β-羟基丁酸(β-hydroxybutyric acid,BHBA)为血液中酮体的主要组成部分之一[1]。在反刍动物瘤胃中,由微生物发酵生产的挥发性脂肪酸(volatile fatty acid, VFA)主要是丁酸,转运至上皮细胞线粒体中,经乙酰辅酶A途径氧化生成BHBA。BHBA在动物机体内数量较少,但它却是动物健康成长过程中不可或缺的化学物质[2],它以能量底物、信号分子等多种形式广泛地参与到动物体的生长发育过程中。比如,BHBA在动物机体内经过血液循环运输到乳腺细胞后可以作为乳脂合成的前体物质参与到脂肪酸的起始合成[3],在饥饿或能量不足的情况下,肝线粒体中长链脂肪酸不完全氧化也会生成BHBA[4]。BHBA对幼龄反刍动物瘤胃上皮的生长起着十分重要的作用[5],它的出现被认为是瘤胃上皮细胞代谢功能发育成熟的重要标志[5-6]。研究表明,BHBA可能会以转录调控因子过氧化物酶体增殖剂激活受体(peroxisome proliferators-activated receptors,PPARs)的配体[7]或组蛋白去乙酰化酶抑制剂[8]等方式参与调控瘤胃上皮生长和脂肪酸氧化代谢。然而,BHBA调控幼龄反刍动物瘤胃上皮发育的信号通路与分子机制等还有待深入探究与验证。本文针对BHBA在幼龄反刍动物瘤胃上皮细胞的代谢过程及其调节瘤胃上皮代谢与增殖的相关研究展开综述,以期为瘤胃上皮生长规律及调控理论学说、为幼龄反刍动物培育的营养策略提供参考。
1 BHBA的结构及生物学特点BHBA的数量大约占酮体总量的70%。BHBA的分子量为104.1 ku,化学结构式如图 1所示。BHBA是氨基酸与脂肪酸不完全氧化的中间产物,由于它是一种短链水溶性有机酸,分子较小,可自由出入细胞膜,在血液中易于运输,也可被外周组织摄取,因此也被称为“水溶性脂类”,在极其严重的酸中毒患者的身体中,由于酸中毒导致体内烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NADH)生成增加,进而促使乙酰乙酸形成的BHBA与乙酰乙酸的比值由正常的2:1提高至16:1。早期是利用滴定法、比重法、比色法测定BHBA氧化后产生的丙酮的量来计算原来BHBA的物质的量,但此种方法受试验条件的影响较大,因此误差也较大。而气相色谱法也只能测定血液的血清中总酮的浓度,却没有特异性。目前,酶联免疫分析法(ELISA)是诸多测定BHBA的方法中最灵敏且快速、经济、简便的临床常用方法[9]。
![]() |
图 1 BHBA的结构简式 Fig. 1 Simple structure of BHBA |
反刍动物具有独特的VFA代谢和消化功能[10],饲料在牛、羊等反刍动物瘤胃中经瘤胃微生物发酵生产的VFA是反刍动物进行生理与生产活动重要的能量底物[11-13],约占总代谢能的75%。乙酸、丙酸和丁酸是反刍动物瘤胃中最主要的3种VFA[14-15],它们大约占VFA总量的95%。瘤胃上皮细胞中BHBA主要是由VFA中的丁酸与乙酸[16]转化而成,其中,85%~90%的丁酸在进入门静脉循环之前就在瘤胃上皮细胞线粒体内[17]转化成了BHBA,一部分乙酸可以合成为酮体[18],另一部分可继续在辅酶还原酶Ⅱ的作用下合成乳脂和体脂,以此来储存能量和提高乳脂率。瘤胃上皮吸收VFA的途径包括细胞内外渗透压差的扩散作用[19]、硝酸根阴离子(NO3-)与瘤胃上皮的阴离子的相互作用[20]、挥发性脂肪酸酸根离子(VFA-)和碳酸氢根(HCO3-)的交换作用[21]等。当乙酸、丁酸与部分短链脂肪酸(SCFA)被瘤胃上皮吸收后,由酰基辅酶A合成酶家族加入辅酶A酯生成乙酰辅酶A[22],其中一部分乙酰辅酶A会进入三羧酸循环(TCA),并生产出大量能量,该过程是瘤胃上皮细胞获取ATP的主要途径[23]。而其余的乙酰辅酶A则进一步进行生酮反应,在3-羟基3-甲基戊二酰辅酶A合成酶(3-hydroxy-3-methylglutaryl-CoAsynthase,HMGCS)的作用下将乙酰辅酶A转化为3-羟基-3-甲基戊二酸单酰辅酶A(3-hydroxy-3-methyl glutaryl coenzyme A, HMG-CoA)。此物质是瘤胃上皮的关键代谢物,受位于瘤胃上皮细胞线粒体中的HMGCS2专一性调控[24],HMGCS2可以有效地控制瘤胃生成酮体的速度,是瘤胃合成酮体的限速酶[25-26]。随后,再在HMG-CoA裂解酶的作用下,HMG-CoA转化成乙酰乙酸(acetacetic acid,ACAC)。最后,再由BHBA脱氢酶催化生成BHBA,并进入血液循环[27],其过程如图 2所示。
![]() |
图 2 反刍动物瘤胃上皮细胞线粒体BHBA生成路径图 Fig. 2 Pathway map of BHBA production in ruminant epithelial mitochondria |
肝脏生酮则是反刍动物与单胃动物共同拥有的一种生酮方式,低碳水化合物加高脂肪的饮食(生酮饮食)[28-30]、饥饿状态或剧烈运动以后,动物血液中的葡萄糖含量降低,酮体代谢愈发旺盛[31]。大量的游离脂肪酸进入肝脏细胞的线粒体进行生酮反应,生成的酮体可以作为能量底物供应动物体正常的生理与生产活动。
3 BHBA的转运与代谢在瘤胃上皮细胞的线粒体中,由VFA代谢生成的BHBA或乳酸会与依靠扩散作用进入细胞的氢离子(H+)结合,然后再利用瘤胃基底层外侧的单羧酸转运蛋白(monocarboxylate transporter,MCT)[32]运输至血液,而后依靠血液循环被各个器官与组织摄取吸收至线粒体内。当动物体在饥饿和剧烈运动等状况下,其身体内的外周组织器官就可通过分解脂肪与线粒体内的BHBA来获得生理活动所必需的能量[33]。在酮体氧化过程中,ACAC被激活为乙酰乙酰辅酶A的步骤是整个氧化过程中最为关键的步骤。其途径主要有两种:一是在肝外组织细胞的线粒体内,BHBA经BHBA脱氢酶作用,被氧化生成ACAC后,ACAC与琥珀酰辅酶A在琥珀酰辅酶A转硫酶与乙酰乙酸辅酶A转移酶的共同催化下,生成乙酰乙酰辅酶A,同时放出琥珀酸。而第二个途径是在ATP与辅酶A(CoASH)同时存在时,由乙酰乙酸硫激酶催化,使之转化为乙酰乙酰辅酶A,两种途径生成的乙酰乙酰辅酶A再在甲基乙酰乙酰辅酶A硫解酶的催化下生成乙酰辅酶A。乙酰辅酶A最后进入柠檬酸循环被完全分解利用为组织器官提供能量。其过程如图 3所示。
![]() |
图 3 BHBA代谢去路示意图 Fig. 3 BHBA metabolic schematic |
饲料在反刍动物的瘤胃中经微生物发酵形成VFA[34-35],VFA主要由瘤胃上皮细胞的细胞膜摄入,后经基底层由细胞膜排出。在pH较高的瘤胃环境下,MCT会将瘤胃中的H+与单羧酸阴离子(包括VFA-和ACAC-)共同转运,因此在该生理过程中MCT对VFA等物质的吸收与转运发挥着极为关键的作用[36]。MCT正常功能的行使还需要依靠辅助蛋白147(CD147),它可以帮助MCT正确定位于靶细胞膜表面,并调控MCT活性[37]。MCT家族包含MCT1与MCT4等[38],在反刍动物胃肠道中均检测出MCT1、MCT4和CD147的存在。MCT1与MCT4在幼龄反刍动物瘤胃上皮中表达水平较低,后随着瘤胃中挥发性脂肪酸浓度的提高其表达水平同步提高[39]。MCTs基因表达的调控机制较为复杂,有关人肠上皮的研究发现,丁酸可与MCTs的启动子相结合,并激活核因子细胞的κ-轻链(NF-κB)信号通路。在牛肝细胞的体外培养试验中,BHBA可以通过激活牛肝细胞NF-κB信号通路触发氧化应激,引发炎性反应[40]。在反刍动物瘤胃中,BHBA是否也可通过激活NF-κB信号通路调控MCTs的表达,并以此提高VFA及其相关代谢产物的转运效率,有待进一步研究。
转运脂肪酸转运蛋白(fatty acid transport protein, FATP)在肝脏和心脏等器官中可以显著促进细胞摄取与运出脂肪酸,FATP在长链脂肪酸的转运过程中更是扮演着举足轻重的角色[41]。通过研究小鼠的FATP基因发现[42],其启动子上发现了一个过氧化酶体增殖物反应元件(peroxisome proliferator-activated receptor response element, PPRE),该序列具有调节靶基因转录的功能[5],PPARs是一类配体依赖的转录因子,拥有3个亚型:PPAR-α、PPAR-β以及PPAR-γ,在瘤胃中均检测出它们的存在,PPARs可与配体等信号分子结合之后改变自己的构型,当其构型改变后再与另一个核内的接受器繻维甲酸受体(retinoid X receptors, RXRs)形成异源二聚体[43],进而再与靶基因上的PPRE结合,调控靶基因的转录。脂肪酸以及脂肪酸的衍生物都属于PPARs的配体,BHBA是瘤胃VFA的代谢产物,它可以作为配体与PPARs结合,调控FATP的表达,促进VFA的转运与代谢。那么,在瘤胃上皮细胞中此机制是否真的存在,FATP对VFA是否具有较强的转运能力,这都需要更深入的研究论证。
4.2 BHBA调控瘤胃上皮生酮反刍动物瘤胃上皮产生BHBA的过程中除了能给瘤胃上皮细胞供应生理代谢所需要的绝大多数能量之外[44],BHBA在调控瘤胃上皮生酮方面可能也行使着极为关键的功能。Muya等[45]与Samiei等[46]在饲养试验中发现,伴随着动物摄取食物中丁酸含量的提高,BHBA在血液中的浓度也同步提高了。但Lane等[6]通过研究发现,如果只饲喂羔羊代乳粉,其瘤胃丁酸产量非常低,然而瘤胃BHBA的产量在42日龄仍然快速增长并接近传统饲养羔羊的水平,这意味着BHBA相比于丁酸对瘤胃生酮有更为显著的促进作用,HMGCS2是控制瘤胃生酮反应的关键限速酶[47],此酶在反刍动物瘤胃中的表达数量越多,其瘤胃的生酮功能越强。李鹏等[48]利用不同浓度的BHBA培养犊牛肝细胞发现,随着BHBA数目的不断提高,细胞中HMGCS mRNA和蛋白质的表达水平均呈现出显著性的降低,呈剂量依赖性,BHBA可以有效减少肝细胞中HMGCS的表达量。由此可以推测,在低龄反刍动物的瘤胃中,BHBA也可能通过某种分子途径影响HMGCS2的表达来反馈调节瘤胃生产酮体的能力[49]。在HMGCS2基因启动子上同样具有PPRE,这意味着它可以接受PPARs的调控,相关研究表明,在牛肾细胞中,HMGCS2的表达随着PPARα的激活而上调。Smith等[50]经研究发现,拥有丰富线粒体与较高β氧化活性的组织,PPARα会呈现高水平的表达。因此,有理由推测,瘤胃上皮细胞线粒体中HMGCS2基因的表达可能会通过PPARs来调控。综上所述,瘤胃上皮细胞生酮过程中,BHBA作为配体通过PPARs途径调控HMGCS2表达的信号通路可能存在,这值得更进一步的研究。
4.3 BHBA调控瘤胃上皮细胞增殖瘤胃是反刍动物进行营养吸收与代谢的重要器官[51],瘤胃上皮的正常生长与功能完善,是幼龄反刍动物健康成长的前提条件[52]。迄今为止,国内外诸多学者就瘤胃上皮细胞增殖的分子机制与信号通路做了许多试验与探索。
胰岛素样生长因子1(insulin like growth factor-1,IGF-1)是一种多肽类物质,它对动物机体的生长与发育具有促进作用。IGF-1可能是参与瘤胃上皮细胞增殖调控的一个重要因子,在反刍动物的瘤胃中,已经有研究发现高营养组成的饲料能够有效促进IGF-1与IGF-1型受体(IGF-1R)的表达,IGF-1主要通过促进DNA和RNA生成,进一步促使细胞从G1期进入S期以此来调控细胞的增殖[53]。卢劲晔等[54]利用瘤胃上皮细胞的体外培养试验证明,IGF-1与IGF-1R融合后,可以激活下游一条有丝分裂原活化蛋白激酶(Ras/Raf /MEK/EPK)信号转导途径,显著提升瘤胃上皮细胞cyclin D1蛋白表达水平,进一步的提高瘤胃上皮细胞增殖的速度。同时,IGF-1可受到上游激素促生长激素释放激素(growth hormone releasing hormone, GHRH)的调控。薛文静[55]通过大鼠试验发现,BHBA可以作为信号因子通过GPR109A(一种G蛋白偶联受体)/细胞外调节蛋白激酶(ERK1/2MAPK)通路下调GHRH所在细胞系Gsh-1的表达,以此来减少IGF-1的分泌,抑制细胞的增殖。在反刍动物瘤胃中,BHBA是否可以通过类似机制调控IGF-1表达,以此调控瘤胃上皮细胞的增殖有待探索。
表皮生长因子(epidermal growth factor, EGF)是由53个氨基酸残基构成的耐热单链低分子多肽,二级结构为致密的球形结构,因此,具有良好的空间稳定性,它具有多种生物功能,包括促进细胞内DNA与蛋白质的合成,刺激细胞的增殖与分化,修复并再生损伤的上皮组织等[56]。EGF需与靶细胞上的特异性抗体表皮生长因子受体(epidermal growth factor receptor, EGFR)结合才能发挥其功效[57]。两者结合后,EGFR的磷酸化位点自身出现磷酸化修饰,并进一步磷酸化下游的信号分子。已有研究表明,EGF所介导的PI3K/AKT信号通路参与并促进了上皮细胞的增殖[58],PI3K作为叉头盒蛋白O1(forkhead box O1, FOXO1)的重要调节路径,可通过提高其磷酸化水平,抑制相关凋零蛋白的表达,促进细胞的增殖。同时,EGF还可以促进猪肠道中周期蛋白增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)的表达,后者能够促进DNA的合成,从而促进细胞增殖[59]。而EGF的合成与分泌与多种因素有关,主要受神经(如肾上腺素能神经、胆碱能神经等)与激素(如生长激素、性激素、生长抑素等)的影响。相关研究表明,在中枢神经系统中,BHBA不仅可以作为神经元氧化代谢的底物,还能作为细胞中的信号分子传递特定信息。通过动物静脉注射试验,科学家发现,BHBA可如同葡萄糖代谢负反馈调节肾上腺素的分泌,抑制其释放[60]。Quabbe等[61]经研究也发现,随着BHBA浓度的升高,动物体内生长素的释放量逐步降低,而Boado等[62]通过小鼠试验也证实,高浓度的BHBA可以降低脑垂体与甲状腺的分泌功能,从而抑制相关激素的合成。BHBA作为VFA在瘤胃上皮细胞代谢的主要产物之一,是否也能够以配体或信号分子等方式参与神经或相关激素分泌的调控,以此影响EGF的生成,进而促进瘤胃上皮细胞的增殖,这还需要更深入的研究验证。
组蛋白乙酰化酶(histone acetylases,HATs)和组蛋白去乙酰化酶(histone deacetylase,HDAC)是参与组蛋白乙酰化进程的两种关键酶[63],高度的组蛋白乙酰化有利于基因的转录,而HDAC与靶基因的启动子结合后,可通过去乙酰化组蛋白氨基末端,使目标基因的核小体DNA结构紧缩,抑制其基因的转录进而减少基因表达[64]。HDAC对细胞增殖也存在着调节作用,孟瑾等[65]研究表明,在HT29细胞中添加HDACs的广谱抑制剂古曲菌素A(Trichostatin A,TSA),HT29细胞的增殖进程在G2/M期被显著的阻滞了,通过进一步的分子技术检测发现,HT29细胞中Ku70蛋白以及相关蛋白激酶抑制剂P21与P53的乙酰化水平随着HDACs抑制剂浓度的升高而升高,这可能是导致HT29细胞增殖受到抑制的内在原因。相关研究认为,微小RNA(microRNA)能够影响肌肉细胞的增殖与分化,其机制与HDACs相关[66]。弓贺炜等[67]在骨骼肌细胞体外培养试验中,利用构建miR-1慢病毒载体转染肌细胞使之在细胞中过度表达,结果表明,miR-1促进了肌细胞α肌动蛋白表达水平的显著提高,而HDACs基因与蛋白的表达量却随着时间的推移显著降低,这说明肌细胞增殖与分化能力的提高可能与miRNA抑制HDACs的表达相关。此外,一些研究发现,在骨骼瘤细胞中上调HDAC4之后,PCNA的蛋白表达水平显著提高,但mRNA水平却未有显著改变,这意味着HDAC4对于PCNA的调控可能为蛋白层面的修饰。目前,科研学者普遍认为,BHBA可以对靶基因进行表观遗传修饰。Shimazu等[8]发现,动物体内的BHBA可以作为一种HDACs的内源性抑制剂,以毫摩尔级别的水平调控HDACs介导的去乙酰化作用,同时BHBA还能够独立直接的对染色体组蛋白的赖氨酸残基进行丁酰化修饰[68]。那么BHBA在瘤胃上皮细胞中是否能够以抑制剂、激动剂等形式通过调控靶基因的乙酰化等进程,进而促进瘤胃上皮细胞的增殖仍然需要进一步的试验论证。BHBA调控瘤胃上皮的机理见图 4(实线箭头为转运方向,虚线箭头为可能存在的调控方向)。
![]() |
图 4 BHBA调控瘤胃上皮细胞物质转运、生酮及增殖推测示意图 Fig. 4 Speculative schematic of BHBA regulating ketogenesis, proliferation and substance transport in rumen epithelial cell |
瘤胃可利用VFA生成BHBA,BHBA不仅可以作为能量底物给生物体供能,在调控幼龄反刍动物瘤胃上皮物质转运、生酮及细胞增殖方面,也行使着重要的功能。其部分作用机制可能是BHBA作为信号分子通过GPR109A/ERK1/2MAPK等通路控制IGF-1等相关促生长激素的分泌或作为内源抑制剂抑制靶基因组蛋白的去乙酰化进程,直接或间接促进瘤胃上皮细胞的增殖与分化;BHBA作为配体激活PPARs,并作用于生酮关键酶或脂肪转运蛋白基因启动子上的PPRE反应原件,调控它们的表达水平,以此提高瘤胃生酮与VFA转运的效率;但BHBA调控瘤胃上皮代谢与生长的具体分子机制仍不清晰,相关关键因子在瘤胃上皮生长过程中的表达与参与程度仍需要进一步验证。
[1] |
孙志鹏, 李启涛, 孙美涵, 等.β-羟丁酸对奶牛腺垂体细胞GH和PRL的影响及机制[C]//中国畜牧兽医学会兽医内科与临床诊疗学分会第八届代表大会暨学术研讨会论文集.大庆: 中国畜牧兽医学会兽医内科与临床诊疗学分会, 2015.
SUN Z P, LI Q T, SUN M H, et al.Effects of beta-hydroxybutyric acid on GH and PRL in pituitary cells in dairy cows[C]// Congress and Academic Seminar of Veterinary Medicine and Clinical Diagnosis Branch of China Animal Husbandry and Veterinary Association.Daqing: Chinese society of Animal Husbandry and Veterinary Medicine, 2015.(in Chinese) |
[2] |
文静, 付守鹏, 柳巨雄. β-羟丁酸对中枢神经系统的作用及机制研究进展[J]. 中国畜牧兽医, 2012, 39(2): 106–110.
WEN J, FU S P, LIU J X. Research progress on the roles of β-hydroxybutyric acid played in central nervous system and mechanism[J]. China Animal Husbandry & Veterinary Medicine, 2012, 39(2): 106–110. DOI: 10.3969/j.issn.1671-7236.2012.02.025 (in Chinese) |
[3] | RANARAJA U, CHO K H, PARK M N, et al. Genetic parameter estimation for milk β-hydroxybutyrate and acetone in early lactation and its association with fat to protein ratio and energy balance in Korean Holstein cattle[J]. Asian-Australas J Anim Sci, 2018, 31(6): 798–803. DOI: 10.5713/ajas.17.0443 |
[4] | KADOCHI Y, MORI S, FUJIWARA-TANI R, et al. Remodeling of energy metabolism by a ketone body and medium-chain fatty acid suppressed the proliferation of CT26 mouse colon cancer cells[J]. Oncol Lett, 2017, 14(1): 673–680. DOI: 10.3892/ol.2017.6195 |
[5] |
吕小康, 王杰, 刁其玉, 等. 过氧化物酶体增殖物激活受体调控幼龄反刍动物瘤胃的生酮作用及其机制[J]. 动物营养学报, 2018, 30(4): 1238–1244.
LYU X K, WANG J, DIAO Q Y, et al. Peroxisome proliferator-activated receptors:regulation in ketogenesis of young ruminants and its mechanisms[J]. Chinese Journal of Animal Nutrition, 2018, 30(4): 1238–1244. DOI: 10.3969/j.issn.1006-267x.2018.04.005 (in Chinese) |
[6] | LANE M A, BALDWIN IV R L, JESSE B W. Developmental changes in ketogenic enzyme gene expression during sheep rumen development[J]. J Anim Sci, 2002, 80(6): 1538–1544. |
[7] | CONNOR E E, BALDWIN VI R L, LI C J, et al. Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth[J]. Funct Integr Genomics, 2013, 13(1): 133–142. DOI: 10.1007/s10142-012-0308-x |
[8] | SHIMAZU T, HIRSCHEY M D, NEWMAN J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor[J]. Science, 2013, 339(6116): 211–214. DOI: 10.1126/science.1227166 |
[9] |
王银龙, 贺志锐, 刘强, 等. 亚临床酮病奶牛血液生化指标的测定[J]. 动物医学进展, 2014, 35(3): 128–131.
WANG Y L, HE Z R, LIU Q, et al. Determination of blood biochemical indexes in dairy cows with subclinical ketosis[J]. Progress in Veterinary Medicine, 2014, 35(3): 128–131. DOI: 10.3969/j.issn.1007-5038.2014.03.029 (in Chinese) |
[10] | GOMEZ-INSUASTI A S, GRANJA-SALCEDO Y T, ROSSI L G, et al. Effect of soybean oil availabilities on rumen biohydrogenation and duodenal flow of fatty acids in beef cattle fed a diet with crude glycerine[J]. Arch Anim Nutr, 2018, 72(4): 308–320. DOI: 10.1080/1745039X.2018.1492805 |
[11] | DARWIN, BARNES A, CORD-RUWISCH R. In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis[J]. Ann Microbiol, 2018, 68(1): 1–8. |
[12] |
刘婷, 李发弟, 王维民, 等. 不同日龄补饲开食料对湖羊羔羊瘤胃形态及表皮生长相关基因表达的影响[J]. 畜牧兽医学报, 2016, 47(12): 2441–2449.
LIU T, LI F D, WANG W M, et al. Effects of starter feeding on rumen papilla genes expression involved in cellular growth and morphology in Hu lamb at different ages[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(12): 2441–2449. DOI: 10.11843/j.issn.0366-6964.2016.12.014 (in Chinese) |
[13] | IMANI M, MIRZAEI M, BAGHBANZADEH-NOBARI B, et al. Effects of forage provision to dairy calves on growth performance and rumen fermentation:a meta-analysis and meta-regression[J]. J Dairy Sci, 2017, 100(2): 1136–1150. DOI: 10.3168/jds.2016-11561 |
[14] | YU H N, LI R, HUANG H Y, et al. Short-chain fatty acids enhance the lipid accumulation of 3T3-L1 cells by modulating the expression of enzymes of fatty acid metabolism[J]. Lipids, 2018, 53(1): 77–84. DOI: 10.1002/lipd.12005 |
[15] | BHATIA S K, YANG Y H. Microbial production of volatile fatty acids:current status and future perspectives[J]. Rev in Environ Sci Bio/Technol, 2017, 16(2): 327–345. DOI: 10.1007/s11157-017-9431-4 |
[16] |
李宁, 程喜荣. 奶牛酮病的发病机理研究概述[J]. 中国牛业科学, 2013, 39(1): 46–48.
LI N, CHENG X R. Pathogenesis of ketosis in dairy cattle[J]. China Cattle Science, 2013, 39(1): 46–48. DOI: 10.3969/j.issn.1001-9111.2013.01.013 (in Chinese) |
[17] | NAEEM A, DRACKLEY J K, STAMEY J, et al. Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves[J]. J Dairy Sci, 2012, 95(4): 1807–1820. DOI: 10.3168/jds.2011-4709 |
[18] |
郭冬生, 彭小兰. 反刍动物挥发性脂肪酸消化代谢规律刍议[J]. 畜牧与饲料科学, 2005, 26(1): 1–3.
GUO D S, PENG X L. A review on digestion and metabolism of volatile fatty acids in ruminants[J]. Animal Husbandry and Feed Science, 2005, 26(1): 1–3. DOI: 10.3969/j.issn.1672-5190.2005.01.001 (in Chinese) |
[19] | DIJKSTRA J, BOER H, VAN BRUCHEM J, et al. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume[J]. Brit J Nutr, 1993, 69(2): 385–396. |
[20] | ASCHENBACH J R, BILK S, TADESSE G, et al. Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(5). |
[21] | WVRMLI R, WOLFFRAM S, SCHARRER E. Inhibition of chloride absorption from the sheep rumen by nitrate[J]. J Vet Med Ser A, 1987, 34(1-10): 476–479. DOI: 10.1111/j.1439-0442.1987.tb00306.x |
[22] | ASH R, BAIRD G D. Activation of volatile fatty acids in bovine liver and rumen epithelium.Evidence for control by autoregulation[J]. Biochem J, 1973, 136(2): 311–319. DOI: 10.1042/bj1360311 |
[23] | PUCHALSKA P, CRAWFORD P A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics[J]. Cell Metab, 2017, 25(2): 262–284. DOI: 10.1016/j.cmet.2016.12.022 |
[24] | RESCIGNO T, CAPASSO A, TECCE M F. Involvement of nutrients and nutritional mediators in mitochondrial 3-hydroxy-3- methylglutaryl-CoA synthase gene expression[J]. J Cell Physiol, 2018, 233(4): 3306–3314. DOI: 10.1002/jcp.26177 |
[25] | MA L, ZHAO M, ZHAO L S, et al. Effects of dietary neutral detergent fiber and starch ratio on rumen epithelial cell morphological structure and gene expression in dairy cows[J]. J Dairy Sci, 2017, 100(5): 3705–3712. DOI: 10.3168/jds.2016-11772 |
[26] | CHEN S W, CHOU C T, CHANG C C, et al. HMGCS2 enhances invasion and metastasis via direct interaction with pparα to activate src signaling in colorectal cancer and oral cancer[J]. Oncotarget, 2017, 8(14): 22460–22476. |
[27] |
汪水平, 王文娟, 谭支良. 离体瘤胃上皮细胞在瘤胃代谢中的研究进展[J]. 家畜生态学报, 2006, 27(2): 1–4.
WANG S P, WANG W J, TAN Z L. Advance of isolated ruminal epithelial cells in the study of rumen metabolism[J]. Acta Ecologiae Animalis Domastici, 2006, 27(2): 1–4. DOI: 10.3969/j.issn.1673-1182.2006.02.001 (in Chinese) |
[28] | TOGNINI P, MURAKAMI M, LIU Y, et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet[J]. Cell Metab, 2017, 26(3): 523–538. |
[29] | BOISON D. New insights into the mechanisms of the ketogenic diet[J]. Curr Opin Neurol, 2017, 30(2): 187–192. DOI: 10.1097/WCO.0000000000000432 |
[30] | HASAN-OLIVE M M, LAURITZEN K T, ALI M, et al. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1α-SIRT3-UCP2 axis[J]. Neurochem Res, 2019, 44(1): 22–37. DOI: 10.1007/s11064-018-2588-6 |
[31] | WANG X M, LIU Q, ZHOU J, et al. β hydroxybutyrate levels in serum and cerebrospinal fluid under ketone body metabolism in rats[J]. Exp Anim, 2017, 66(2): 177–182. |
[32] |
姜茂成, 詹康, 贡笑笑, 等. 不同pH和SCFAs对奶牛瘤胃上皮细胞SCFAs转运蛋白和GPR41表达的影响[J]. 中国农业大学学报, 2018, 23(10): 63–70.
JIANG M C, ZHAN K, GONG X X, et al. Effects of different pH and SCFAs on the expressions of SCFAs transport proteins and GPR41 in the rumen epithelial cells of dairy cow[J]. Journal of China Agricultural University, 2018, 23(10): 63–70. (in Chinese) |
[33] | JAIN S K, MCVIE R. Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients[J]. Diabetes, 1999, 48(9): 1850–1855. DOI: 10.2337/diabetes.48.9.1850 |
[34] | TIAN L P, YANG Z J, ZHANG C, et al. Correlation of physiological metabolism and rumen microbes in ruminants[J]. Anim Husb Feed Sci, 2017, 9(4): 200–203. |
[35] | LI B B, ZHANG K, LI C, et al. Characterization and comparison of microbiota in the gastrointestinal tracts of the goat (Capra hircus) during preweaning development[J]. Front Microbiol, 2019, 10: 2125. DOI: 10.3389/fmicb.2019.02125 |
[36] | ZHAO C X, WANG Y Z, PENG Z C, et al. Subacute ruminal acidosis suppressed the expression of MCT1 in rumen of cows[J]. J Cell Physiol, 2019, 234(7): 11734–11745. DOI: 10.1002/jcp.27829 |
[37] | DE B LUZ M C, PEREZ M M, AZZALIS L A, et al.Evaluation of MCT1, MCT4 and CD147 genes in peripheral blood cells of breast cancer patients and their potential use as diagnostic and prognostic markers[J].Int J Mol Sci, 2017, 18(4): 170. |
[38] | PETERSEN C, NIELSEN M D, ANDERSEN E S, et al. MCT1 and MCT4 expression and lactate flux activity increase during white and brown adipogenesis and impact adipocyte metabolism[J]. Sci Rep, 2017, 7(1): 13101. |
[39] | CASTELLS L, BACH A, ARIS A, et al. Effects of forage provision to young calves on rumen fermentation and development of the gastrointestinal tract[J]. J Dairy Sci, 2013, 96(8): 5226–5236. DOI: 10.3168/jds.2012-6419 |
[40] |
史晓霞.NEFAs和BHBA诱导氧化应激对奶牛肝细胞NF-κB信号通路影响的研究[D].长春: 吉林大学, 2014.
SHI X X.The study of NEFAs and BHBA inducing oxidative stress on NF-κB signaling pathway in calf hepatocytes[D]. Changchun: Jilin University, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10183-1014271186.htm |
[41] | DOEGE H, STAHL A. Protein-mediated fatty acid uptake:novel insights from in vivo models[J]. Physiology, 2006, 21(4): 259–268. DOI: 10.1152/physiol.00014.2006 |
[42] | FROHNERT B I, HUI T Y, BERNLOHR D A. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene[J]. J Biol Chem, 1999, 274(7): 3970–3977. DOI: 10.1074/jbc.274.7.3970 |
[43] | IJPENBERG A, TAN N S, GELMAN L, et al. In vivo activation of PPAR target genes by RXR homodimers[J]. EMBO J, 2014, 23(10): 2083–2091. |
[44] |
高景, 齐智利. 瘤胃上皮短链脂肪酸的吸收和代谢[J]. 动物营养学报, 2018, 30(4): 1271–1278.
GAO J, QI Z L. Absorption and metabolism of short chain fatty acids in ruminal epithelium[J]. Chinese Journal of Animal Nutrition, 2018, 30(4): 1271–1278. DOI: 10.3969/j.issn.1006-267x.2018.04.009 (in Chinese) |
[45] | MUYA M C, NHERERA F V, MILLER K A, et al. Effect of Megasphaera elsdenii NCIMB 41125 dosing on rumen development, volatile fatty acid production and blood β-hydroxybutyrate in neonatal dairy calves[J]. J Anim Physiol Anim Nutr (Berl), 2015, 99(5): 913–918. DOI: 10.1111/jpn.12306 |
[46] | SAMIEI A, LIANG J B, GHORBANI G R, et al. Relationship between dietary energy level, silage butyric acid and body condition score with subclinical ketosis incidence in dairy cows[J]. Adv Anim Vet Sci, 2015, 3(6): 354–361. DOI: 10.14737/journal.aavs/2015/3.6.354.361 |
[47] | HELENIUS T O, MISIOREK J O, NYSTRÖM J H, et al. Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism[J]. Mol Biol Cell, 2015, 26(12): 2298–2310. DOI: 10.1091/mbc.E14-02-0736 |
[48] |
李鹏, 刘敏跃, 龙淼, 等. BHBA对体外培养犊牛肝细胞HMGCS基因表达的影响[J]. 饲料工业, 2013, 34(21): 58–60.
LI P, LIU M Y, LONG M, et al. Effect of β-hydroxybutyrate on expression of 3-hydroxy-3-methylglutaryl -coa synthase in bovine hepatocytes cultured in vitro[J]. Feed Industry, 2013, 34(21): 58–60. (in Chinese) |
[49] | KATO D, SUZUKI Y, HAGA S, et al. Utilization of digital differential display to identify differentially expressed genes related to rumen development[J]. Anim Sci J, 2016, 87(4): 584–590. DOI: 10.1111/asj.12448 |
[50] | SMITH F M, COFFEY J C, KELL M R, et al. A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch[J]. Colorectal Dis, 2005, 7(6): 563–570. DOI: 10.1111/j.1463-1318.2005.00833.x |
[51] | MALMUTHUGE N, LIANG G X, GUAN L L. Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes[J]. Genome Biol, 2019, 20(1): 172. DOI: 10.1186/s13059-019-1786-0 |
[52] |
吕小康, 解彪, 黄文琴, 等. 早期饲喂对山羊羔羊瘤胃和小肠组织形态的影响[J]. 畜牧兽医学报, 2019, 50(5): 1006–1015.
LV X K, XIE B, HUANG W Q, et al. Effects of early feeding on rumen and small intestine morphology of goat kids[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(5): 1006–1015. (in Chinese) |
[53] | STEIN G S, STEIN J L, LIAN J B. Cell cycle and growth control[J]. J Cell Biochem, 1994, 54(4): 373–374. DOI: 10.1002/jcb.240540402 |
[54] |
卢劲晔, 卢炜, 刘静, 等. IGF-1促进山羊瘤胃上皮细胞增殖的机制[J]. 南京农业大学学报, 2014, 37(5): 106–110.
LU J Y, LU W, LIU J, et al. Mechanism of IGF-1 on proliferation of rumen epithelium of goats in vitro[J]. Journal of Nanjing Agricultural University, 2014, 37(5): 106–110. (in Chinese) |
[55] |
薛文静.BHBA对大鼠下丘脑GHRH表达和分泌的影响及其机制[D].长春: 吉林大学, 2015.
XUE W J.Effects and its mechanisms of BHBA on GHRH expression and secrection in rat hypothalamus[D].Changchun: Jilin University, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10183-1015597876.htm |
[56] | TAYLOR E S, POL-FACHIN L, LINS R D, et al. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding[J]. Proteins, 2017, 85(4): 561–570. DOI: 10.1002/prot.25220 |
[57] | BEDFORD A, CHEN T, HUYNH E, et al. Epidermal growth factor containing culture supernatant enhances intestine development of early-weaned pigs in vivo:potential mechanisms involved[J]. J Biotechnol, 2015, 196-197: 9–19. DOI: 10.1016/j.jbiotec.2015.01.007 |
[58] | MENG J, DAI B, FANG B, et al. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo[J]. PLoS One, 2010, 5(11): e14124. DOI: 10.1371/journal.pone.0014124 |
[59] | TOUEILLE M, SAINT-JEAN B, CASTROVIEJO M, et al. The elongation factor 1A:A novel regulator in the DNA replication/repair protein network in wheat cells?[J]. Plant Physiol Biochem, 2007, 45(2): 113–118. DOI: 10.1016/j.plaphy.2007.01.006 |
[60] | STRICKER E M, ROWLAND N, SALLER C F, et al. Homeostasis during hypoglycemia:central control of adrenal secretion and peripheral control of feeding[J]. Science, 1977, 196(4285): 79–81. DOI: 10.1126/science.841345 |
[61] | QUABBE H J, BUMKE-VOGT C, IGLESIAS-ROZAS J R, et al. Hypothalamic modulation of growth hormone secretion in the rhesus monkey:evidence from intracerebroventricular infusions of glucose, free fatty acid, and ketone bodies[J]. J Clin Endocrinol Metab, 1991, 73(4): 765–770. DOI: 10.1210/jcem-73-4-765 |
[62] | BOADO R, COLOMBO O, ZANINOVICH A A. Effects of diabetes, β-hydroxybutyric acid and metabolic acidosis on the pituitary-thyroid axis in the rat[J]. J Endocrinol Invest, 1985, 8(2): 107–111. DOI: 10.1007/BF03350658 |
[63] | VAHID F, ZAND H, NOSRAT-MIRSHEKARLOU E, et al. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases:a review[J]. Gene, 2015, 562(1): 8–15. |
[64] | CANTLEY M D, ZANNETTINO A C W, BARTOLD P M, et al. Histone deacetylases (HDAC) in physiological and pathological bone remodelling[J]. Bone, 2017, 95: 162–174. DOI: 10.1016/j.bone.2016.11.028 |
[65] |
孟瑾, 刘新利, 车玲, 等. 组蛋白去乙酰化酶抑制剂TSA抑制结肠癌HT29细胞增殖作用的机制研究[J]. 消化肿瘤杂志:电子版, 2019, 11(2): 88–93.
MENG J, LIU X L, CHE L, et al. Effect and mechanism of histone deacetylase inhibitor TSA on the proliferation of colon cancer HT29 cells[J]. Journal of Digestive Oncology:Electronic Version, 2019, 11(2): 88–93. (in Chinese) |
[66] | WU N Z, GU T T, LU L, et al. Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle[J]. J Cell Physiol, 2019, 234(4): 3490–3499. DOI: 10.1002/jcp.26857 |
[67] |
弓贺炜, 刘承伟, 梁炳生, 等. 过表达慢病毒载体介导miR-1转染L6细胞增殖分化及组蛋白去乙酰化酶的表达[J]. 中国组织工程研究, 2019, 23(13): 2075–2080.
GONG H W, LIU C W, LIANG B S, et al. Lentiviral vector-mediated overexpression of miRNA-1 in L6 myoblasts:cell proliferation, differentiation and histone deacetylase expression[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(13): 2075–2080. DOI: 10.3969/j.issn.2095-4344.1680 (in Chinese) |
[68] | XIE Z Y, ZHANG D, CHUNG D J, et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation[J]. Mol Cell, 2016, 62(2): 194–206. DOI: 10.1016/j.molcel.2016.03.036 |