畜牧兽医学报  2020, Vol. 51 Issue (5): 914-922. DOI: 10.11843/j.issn.0366-6964.2020.05.003    PDF    
马卵母细胞体外成熟的研究进展
神英超, 任宏, 纳日嘎, 王希生, 芒来, 格日乐其木格     
内蒙古农业大学动物科学学院, 内蒙古自治区马属动物遗传育种与繁殖学重点实验室, 呼和浩特 010018
摘要:随着全球马产业的发展,马发挥的经济价值越来越大。辅助生殖技术有利于发挥优良马匹的潜在价值。马卵母细胞体外成熟(IVM)是辅助生殖技术重要的组成部分,卵母细胞的获取是体外成熟的前提,切刮法能从离体卵巢中获得较多的马卵母细胞,而活体采卵技术(OPU)则能持续地获得卵母细胞,并能较好的保存马卵母细胞的发育能力。扩张型卵母细胞的成熟率高于紧密型卵母细胞,母马的年龄会影响到其卵母细胞的质量。马卵母细胞体外存放较长时间不会影响其发育能力,现在已有较为成熟的体系能使马卵母细胞在体外保存24 h以上而不影响其成熟率。在马卵母细胞成熟体系中常用的基础培养液是M199,添加胎牛血清(FBS)、促卵泡素(FSH)、促黄体生成素(LH)、胰岛素样生长因子-1(IGF-1)等物质能显著提高成熟率,常用培养环境为38~39℃,5% CO2饱和湿度下培养,培养时间30 h。成熟的卵母细胞有扩张的卵丘细胞和极体,且成熟的卵母细胞的细胞骨架及微管结构也会发生变化。本文针对马卵母细胞的采集和体外成熟培养的相关研究进行总结,重点阐述了不同采集技术的回收率以及影响马卵母细胞体外成熟率的关键因素,以期对今后马卵母细胞体外成熟的进一步研究及后期体外受精技术的发展提供借鉴与参考。
关键词    卵母细胞    收集    体外成熟(IVM)    
Research Progress of In Vitro Maturation in Horse Oocytes
SHEN Yingchao, REN Hong, NARIGA, WANG Xisheng, MANG Lai, BOU Gerelchimeg     
Inner Mongolia Key Laboratory of Equine Genetics, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract: With the development of the global horse industry, the economic value of horses is growing. Assisted reproductive technology is beneficial to dig out the potential value of excellent equine, and in vitro maturation (IVM) of horse oocytes is an important part of assisted reproductive technology. Oocyte recovery is a preparation for in vitro maturation, for the isolated ovary, more oocytes can be obtained by using the scraping method. To obtain oocytes continuously for a long time and to protect the development ability of oocytes, ovum pick up (OPU) is widely used in mare. The maturation rate of expanded oocytes is higher than that of compact oocytes, and the age of the mares affects the quality of their oocytes. Horse oocytes stored in vitro for a long time will not affect their developmental ability, there are mature systems that can keep horse oocytes in vitro for more than 24 hours without affecting their maturation rate. The basic culture medium commonly used in horse oocyte maturation system is M199, and the addition of FBS, FSH, LH, IGF-1 and other substances can significantly improve the maturation rate, and the commonly used culture environment is 38-39℃, 5% CO2 and saturated humidity incubate for 30 hours. Mature oocytes have dilated cumulus cells and polar body, and the cytoskeleton and microtubule structure of oocytes will be changed after maturation. This review summarized the research on the collection and in vitro maturation of equine oocytes, focusing on the recovery rate of different collection techniques and some key factors affecting the in vitro maturation rate of equine oocytes, in order to provide some knowledge and experience for further research of IVM and in vitro fertilization (IVF) in the future.
Key words: horse    oocytes    recovery    in vitro maturation    

马是一种重要的家畜,在世界各地均有分布,主要用于马术运动和休闲娱乐行业,也有一些国家将马做役用、肉用和乳用,在各国均占有重要的经济地位。近几年,辅助生殖技术如体外受精和胚胎移植等技术在一些发达国家的商业育马中有了广泛和深入的应用。运用这些技术能够很大程度上提高母马的繁殖效率,挖掘公马和母马的繁育潜能,并克服一些自然障碍使优良基因能够得以保存和传递,从而更加准确、高效地繁育出具有优良性状的后代,因此具有巨大的商业价值[1]。但目前国内马产业发展相对滞后,辅助生殖技术在马繁育工作中的应用并不深入的应用。卵母细胞体外成熟(in vitro maturation,IVM)是体外受精技术的首要和最重要的环节,卵母细胞的质量决定了后续体外受精实验的成功率。1981年Fulka和Okolski[2]首次进行了马卵母细胞体外成熟实验,获得了68%的体外成熟率。但由于马卵巢可用的卵泡数量较少,马特殊的生殖激素调控环境以及马卵母细胞特殊的发育调控机制等原因,至今国内外马卵母细胞体外成熟率仅在50%~70%的水平,少数实验室能接近80%[3-4],这低于其他哺乳动物,如猪(70%~85%)[5]、牛(70%~ 80%)[6]的卵母细胞体外成熟率。本文就马卵母细胞的收集方法,影响马卵母细胞体外成熟的因素,以及马卵母细胞体外成熟评估展开综述。

1 马卵母细胞收集

马的卵巢内可见的卵泡数量不是很多,卵巢外侧被一层白色的系膜组织包裹,且具有排卵窝来控制排卵,这种特殊的结构给马卵母细胞的收集带来不便[7]。一般对于离体的卵巢常用抽吸法和切刮法来获得卵母细胞。抽吸法是将注射器的针头扎入卵泡内抽吸卵泡液获得卵母细胞的方法,切刮法是将卵泡用手术刀切开,并用37 ℃双抗生理盐水冲洗卵泡内壁获得卵母细胞的方法。由于马卵母细胞与卵泡壁贴合紧密,抽吸法不易将卵母细胞抽出,且抽吸时的强大负压易造成卵丘颗粒细胞的丢失从而影响卵母细胞的发育,而切刮法不仅回收率高于抽吸法,获得的卵母细胞完整性也较好[4],因此切刮法更适于马卵巢的处理。也可以将抽吸法和切刮法结合,以提高卵母细胞的回收率。

由于马在多数国家不是主要的肉用动物,而是作为一种伴侣动物,供人们休闲骑乘或者参与马术运动,因而马术产业发达的欧美国家对于马的福利比较看重,禁止或控制全国范围内马匹的屠宰,故离体的马卵巢较难获得,活体取卵技术(ovum pick up,OPU)是近几年比较常用的马卵母细胞收集方法[3]。由于马超数排卵困难,以及马卵巢结构的特殊性和卵母细胞与卵泡壁贴合紧密[8]等原因,导致活体采卵成功率和卵母细胞收集数量不是很高。因而,除了常规的卵泡穿刺外还需要对卵泡进行冲刷来使卵母细胞脱落,以获得更多卵母细胞。冲洗卵泡所用到的卵泡冲洗液一般为商品化的冲胚液,或是配置简单的冲洗液(M199培养液+胎牛血清+肝素钠),但冲洗液中的一些成分如苯甲醇等会影响卵母细胞的发育,配置和选购时需谨慎[9]。整个冲洗过程中液体要保持在37 ℃左右,并且每个卵泡要冲洗4~8次来最大限度地获得卵母细胞[10]。一般选取6~30 mm的卵泡进行穿刺抽取操作,每匹马能获得5~12枚卵母细胞,这也取决于马的卵泡数量、马的年龄和采卵季节[10-11]。通过OPU获得的马卵母细胞的体外成熟率要高于离体卵巢收集到的卵母细胞[12]。长期或大量的实施OPU会对马卵巢的功能产生一些不利的影响,Bøgh等[13]发现,对马的卵巢穿刺会在卵巢基质中诱导修复性纤维化,并有诱发卵巢组织内形成脓肿的风险,这可能会损害马的生育能力。因此,试验操作人员需要制定有序、长期的采卵计划,根据不同母马的实际情况选择活体采卵时间,使其对母马伤害减小的同时,获得更多的卵母细胞用于后续体外操作。

2 马卵母细胞体外成熟培养 2.1 马卵母细胞的类型和质量对体外成熟的影响

根据卵丘颗粒细胞形态的不同,可将收集到的马卵母细胞分为扩张型卵母细胞和紧凑型卵母细胞(图 1)。扩张型卵母细胞大多来源于闭锁卵泡,而紧凑型卵母细胞多数来源于生长卵泡[14]。多数研究表明,扩张型的卵母细胞有更高的减数分裂能力,在体外成熟试验中成熟率显著高于紧凑型的卵母细胞[8, 15]。扩张型卵母细胞和紧凑型卵母细胞有不同的染色质构型和生发泡结构,Hinrichs等[16]研究发现,大多数紧凑型马卵母细胞的染色质在生发泡内是弥漫性分布的,然而大多数扩张型马卵母细胞的染色质呈现出聚集的状态,拥有聚集状态染色质的卵母细胞有更强的减数分裂能力[17] (图 2)。Galli等[8]通过研究发现,进行胞浆精子注射(ICSI)操作后,紧凑型的马卵母细胞有更高的卵裂率,而王荣祥等[18-19]的研究结果表明,ICSI操作之后两种类型的马卵母细胞卵裂率和囊胚率并无显著差异。

图 1 扩张型卵母细胞(A)和紧凑型卵母细胞(B)[4] Fig. 1 Expended oocytes (A) and compact oocytes (B)[4]
A.纤维状;B.中间状态;C.松散的聚集状态;D.紧密的聚集状态;E.弥散状[17] A. Fibrillar; B. Intermediate; C. Condensed chromatin (loose); D. Condensed chromatin (tight); E. Fluorescent nuclars[17] 图 2 马卵母细胞5种不同的核染色质形态 Fig. 2 Five different types of horse oocytes chromatin configuration

卵泡的大小也会影响卵母细胞染色质形态和发育能力,在直径小于20 mm的卵泡中收集到的紧凑型卵母细胞大都呈现出染色质弥散的状态,体外成熟率很低(30%~43%),而从大于20 mm的卵泡中收集到的紧凑型卵母细胞大部分(80%)呈现出染色质聚集的状态,且成熟率能达到60%[20]。同样的,扩张型的卵母细胞也表现出相同的趋势,但即使从小卵泡(1~5 mm)获得的扩张型卵母细胞的成熟率也会高于大卵泡(20 mm)中获得紧凑型卵母细胞[21]。González-Fernández等[15]研究发现,在体外成熟培养过程中,扩张型卵丘-卵母细胞复合体(COCs)的葡萄糖消耗、丙酮酸和乳酸的产生明显低于紧凑型COCs,这些特征更有利于减数分裂的恢复和细胞核、细胞质的成熟[22-24]。在马卵巢中获得的卵母细胞约有60%为扩张型卵母细胞,30%为紧凑型卵母细胞,剩余10%为退化的卵母细胞[3],根据实际情况选择不同的卵母细胞进行收集和体外培养,或者基于不同类型的卵母细胞制订最优的体外成熟方案,有助于获得较高的成熟率。

母马的年龄也是影响卵母细胞质量的一个重要因素[25]。Altermatt等[26]研究发现,老年马(≥20岁)的卵母细胞透明带比年轻马(4~9岁)薄,卵周隙大,且发育能力较弱。年轻母马和老年母马的卵母细胞和卵丘细胞中一些与发育相关的关键基因的表达存在差异[27-28],并且老年母马的卵母细胞在成熟和发育过程中染色体发生错位的几率很高[29],线粒体的功能也会减弱[30],这些因素导致老年母马的卵母细胞质量下降,影响到其发育能力。

2.2 马卵母细胞储存条件和时间对成熟率的影响

由于屠宰场和育马场大部分在郊区,与IVM实验室距离较远,离体卵巢和卵母细胞的体外存放时间也是影响马卵母细胞体外成熟率的一个重要因素[11, 31]。许多基础研究表明,马的卵母细胞在20~25 ℃的储存液中存放15~18 h不会对体外成熟产生不利影响,而且卵巢在离体保存5~9 h后再进行卵母细胞的收集,会有利于马卵母细胞的体外成熟[17, 32-33]。Love等[34]研究发现,当马卵巢在室温存放1~4 h后,收集到具有聚合染色质形态的卵母细胞数量会增多,而且成熟率显著提高。在室温条件下,将卵母细胞长时间保存在不含有减数分裂抑制剂的M199培养液中不会影响卵母细胞的线粒体功能及减数分裂能力[35-36]。Martino等[37]发现,在15 ℃保存42 h的马卵母细胞体外成熟的成熟率要高于室温保存的马卵母细胞,并且囊胚率显著提高。此外,进行玻璃化前过夜保存的COCs成熟率高于立即进行玻璃化处理的COCs,说明体外存放也有利于卵母细胞的低温保存[38]。玻璃化冷冻技术能很好的保存卵母细胞,但会对马卵母细胞的发育能力产生较大的不良影响[39-40],还需进一步优化马卵母细胞的玻璃化冷冻体系。

近几年,由于体外受精技术趋于商业化和全球化的发展,也对卵母细胞体外保存时间和质量提出了更高的要求。Dini等[41]使用Syngro Embryo Holding Medium保存马卵母细胞,在不影响成熟率的情况下可以在4~22 ℃保存24~28 h。Ortiz-Escribano等[40]使用玻璃化冷冻的卵母细胞通过体外受精方法成功得到一匹健康马驹,这使跨区域育种的商业育马计划成为可能。

2.3 不同培养体系对成熟率的影响

成熟培养基是卵母细胞在体外进行发育和成熟的液体环境,其组成成分对马卵母细胞的成熟率及后期的发育能力至关重要。在马卵母细胞成熟培养过程中,最常用到的基础培养液是M199培养液。也有一些研究人员尝试用DMEM/F12作为基础培养液进行成熟培养,发现卵母细胞成熟率没有变化,但是后期的卵裂率和囊胚率会有所提高[4, 8]。两种培养液主要在一些组成成分上有所不同,其中一项是葡萄糖浓度。马卵泡液中葡萄糖浓度为3.24~ 4.7 mmol·L-1,并且随着卵泡的发育浓度有上升趋势[42]。M199的葡萄糖浓度为5.5 mmol·L-1,而DMEM/F12的葡萄糖浓度为17.5 mmol·L-1,不同的葡萄糖浓度可能会对卵母细胞的发育有一些影响[15]。王荣祥等[18]对比后发现,NSCU23和M199两种基础培养基对马卵母细胞的成熟率没有影响。

除了基础培养液之外,一些激素、生长因子和无机盐等物质对卵母细胞的成熟和发育也有不同的作用。FBS是多数实验室成熟体系都会用到的重要蛋白质添加剂,与牛血清白蛋白(BSA)和血清替代物相比,其更有益于卵母细胞的减数分裂[43-44]。FSH、LH和IGF-1已被证实对马卵母细胞的成熟有显著的促进作用,并得到广泛的应用[45-48]。有研究发现,在成熟培养液中添加马生长激素(eGH)能提高马卵母细胞的成熟率[48-50],并且雌激素对卵母细胞的成熟有一定的促进作用[49, 51]。表皮生长因子(EGF)可能参与马卵母细胞成熟的起始阶段,并且对马卵母细胞的成熟有促进作用[52-55],Aguiar等[56]的研究表明,EGF能促进马腔前卵泡的活化,促进卵泡的发育。此外, 研究人员对无机盐离子的作用进行了探索,发现将成熟培养液中的钙离子浓度增加到5.6 mmol·L-1不会对卵母细胞的成熟率和之后的胚胎发育率造成影响[57],培养液中锌离子浓度的改变(0.0, 0.5, 1.0, 或1.5 μg·mL-1)也不会影响成熟率[44]。Douet等[58]尝试将马的卵泡液和输卵管液加入到成熟培养基中,发现其对卵母细胞的成熟并没有促进作用,Merlo等[59]尝试在成熟培养液中加入抗氧化剂巯基乙醇(BME),亦没有获得积极的效果。Marzano等[60]研究结果表明,邻苯二甲酸酯(DEHP)能抑制马卵母细胞的成熟,并对囊胚发育和胚胎着床产生不利影响,这种环境污染物存在于塑料制品中。卵母细胞核成熟至MⅡ期对受精至关重要,但它必须与胞质成熟同步进行,以保证正常胚胎发育,Lange等[61]的研究表明,减数分裂抑制剂roscovitine能部分抑制马卵母细胞成熟,但能建立一个更好的细胞环境来促进胞质的成熟。

大部分实验室都使用38~39 ℃,5% CO2和饱和湿度的环境下进行马卵母细胞的成熟培养,这与卵母细胞在马体内的环境相类似。Brom-de-Luna等[62]对比了3种不同温度(37.28、37.78和38.28 ℃)对卵母细胞成熟的影响,结果显示,随着温度的升高卵母细胞成熟率有上升的趋势,但差异不显著。多数研究者将成熟培养时间控制在30 h左右,这时马卵母细胞已经完成核成熟[20],过长的成熟培养时间可能会对后期的囊胚发育产生一些不良影响[63]。扩张型和紧凑型卵母细胞达到MⅡ所需的时间是不一样的,紧凑型的卵母细胞需要培养30~36 h才能到达MⅡ期,而扩张型的卵母细胞只需22~24 h[17]

3 卵母细胞成熟评估

成熟的马卵母细胞会呈现卵丘扩散的状态,用透明质酸酶去除卵丘颗粒细胞之后可以看到第一极体,这也是区分成熟和未成熟卵的一个标志。利用Hoechest33258进行核染色可以观察到成熟过程中染色体发生的变化,MⅡ期时卵母细胞染色体整齐的排列在赤道板上(图 3)。成熟的马卵母细胞微管的排列方式发生变化,并且微丝数量增多[49],透明带变薄[54]。卵母细胞核成熟至MⅡ期对受精至关重要,但它必须与细胞质成熟同步进行,以保证正常胚胎发育。由于马卵母细胞内较高的脂质含量,很难使用传统光学显微镜的方法评估卵母细胞质量,因此,要应用其他指标如卵周隙的大小、卵膜的完整性以及暗质区及亮质区的分离等方法来评估成熟卵母细胞的发育能力[12, 54]。使用细胞实时成像技术(time-lapse imaging)能检测到马卵细胞的成熟状态,并能提高对其后期发育能力评估的精度[37]

A.减数第一次分裂中期;B.减数第一次分裂后期;C.减数第一次分裂末期;D.减数第二次分裂中期[20] A. Metaphase Ⅰ; B. Anaphase Ⅰ; C. Telophase Ⅰ; D. Metaphase Ⅱ[20] 图 3 马卵母细胞成熟过程中细胞核的状态 Fig. 3 Depictions of maturing horse oocytes
4 结语

相比于抽吸法,切刮法更适用于马卵母细胞的收集,整个操作要在无菌环境下进行,操作不能过于剧烈,避免COCs受到损伤。OPU作为一种可持续的手段,能够在不伤害母马的情况下获得较多优质的卵母细胞,有利于后期体外成熟和体外受精的进行,应当积极发展此项技术来满足马繁育工作的需要。来自年轻母马闭锁卵泡的扩张型卵母细胞有更好的发育能力,但马体内卵泡闭锁过程的调控机制尚不清楚,还需进一步探究。离体马卵母细胞的保存已经形成较为成熟的体系,可以在不影响发育能力的前提下体外保存24 h以上,下一步需要研发专门用于马卵母细胞体外保存的保存液以及冷冻液,使卵母细胞可以保存更长时间。M199是马成熟体系中最常用的基础培养液,在成熟体系中加入FBS、FSH、LH、IGF-1等物质能显著提高成熟率,但是旁分泌因子如GDF9、BMP15等对于马卵母细胞成熟和发育的影响以及马卵母细胞与卵丘颗粒细胞之间相互作用的研究甚少,褪黑素等抗氧化剂对马卵母细胞成熟的影响也鲜有报道,可以对此进行探究来进一步提高卵母细胞的体外发育能力。卵母细胞体外核成熟和胞质成熟同时进行是近几年研究的热点,这对于后期体外受精及受精卵发育能力至关重要,但在马的领域尚未有较为深入的研究,这或许是马体外受精率及囊胚率低的一个因素。

本综述介绍了马卵母细胞体外成熟培养的研究进展,包括卵母细胞的收集储存,成熟培养体系和培养条件对成熟率的影响,以及马卵母细胞成熟评估。为今后进一步提高马卵母细胞体外成熟的效率及质量奠定基础。

参考文献
[1] SQUIRES E L. Perspectives on the development and incorporation of assisted reproduction in the equine industry[J]. Reprod Fertil Dev, 2019, 31(12): 1753–1757. DOI: 10.1071/RD19365
[2] FULKA J Jr, OKOLSKI A. Culture of horse oocytes in vitro[J]. J Reprod Fertil, 1981, 61(1): 213–215.
[3] MORRIS L H A. The development of in vitro embryo production in the horse[J]. Equine Vet J,, 2018, 50(6): 712–720. DOI: 10.1111/evj.12839
[4] 崔亮.马卵母细胞体外成熟及核移植的研究[D].呼和浩特: 内蒙古农业大学, 2010.
CUI L.Study on in vitro maturation and nuclear transfer of equine oocytes[D].Huhhot: Inner Mongolia Agricultural University, 2010.(in Chinese)
[5] GUO R J, WANG X R, LI Q H, et al.Follicular fluid meiosis-activating sterol (FF-MAS) promotes meiotic resumption via the MAPK pathway in porcine oocytes[J/OL].Theriogenology, 2019, doi: 10.1016/j.theriogenology.2019.11.012.
[6] 俸云, 赵鑫, 阮子芸, 等. 微量元素锌对牛卵母细胞体外成熟及其体外受精胚胎发育的影响[J]. 中国畜牧杂志, 2019, 55(10): 14–19.
FENG Y, ZHAO X, RUAN Z Y, et al. Effects of zinc on bovine oocytes in vitro maturation and early embryonic development[J]. Chinese Journal of Animal Science, 2019, 55(10): 14–19. (in Chinese)
[7] ALM H, TORNER H, KANITZ W, et al. Comparison of different methods for the recovery of horse oocytes[J]. Equine Vet J, 1997, 29(S25): 47–50.
[8] GALLI C, COLLEONI S, DUCHI R, et al. Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer[J]. Anim Reprod Sci, 2007, 98(1-2): 39–55. DOI: 10.1016/j.anireprosci.2006.10.011
[9] CUERVO-ARANGO J, CLAES A N, BEITSMA M, et al. The effect of different flushing media used to aspirate follicles on the outcome of a commercial ovum pickup-ICSI program in mares[J]. J Equine Vet Sci, 2019, 75: 74–77. DOI: 10.1016/j.jevs.2019.01.015
[10] GALLI C, DUCHI R, COLLEONI S, et al. Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses:from the research laboratory to clinical practice[J]. Theriogenology, 2014, 81(1): 138–151. DOI: 10.1016/j.theriogenology.2013.09.008
[11] CLAES A, GALLI C, COLLEONI S, et al. Factors influencing oocyte recovery and in-vitro production of equine embryos in a commercial OPU/ICSI program[J]. J Equine Vet Sci, 2016, 41: 68–69.
[12] LEWIS N, HINRICHS K, SCHNAUFFE K, et al. Effect of oocyte source and transport time on rates of equine oocyte maturation and cleavage after fertilization by ICSI, with a note on the validation of equine embryo morphological classification[J]. Clin Theriogenol, 2018, 8(1): 25–39.
[13] BØGH I B, BRINK P, JENSEN H E, et al. Ovarian function and morphology in the mare after multiple follicular punctures[J]. Equine Vet J, 2003, 35(6): 575–579.
[14] HINRICHS K, WILLIAMS K A. Relationships among oocyte-cumulus morphology, follicular atresia, initial chromatin configuration, and oocyte meiotic competence in the horse[J]. Biol Reprod, 1997, 57(2): 377–384.
[15] GONZÁLEZ-FERNÁNDEZ L, SÁNCHEZ-CALABUIG M J, ALVES M G, et al. Expanded equine cumulus-oocyte complexes exhibit higher meiotic competence and lower glucose consumption than compact cumulus-oocyte complexes[J]. Reprod Fertil Dev, 2018, 30(2): 297–306. DOI: 10.1071/RD16441
[16] HINRICHS K, SCHMIDT A L, FRIEDMAN P P, et al. In vitro maturation of horse oocytes:characterization of chromatin configuration using fluorescence microscopy[J]. Biol Reprod, 1993, 48(2): 363–370. DOI: 10.1095/biolreprod48.2.363
[17] HINRICHS K, CHOI Y H, LOVE L B, et al. Chromatin configuration within the germinal vesicle of horse oocytes:changes post mortem and relationship to meiotic and developmental competence[J]. Biol Reprod, 2005, 72(5): 1142–1150. DOI: 10.1095/biolreprod.104.036012
[18] 王荣祥, 叶小芳, 张国庭, 等. 马卵母细胞胞质内精子注射后体外发育能力的研究[J]. 中国畜牧兽医, 2009, 36(11): 108–114.
WANG R X, YE X F, ZHANG G T, et al. Study on the developmental competence of equine oocytes after ICSI and the corpus luteum ultrastructure during post-pregnancy period in mare[J]. China Animal Husbandry and Veterinary Medicine, 2009, 36(11): 108–114. (in Chinese)
[19] MERLO B, MARI G, IACONO E. In vitro developmental competence of horse embryos derived from oocytes with a different corona radiata cumulus-oocyte morphology[J]. Anim Reprod Sci, 2018, 198: 233–237. DOI: 10.1016/j.anireprosci.2018.09.023
[20] HINRICHS K. The equine oocyte:factors affecting meiotic and developmental competence[J]. Mol Reprod Dev, 2010, 77(8): 651–661. DOI: 10.1002/mrd.21186
[21] HINRICHS K, SCHMIDT A L. Meiotic competence in horse oocytes:interactions among chromatin configuration, follicle size, cumulus morphology, and season[J]. Biol Reprod, 2000, 62(5): 1402–1408. DOI: 10.1095/biolreprod62.5.1402
[22] XIE H L, WANG Y B, JIAO G Z, et al. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes[J]. Sci Rep, 2016, 6(1): 20764.
[23] DOWNS S M, HUDSON E D. Energy substrates and the completion of spontaneous meiotic maturation[J]. Zygote, 2000, 8(4): 339–351. DOI: 10.1017/S0967199400001131
[24] DOWNS S M, HUMPHERSON P G, MARTIN K L, et al. Glucose utilization during gonadotropin-induced meiotic maturation in cumulus cell-enclosed mouse oocytes[J]. Mol Reprod Dev, 1996, 44(1): 121–131. DOI: 10.1002/(SICI)1098-2795(199605)44:1<121::AID-MRD14>3.0.CO;2-7
[25] CUERVO-ARANGO J, CLAES A N, STOUT T A. A retrospective comparison of the efficiency of different assisted reproductive techniques in the horse, emphasizing the impact of maternal age[J]. Theriogenology, 2019, 132: 36–44. DOI: 10.1016/j.theriogenology.2019.04.010
[26] ALTERMATT J L, SUH T K, STOKES J E, et al. Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI)[J]. Reprod Fertil Dev, 2009, 21(4): 615–623. DOI: 10.1071/RD08210
[27] COX L, VANDERWALL D K, PARKINSON K C, et al. Expression profiles of select genes in cumulus-oocyte complexes from young and aged mares[J]. Reprod Fertil Dev, 2015, 27(6): 914–924. DOI: 10.1071/RD14446
[28] CAMPOS-CHILLON F, FARMERIE T A, BOUMA G J, et al. Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells[J]. Reprod Fertil Dev, 2015, 27(6): 925–933. DOI: 10.1071/RD14472
[29] RIZZO M, DUCHEYNE K D, DEELEN C, et al. Advanced mare age impairs the ability of in vitro-matured oocytes to correctly align chromosomes on the metaphase plate[J]. Equine Vet J, 2019, 51(2): 252–257. DOI: 10.1111/evj.12995
[30] HENDRIKS W K, COLLEONI S, GALLI C, et al. Maternal age and in vitro culture affect mitochondrial number and function in equine oocytes and embryos[J]. Reprod Fertil Dev, 2015, 27(6): 957–968. DOI: 10.1071/RD14450
[31] GALLI C, COLLEONI S, DUCHI R, et al. Male factors affecting the success of equine in vitro embryo production by ovum pickup-intracytoplasmic sperm injection in a clinical setting[J]. J Equine Vet Sci, 2016, 43(S1): S6–S10.
[32] JACOBSON C C, CHOI Y H, HAYDEN S S, et al. Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection[J]. Theriogenology, 2010, 73(8): 1116–1126. DOI: 10.1016/j.theriogenology.2010.01.013
[33] CHOI Y H, LOVE L B, VARNER D D, et al. Holding immature equine oocytes in the absence of meiotic inhibitors:effect on germinal vesicle chromatin and blastocyst development after intracytoplasmic sperm injection[J]. Theriogenology, 2006, 66(4): 955–963. DOI: 10.1016/j.theriogenology.2006.01.064
[34] LOVE C C, LOVE L B, VARNER D D, et al. Effect of holding at room temperature on initial chromatin configuration and in vitro maturation rate of equine oocytes[J]. Theriogenology, 2002, 57(8): 1973–1979. DOI: 10.1016/S0093-691X(02)00646-5
[35] MARTINO N A, DELL'AQUILA M E, FILIOLI URANIO M, et al. Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential[J]. Reprod Biol Endocrinol, 2014, 12(1): 99. DOI: 10.1186/1477-7827-12-99
[36] CHOI Y H, LOVE L B, VARNER D D, et al. Effect of holding technique and culture drop size in individual or group culture on blastocyst development after ICSI of equine oocytes with low meiotic competence[J]. Anim Reprod Sci, 2007, 102(1-2): 38–47. DOI: 10.1016/j.anireprosci.2006.09.028
[37] MARTINO N A, MARZANO G, MASTROROCCO A, et al.Use of time-lapse imaging to evaluate morphokinetics of invitro equine blastocyst development after oocyte holding for two days at 15 ℃ versus room temperature before intracytoplasmic sperm injection[J/OL].Reprod Fertil Dev, 2019, doi: 10.1071/RD19223.
[38] CANESIN H S, BROM-DE-LUNA J G, CHOI Y H, et al. Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage[J]. Cryobiology, 2017, 75: 52–59. DOI: 10.1016/j.cryobiol.2017.02.004
[39] CANESIN H S, BROM-DE-LUNA J G, CHOI Y H, et al. Vitrification of germinal-vesicle stage equine oocytes:Effect of cryoprotectant exposure time on in-vitro embryo production[J]. Cryobiology, 2018, 81: 185–191. DOI: 10.1016/j.cryobiol.2018.01.001
[40] ORTIZ-ESCRIBANO N, BOGADO PASCOTTINI O, WOELDERS H, et al. An improved vitrification protocol for equine immature oocytes, resulting in a first live foal[J]. Equine Vet J, 2018, 50(3): 391–397. DOI: 10.1111/evj.12747
[41] DINI P, BOGADO PASCOTTINI O, DUCHEYNE K, et al. Holding equine oocytes in a commercial embryo-holding medium:New perspective on holding temperature and maturation time[J]. Theriogenology, 2016, 86(5): 1361–1368. DOI: 10.1016/j.theriogenology.2016.04.079
[42] COLLINS A, PALMER E, BÉZARD J, et al. A comparison of the biochemical composition of equine follicular fluid and serum at four different stages of the follicular cycle[J]. Equine Vet J, 1997, 29(S25): 12–16. DOI: 10.1111/j.2042-3306.1997.tb05092.x
[43] GONZÁLEZ-FERNÁNDEZ L, MACEDO S, LOPES J S, et al. Effect of different media and protein source on equine gametes:potential impact during in vitro fertilization[J]. Reprod Domest Anim, 2015, 50(6): 1039–1046. DOI: 10.1111/rda.12634
[44] CHOI Y H, GIBBONS J R, CANESIN H S, et al. Effect of medium variations (zinc supplementation during oocyte maturation, perifertilization pH, and embryo culture protein source) on equine embryo development after intracytoplasmic sperm injection[J]. Theriogenology, 2016, 86(7): 1782–1788. DOI: 10.1016/j.theriogenology.2016.05.037
[45] SOSNOWSKI J, LECHNIAK D, BRZOZOWSKA M, et al. Cytogenetic analysis of horse oocytes matured in vitro for different periods of time[J]. Reprod Nutr Dev, 1997, 37(1): 63–68. DOI: 10.1051/rnd:19970107
[46] ROSATI I, BERLINGUER F, BOGLIOLO L, et al. The effect of co-culture on the development of in vitro matured equine oocytes after intracytoplastic sperm injection[J]. Equine Vet J, 2002, 34(7): 673–678.
[47] LI X H, DAI Y F, ALLEN W R. Influence of insulin-like growth factor-I on cytoplasmic maturation of horse oocytes in vitro and organization of the first cell cycle following nuclear transfer and parthenogenesis[J]. Biol Reprod, 2004, 71(4): 1391–1396. DOI: 10.1095/biolreprod.104.029066
[48] MARCHAL R, CAILLAUD M, MARTORIATI A, et al. Effect of growth hormone (GH) on in vitro nuclear and cytoplasmic oocyte maturation, cumulus expansion, hyaluronan synthases, and connexins 32 and 43 expression, and GH receptor messenger RNA expression in equine and porcine species[J]. Biol Reprod, 2003, 69(3): 1013–1022.
[49] PEREIRA G R, LORENZO P L, CARNEIRO G F, et al. Influence of equine growth hormone, insulin-like growth factor-I and its interaction with gonadotropins on in vitro maturation and cytoskeleton morphology in equine oocytes[J]. Animal, 2013, 7(9): 1493–1499. DOI: 10.1017/S175173111300116X
[50] PEREIRA G R, LORENZO P L, CARNEIRO G F, et al. The involvement of growth hormone in equine oocyte maturation, receptor localization and steroid production by cumulus-oocyte complexes in vitro[J]. Res Vet Sci, 2013, 95(2): 667–674.
[51] CARNEIRO G, LORENZO P, PIMENTEL C, et al. Influence of insulin-like growth factor-I and its interaction with gonadotropins, estradiol, and fetal calf serum on in vitro maturation and parthenogenic development in equine oocytes[J]. Biol Reprod, 2001, 65(3): 899–905. DOI: 10.1095/biolreprod65.3.899
[52] GOUDET G, BELIN F, MLODAWSKA W, et al. Influence of epidermal growth factor on in vitro maturation of equine oocytes[J]. J Reprod Fertil Suppl, 2000(56): 483–492.
[53] LORENZO P L, LIU I K, ILLERA J C, et al. Influence of epidermal growth factor on mammalian oocyte maturation via tyrosine-kinase pathway[J]. J Physiol Biochem, 2001, 57(1): 15–22.
[54] BERTERO A, RITROVATO F, EVANGELISTA F, et al. Evaluation of equine oocyte developmental competence using polarized light microscopy[J]. Reproduction, 2017, 153(6): 775–784. DOI: 10.1530/REP-17-0125
[55] LAGUTINA I, LAZZARI G, DUCHI R, et al. Somatic cell nuclear transfer in horses:effect of oocyte morphology, embryo reconstruction method and donor cell type[J]. Reproduction, 2005, 130(4): 559–567. DOI: 10.1530/rep.1.00772
[56] AGUIAR F L N, LUNARDI F O, LIMA L F, et al. Role of EGF on in situ culture of equine preantral follicles and metabolomics profile[J]. Res Vet Sci, 2017, 115: 155–164. DOI: 10.1016/j.rvsc.2017.04.001
[57] HINRICHS K, CHOI Y H, WALCKENAER B E, et al. In vitro-produced equine embryos:production of foals after transfer, assessment by differential staining and effect of medium calcium concentrations during culture[J]. Theriogenology, 2007, 68(4): 521–529. DOI: 10.1016/j.theriogenology.2007.04.046
[58] DOUET C, PARODI O, MARTINO N A, et al. Exposure to follicular fluid during oocyte maturation and oviductal fluid during post-maturation does not improve in vitro embryo production in the horse[J]. Zygote, 2017, 25(5): 612–630. DOI: 10.1017/S096719941700048X
[59] MERLO B, IACONO E, BUCCI D, et al. Beta-mercaptoethanol supplementation of in vitro maturation medium does not influence nuclear and cytoplasmic maturation of equine oocytes[J]. Reprod Domest Anim, 2016, 51(6): 992–996. DOI: 10.1111/rda.12778
[60] MARZANO G, MASTROROCCO A, ZIANNI R, et al. Altered morphokinetics in equine embryos from oocytes exposed to DEHP during IVM[J]. Mol Reprod Dev, 2019, 86(10): 1388–1404. DOI: 10.1002/mrd.23156
[61] LANGE CONSIGLIO A, ARRIGHI S, CREMONESI F. Time course of in vitro maturation of compact cumulus horse oocytes after roscovitine-induced meiotic inhibition:effects on the coordination between nuclear and cytoplasmic maturation[J]. Reprod Domest Anim, 2010, 45(6): e313–e322. DOI: 10.1111/j.1439-0531.2009.01565.x
[62] BROM-DE-LUNA J G, SALGADO R M, CANESIN H S, et al. Equine blastocyst production under different incubation temperatures and different CO2 concentrations during early cleavage[J]. Reprod Fertil Dev, 2019, 31(12): 1823–1829. DOI: 10.1071/RD19211
[63] RODRÍGUEZ M B, GAMBINI A, CLÉRICO G, et al.Time of first polar body extrusion affects the developmental competence of equine oocytes after intracytoplasmic sperm injection[J/OL].Reprod Fertil Dev, 2019, doi: 10.1071/RD19248.