引物序列信息 Table 1 The information of primers for detection of virulence genes
1.6 多位点序列分型(MLST) 1.6.1 试验方法

MLST试验参照McMLST网站数据库提供的15对管家基因序列及实验条件进行(http://www.shigatox.net/ecmlst/cgi-bin/scheme)。PCR产物经纯化后送金唯智科技服务有限公司双向测序[20]

1.6.2 序列比对及聚类分析

15对管家基因序列结果分别按照McMLST对各基因规定的长度要求,使用Editseq软件剪切,并分别上传McMLST数据库,得到各基因的等位基因值及菌株的ST (sequence type)型。使用goeBURST软件对分析结果进行聚类分析。

1.7 脉冲场凝胶电泳(PFGE) 1.7.1 试验方法

PFGE具体步骤参考美国CDC PulseNet推荐的实验方法,进行分离株的包埋胶制备和酶切,其中:福氏志贺菌用NotⅠ酶切;宋内志贺菌和参考菌株H9812用Xba Ⅰ酶切。制备1%的黄金琼脂胶块,在0.5×TBE缓冲溶液中电泳21 h。电泳条件为:电压6.0 V·cm-1,脉冲夹角120°,起始脉冲时间2.16 s,终止脉冲时间54.17 s,温度控制在14 ℃。电泳结束后,把胶放入1 μg·mL-1EB液中,在水平摇床染色30 min,置纯水中脱色90 min, 在凝胶成像仪中读取图像[21-22]

1.7.2 图像分析及聚类分析

通过PFGE图片中各菌条带有无及位置对其进行分析。各血清群志贺菌PFGE所拍摄的图片分别用BioNumerics (version 7.1)数据库软件进行处理分析,识别图像条带。使用国际标准菌株H9812作为Marker对条带进行校准,标定条带位置,必要时需手动较正。以UPGMA方法进行聚类分析[23]

2 结果 2.1 细菌分离鉴定

经SS平板选择培养共发现62株具有志贺菌生长特征的疑似菌落。经生化鉴定后有41株符合志贺菌生化特征,重复鉴定结果一致。经统计,41株志贺菌分为4个生化表型,其中B3和B4为主要生化表型(表 2)。

表 2 志贺菌生化表型 Table 2 The biochemical characteristics of Shigella isolates

多价血清凝集试验鉴定41株志贺菌包括23株福氏志贺菌、18株宋内志贺菌,未发现痢疾志贺菌和鲍氏志贺菌(表 3)。经相应的单价血清凝集鉴定共分为6个血清型:福氏志贺菌1a、2a、2b、Xv;宋内志贺菌Ⅰ相和Ⅱ相。其中以福氏志贺菌2a(39.02%)和宋内志贺菌Ⅰ相(29.27%)为主要流行血清型。18株宋内志贺菌均表现为B4生化表型,而B1和B3生化表型主要分布于福氏志贺菌2a血清型中。

表 3 志贺菌血清型鉴定结果 Table 3 The results of Shigella serotypes
2.2 毒力基因检测 2.2.1 毒力基因检出率

41株志贺菌经PCR扩增分别检出ipaHipaBCDialsenset1Aset1B六种毒力基因。结果显示,41株志贺菌菌携带ipaH基因,阳性率为100%,其次为ipaBCDialsen,检出率分别为92.68%、73.17%、70.73%。肠毒素1相关基因set1Aset1B基因检出率较低,且只存在于福氏志贺菌中(表 4)。

表 4 志贺菌毒力基因的检出率 Table 4 Detection of virulence genes in Shigella
2.2.2 毒力基因表型

依据6种毒力基因在41株志贺菌中的分布特征,可形成七种毒力基因表型(virulence genes types, VT),见表 5。在这些分离株中携带两种或两种以上毒力基因的菌株约占92.68%,其中VT2、VT5、VT7为主要的毒力表型,共占85.36%。不同志贺菌毒力基因表型也存在差异,在23株福氏志贺菌中以VT5和VT7为主,分别占30.43%和43.47%;而在宋内志贺菌中以VT2和VT5为主,分别占33.33%和61.11%。

表 5 志贺菌各毒力基因型检出率 Table 5 Statistical information of the detection rate of each virulence genes types in Shigella
2.3 MLST分型

依据15个等位基因型差异,41株志贺菌共分为10 ST型,福氏志贺菌以ST100型为主要流行型,而宋内志贺菌以ST116和ST155型为主要流行型。在福氏志贺菌的6个ST型中,ST68和ST227型与其他ST型等位基因差异较大,仅有arcA等位基因值相同,而ST100、ST135和ST120四个ST型之间相似度较高仅aspC等位基因存在差异。宋内志贺菌的4个ST型等位基因差异较小,各ST型中仅有aspCmutSrpoS三个等位基因存在差异,其余12个等位基因完全相同(图 1表 6)。

图 1 志贺菌分离株MLST聚类分析图 Fig. 1 The clustering tree of Shigella isolates based on STs
表 6 志贺菌等位基因值及ST型 Table 6 MLST allelic profiles and ST designation of Shigella isolates
2.4 PFGE分型

Not Ⅰ酶切的23株福氏志贺菌被分为13个PT(FPT)型,Xba Ⅰ酶切的18株宋内志贺菌被分为14个PT(SPT)型。从PFGE聚类图谱分析,在福氏志贺菌中A群和B群菌株相似度均超过80%,而C群菌株17T481(FPT13)与其他菌株相似度较低(图 2)。在13 FPT型中包含两个菌株以上的PT型有4个:FPT5、FPT6、FPT7、FPT9,其中FPT6型流行最广,包含7个菌株。B群中FPT5和FPT6两型相似度高达96%以上,且具有相同的生化表型(B3)、血清型(2a)和毒力基因表型(VT7)。

图 2 福氏志贺菌PFGE聚类分析图 Fig. 2 PFGE dendrogram of S.flexneri

PFGE聚类将宋内志贺菌分为相似度较低(< 74%)的D和E两群,且除SPT5和SPT6分别包含2和3个菌株外,其他PT型均只包含一个菌株(图 3)。虽然PFGE聚类分析不能将宋内志贺菌Ⅰ相和Ⅱ相区分,但可将不同毒力表型菌株分别聚类。D群菌株中除17GSN227(SPT3)外,其他菌株都携带VT2毒力表型,而E群菌株均携带VT5毒力表型。

图 3 宋内志贺菌PFGE聚类分析图 Fig. 3 PFGE dendrogram of S.sonnei
3 讨论

志贺菌是一种特殊病原菌,它是由多个独立的大肠杆菌起源,并经过长期趋同进化发展形成[24]。先前研究认为志贺菌的天然宿主范围较窄,只感染人和灵长类,但近年来在多种动物中志贺菌分离报道[10]。鉴于志贺菌对公共健康的严重威胁,以及食品动物携带病原菌的特殊危害。本研究调查分析了志贺菌在甘肃、青海、西藏牦牛主要养殖区域流行特性,研究结果丰富了志贺菌流行信息,具有公共卫生学意义。

伴随着人们对病原菌研究的逐渐深入,传统的血清型分型、生化表型分型等分型方法,已不能满足人们对病原菌分型、变异菌株鉴定以及细菌追踪溯源的要求[25]。MLST和PFGE等分子分型技术逐渐成为菌株遗传多态性研究及揭示菌株之间关系的重要手段。MLST分型技术是基于细菌高度保守的管家基因差异对细菌进行分析,具有较强的通用性,便于不同实验室或不同数据相互比较。本试验检测到的10个ST型在肉牛和奶牛分离株中均有报道[26-27],且ST100、ST116、ST155型仍为主要流行型。依据等位基因差异分析,本次分离到的福氏志贺菌亲缘关系较远,而18株宋内志贺菌可能来自相近的起源。PFGE分型技术是基于DNA指纹图谱相似性判断菌株亲缘关系的分型方法,相比其他分型方法,PFGE技术具有分辨力能力强、重复性好、可直观判断病原菌亲缘性等多种优势,因此被视为细菌分子分型的金标准[28-29]。利用PFGE技术,41株志贺菌共分为27个独立的PT型,相比MLST分型具有更高的识别度,相同的ST型在PFGE中往往可被分为多个不同的PT型,而相同的PT型菌株ST型相同。结合MLST和PFGE两种分型技术,更有利于探索动物源志贺菌的流行规律及菌株溯源。

携带毒力基因已经成为致病菌的重要标志,可引起宿主不同的病理反应。在志贺菌的染色体和/或质粒上拥有多种功能不同的毒力基因[30]。志贺菌的特殊肠道致病性是由表达侵袭力、穿透性、毒素(内毒素和外毒素)多种相关的毒力基因共同作用所引起[31-32]。在笔者检测的7个志贺菌中常见的毒力基因中,侵袭性质粒抗原基因ipaH通常作为检测志贺菌的标志,在本次分离株中阳性率为100%,表明41株志贺菌分离株均符合其血清学特点。该基因与细菌的侵入有关,且在志贺菌上存在多个拷贝,其中5个位于毒力大质粒上,7个位于染色体上[18, 33-34]ipaBCD广泛存在于各血清型志贺菌属细菌中,阳性率高达92.68%,仅次于ipaH基因。该基因存在于编码Ⅲ型分泌系统的基因簇内,是志贺毒素发挥作用的重要因素,可编码分泌侵袭性蛋白,破坏宿主细胞质膜,协助志贺毒素进入细胞内[35]。侵袭协助基因ial和志贺肠毒素基因sen位于毒力大质粒中,在反复传代和储存会导致其丢失或变迁[36-38]set1基因编码志贺菌肠毒素1,导致志贺菌感染者水样腹泻,该基因由染色体编码调节,主要存在于福氏志贺菌2a血清型,其他血清型中罕见[36, 39]。志贺菌的致病性与所携带的毒力基因相关,其致病过程是多种毒力基因相互作用的结果,若志贺菌仅携带ipaH基因,则毒力较弱,可能不会引起发病,仅为志贺菌携带者或者是慢性迁延型患者[40]

4 结论

本研究利用MLST和PFGE分子分型技术对来自甘肃、青海、西藏三省(区)牦牛养殖区分离到的41株志贺菌进行了分子流行病学分析,结合生化鉴定、血清学鉴定、毒力基因等常规检测结果进一步丰富了动物源志贺菌流行病学资料。多数菌株携带两种及以上毒力基因,表明动物源志贺菌具有较强的毒力基础,对公共安全具有潜在的威胁。

参考文献
[1] MARTEYN B, GAZI A, SANSONETTI P. Shigella: a model of virulence regulation in vivo[J]. Gut Microbes, 2012, 3(2): 104–120. DOI: 10.4161/gmic.19325
[2] KOTLOFF K L, RIDDLE M S, PLATTS-MILLS J A, et al. Shigellosis[J]. Lancet, 2018, 391(10122): 801–812. DOI: 10.1016/S0140-6736(17)33296-8
[3] BARDHAN P, FARUQUE A S G, NAHEED A, et al. Decreasing shigellosis-related deaths without Shigella spp. -specific interventions, Asia[J]. Emerg Infect Dis, 2010, 16(11): 1718–1723. DOI: 10.3201/eid1611.090934
[4] ROLFO F, MARIN G H, SILBERMAN M, et al. Epidemiological study of shigellosis in an urban area of Argentina[J]. J Infect Dev Ctries, 2012, 6(4): 324–328.
[5] MATHER A E, BAKER K S, MCGREGOR H, et al. Bacillary dysentery from World War 1 and NCTC1, the first bacterial isolate in the National Collection[J]. Lancet, 2014, 384(9955): 1720. DOI: 10.1016/S0140-6736(14)61790-6
[6] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests; approved standard[M]. 11th ed. Wayne: Clinical and Laboratory Standards Institute, 2012.
[7] 常昭瑞, 孙强正, 裴迎新, 等. 2012年中国大陆地区细菌性痢疾疫情特点与监测结果分析[J]. 疾病监测, 2014, 29(7): 528–532.
CHANG Z R, SUN Q Z, PEI Y X, et al. Surveillance for bacillary dysentery in China, 2012[J]. Disease Surveillance, 2014, 29(7): 528–532. (in Chinese)
[8] 彭俊平, 杨剑, 金奇. 志贺菌研究进展[J]. 中国科学:生命科学, 2010, 40(1): 14–22.
PENG J P, YANG J, JIN Q. Research progress in Shigella[J]. Scientia Sinica Vitae, 2010, 40(1): 14–22. (in Chinese)
[9] LIVIO S, STROCKBINE N A, PANCHALINGAM S, et al. Shigella isolates from the global enteric multicenter study inform vaccine development[J]. Clin Infect Dis, 2014, 59(7): 933–941. DOI: 10.1093/cid/ciu468
[10] SHI R, YANG X, CHEN L, et al. Pathogenicity of Shigella in chickens[J]. PLoS One, 2014, 9(6): e100264. DOI: 10.1371/journal.pone.0100264
[11] ONYANGO D M, WANDILI S, KAKAI R, et al. Isolation of Salmonella and Shigella from fish harvested from the Winam Gulf of Lake Victoria, Kenya[J]. J Infect Dev Ctries, 2009, 3(2): 99–104.
[12] PRIAMUKHINA N S, KILESSO V A, TIKHOMIROV E D. Animal carriers of Shigella and their possible epidemiological importance[J]. Zh Mikrobiol Epidemiol Immunobiol, 1984(11): 20–24.
[13] MAURELLI A T, ROUTH P R, DILLMAN R C, et al. Shigella infection as observed in the experimentally inoculated domestic pig, Sus scrofa domestica[J]. Microb Pathog, 1998, 25(4): 189–196. DOI: 10.1006/mpat.1998.0230
[14] 冉丹丹, 于学辉, 汤承, 等. 牦牛源鲍氏志贺菌的鉴定及对BALB/C小鼠的致病性[J]. 畜牧兽医学报, 2013, 44(1): 145–151.
RAN D D, YU X H, TANG C, et al. Identification of Shigella boydii in yak and its pathogenicity to BALB/C mice[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(1): 145–151. (in Chinese)
[15] 许兰菊, 王川庆, 马水锋, 等. 鸡志贺氏菌感染的血清流行病学调查[J]. 中国兽医学报, 2005, 25(6): 594–596.
XU L J, WANG C Q, MA S F, et al. Serum epidemiology survey on Shigellae infection in the chicken[J]. Chinese Journal of Veterinary Science, 2005, 25(6): 594–596. DOI: 10.3969/j.issn.1005-4545.2005.06.011 (in Chinese)
[16] AHMED A M, SHIMAMOTO T, SHIMAMOTO T, et al. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers[J]. Int J Med Microbiol, 2013, 303(8): 475–483. DOI: 10.1016/j.ijmm.2013.06.009
[17] DAS A, NATARAJAN M, MANDAL J. The emergence of quinolone resistant Shigella sonnei, Pondicherry, India[J]. PLoS One, 2016, 11(8): e0160290. DOI: 10.1371/journal.pone.0160290
[18] VARGAS M, GASCON J, JIMENEZ DE ANTA M T, et al. Prevalence of Shigella enterotoxins 1 and 2 among Shigella strains isolated from patients with traveler's diarrhea[J]. J Clin Microbiol, 1999, 37(11): 3608–3611. DOI: 10.1128/JCM.37.11.3608-3611.1999
[19] FARUQUE S M, KHAN R, KAMRUZZAMAN M, et al. Isolation of Shigella dysenteriae type 1 and S. flexneri strains from surface waters in Bangladesh:comparative molecular analysis of environmental Shigella isolates versus clinical strains[J]. Appl Environ Microbiol, 2002, 68(8): 3908–3913. DOI: 10.1128/AEM.68.8.3908-3913.2002
[20] LI S J, SUN Q Z, WEI X Y, et al. Genetic characterization of Shigella flexneri isolates in Guizhou Province, China[J]. PLoS One, 2015, 10(1): e0116708. DOI: 10.1371/journal.pone.0116708
[21] CUI X Y, WANG J, YANG C J, et al. Prevalence and antimicrobial resistance of Shigella flexneri serotype 2 variant in China[J]. Front Microbiol, 2015, 6: 435.
[22] LI S J, WANG J P, WEI X Y, et al. Molecular characterization of Shigella sonnei:an increasingly prevalent etiologic agent of shigellosis in Guizhou Province, southwest of China[J]. PLoS One, 2016, 11(5): e0156020. DOI: 10.1371/journal.pone.0156020
[23] RIBOT E M, FAIR M A, GAUTOM R, et al. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet[J]. Foodborne Pathog Dis, 2006, 3(1): 59–67.
[24] PUPO G M, LAN R T, REEVES P R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics[J]. Proc Natl Acad Sci U S A, 2000, 97(19): 10567–10572. DOI: 10.1073/pnas.180094797
[25] 刘慧玲, 万志刚, 洪小柳, 等. 进出口食品中不同血清型沙门氏菌PFGE和MLST分型比较研究[J]. 食品安全质量检测学报, 2014, 5(11): 3454–3461.
LIU H L, WAN Z G, HONG X L, et al. Comparison of pulsed-field gel electrophoresis and multilocus sequence typing of Salmonella in import and export foods[J]. Journal of Food Safety and Quality, 2014, 5(11): 3454–3461. (in Chinese)
[26] ZHU Z, CAO M Z, ZHOU X Z, et al. Epidemic characterization and molecular genotyping of Shigella flexneri isolated from calves with diarrhea in Northwest China[J]. Antimicrob Resist Infect Control, 2017, 6: 92. DOI: 10.1186/s13756-017-0252-6
[27] ZHU Z, SHI Y X, ZHOU X Z, et al. Molecular characterization of fluoroquinolone and/or cephalosporin resistance in Shigella sonnei isolates from yaks[J]. BMC Vet Res, 2018, 14(1): 177. DOI: 10.1186/s12917-018-1500-6
[28] 许龙岩, 袁慕云, 刘静宇, 等. 进出口食品中沙门氏菌PFGE分型及耐药研究[J]. 检验检疫学刊, 2010, 20(2): 14–17.
XU L Y, YUAN M Y, LIU J Y, et al. Pulsed - field gel electrophoresis typing and drug resistance study of Salmonella[J]. Journal of Inspection and Quarantine, 2010, 20(2): 14–17. DOI: 10.3969/j.issn.1674-5354.2010.02.005 (in Chinese)
[29] LUKINMAA S, TAKKUNEN E, SⅡTONEN A. Molecular epidemiology of Clostridium perfringens related to food-borne outbreaks of disease in Finland from 1984 to 1999[J]. Appl Environ Microbiol, 2002, 68(8): 3744–3749. DOI: 10.1128/AEM.68.8.3744-3749.2002
[30] DUTTA S, JAIN P, NANDY S, et al. Molecular characterization of serologically atypical provisional serovars of Shigella isolates from Kolkata, India[J]. J Med Microbiol, 2014, 63(12): 1696–1703. DOI: 10.1099/jmm.0.081307-0
[31] ZHANG C L, LIU Q Z, WANG J, et al. Epidemic and virulence characteristic of Shigella spp. with extended-spectrum cephalosporin resistance in Xiaoshan District, Hangzhou, China[J]. BMC Infect Dis, 2014, 14: 260. DOI: 10.1186/1471-2334-14-260
[32] QU M, ZHANG X, LIU G R, et al. An eight-year study of Shigella species in Beijing, China:serodiversity, virulence genes, and antimicrobial resistance[J]. J Infect Dev Ctries, 2014, 8(7): 904–908. DOI: 10.3855/jidc.3692
[33] FERNANDEZ-PRADA C M, HOOVER D L, TALL B D, et al. Shigella flexneri IpaH7.8 facilitates escape of virulent bacteria from the endocytic vacuoles of mouse and human macrophages[J]. Infect Immun, 2000, 68(6): 3608–3619. DOI: 10.1128/IAI.68.6.3608-3619.2000
[34] PARSOT C. Shigella spp. and enteroinvasive Escherichia coli pathogenicity factors[J]. FEMS Microbiol Lett, 2005, 252(1): 11–18. DOI: 10.1016/j.femsle.2005.08.046
[35] DA CRUZ C B N, DE SOUZA M C S, SERRA P T, et al. Virulence factors associated with pediatric shigellosis in Brazilian Amazon[J]. Biomed Res Int, 2014, 2014: 539697.
[36] 熊燕, 江元山, 陈智, 等. 志贺菌毒力相关基因的PCR检测分析[J]. 中国卫生检验杂志, 2007, 17(5): 805–806, 904.
XIONG Y, JIANG Y S, CHEN Z, et al. Detection of virulence genes in Shigella by PCR[J]. Chinese Journal of Health Laboratory Technology, 2007, 17(5): 805–806, 904. DOI: 10.3969/j.issn.1004-8685.2007.05.016 (in Chinese)
[37] 易旭, 夏胜利, 张锦, 等. 2007年中国四省福氏志贺菌分离菌株的毒力基因检测和PFGE分析[J]. 中国人兽共患病学报, 2010, 26(8): 730–734.
YI X, XIA S L, ZHANG J, et al. Virulence factors detection and pulsed field gel electrophoresis analysis of molecular typing on Shigella flexneri isolated from four provinces in China[J]. Chinese Journal of Zoonoses, 2010, 26(8): 730–734. DOI: 10.3969/j.issn.1002-2694.2010.08.004 (in Chinese)
[38] 刘兴, 李宁沙, 陈立华, 等. 长沙地区宋内志贺菌的耐药性及毒力基因分析[J]. 中国感染控制杂志, 2014, 13(10): 596–600.
LIU X, LI N S, CHEN L H, et al. Antimicrobial resistance and virulence genes of Shigella sonnei in Changsha area[J]. Chinese Journal of Infection Control, 2014, 13(10): 596–600. DOI: 10.3969/j.issn.1671-9638.2014.10.005 (in Chinese)
[39] YAVZORI M, COHEN D, ORR N. Prevalence of the genes for shigella enterotoxins 1 and 2 among clinical isolates of shigella in Israel[J]. Epidemiol Infect, 2002, 128(3): 533–535.
[40] PHANTOUAMATH B, SITHIVONG N, INSISI-ENGMAY S, et al. Pathogenicity of Shigella in healthy carriers:a study in Vientiane, Lao People's Democratic Republic[J]. Jpn J Infect Dis, 2005, 58(4): 232–234.