畜牧兽医学报  2020, Vol. 51 Issue (3): 639-643. DOI: 10.11843/j.issn.0366-6964.2020.03.024    PDF    
痛风雏鹅肾组织损伤的RNA-seq分析
邵春荣1, 黄远丕2, 黄运茂2, 应诗家1, 奚雨萌1, 施振旦1     
1. 江苏省农业科学院畜牧研究所, 南京 210014;
2. 仲恺农业工程学院, 广州 510000
摘要:试验选取具有典型内脏型痛风特征的雏鹅5只和相同日龄及生长环境下的健康雏鹅6只,利用RNA-seq技术分析其肾组织转录表达差异,旨在了解雏鹅痛风发生的分子机制。结果表明:痛风雏鹅肾组织转录表达显著区别于健康雏鹅。试验共筛选出差异表达基因1 749个,上调基因501个,下调基因1 248个。GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)分析发现,这些差异基因主要具有趋化因子活性、T细胞受体结合、抗原结合等分子功能,参与免疫反应、趋化因子介导信号通路、炎症反应等生物过程,并主要富集于细胞因子受体相互作用、肠道IgA免疫网络、细胞黏附等信号通路。
关键词雏鹅痛风    肾损伤    RNA-seq    免疫应答    炎性损伤    
RNA-seq Analysis on the Renal Tissue Injury in the Development of Goslings Gout
SHAO Chunrong1, HUANG Yuanpi2, HUANG Yunmao2, YING Shijia1, XI Yumeng1, SHI Zhendan1     
1. Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
2. Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
Abstract: We used RNA-seq to measure the transcription differences in renal tissues between gout and healthy goslings. Five goslings with typical visceral gout characteristics were selected as "gout group", while six healthy goslings were selected as the "control group". As a result, the transcription expressions of gout goslings in renal tissues were significantly different from that of healthy goslings. A total of 1 749 differential expression genes were found. Among these, 501 genes were up-regulated and 1 248 genes were down-regulated in the gout group. The GO and KEGG search revealed the differential expression genes mainly enriched in chemokine activity, T cell receptor binding, antigen binding and immune response, and participate in processes of cytokine-cytokine receptor interaction, intestinal immune network for IgA production, cell adhesion and so on.
Key words: gosling gout    renal injury    RNA-seq    immune response    inflammation damage    

雏鹅痛风近年来在全国范围内大面积暴发,此病多在10~14日龄集中发病,发病率为10%~50%,死亡率高达50%,危害严重[1]。此病主要表现为雏鹅肾功能损伤导致高尿酸血症,并以尿酸盐的形式沉积在关节囊、关节软骨、胸腹腔和体内脏器表面及其他间质组织[2-3],肾原发性损伤是此病形成的生理基础。雏鹅肾功能发育不完全,过高的蛋白负荷或尿酸排泄障碍极易导致血尿酸浓度异常增高,沉积于肾小管、关节腔或内脏表面,易导致痛风急性发作[4-5]。本研究拟通过RNA-seq技术,探讨痛风发生过程中痛风和健康雏鹅肾组织转录组表达差异,深入了解雏鹅痛风发生的分子机制,助力探索有效的防治措施。

1 材料与方法

2017年10月至2018年6月期间,笔者于江苏、安徽等地共收集具有内脏型痛风特征[2-3]的10~14日龄发病雏鹅5只及相同日龄的健康雏鹅6只,采集新鲜肾组织,液氮速冻,-80 ℃保存待测。使用Trizol试剂(Invitrogen,CA,USA)从痛风雏鹅及健康雏鹅的肾组织中提取总RNA,委托杭州联川生物技术有限公司(杭州,中国)进行文库构建及Illumina测序工作。

将原始数据进行标准化处理后,采用FPKM(在每百万测序碱基中每千个转录子测序碱基中所包含的测序片段数)统计已知基因在不同样本中的表达丰度,利用Edge R进行差异分析(显著差异的阈值为|log2 fold change| ≥1,P < 0.05)。然后,使用R语言中的goseq包将差异基因序列与GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库进行比对,获得GO功能和KEGG通路注释。最后,利用Cytoscape软件对差异基因与其富集到的主要信号通路进行网络图分析,探究影响痛风雏鹅肾组织信号传导改变各因子间的互作机制。

2 结果

对健康雏鹅和痛风雏鹅肾组织进行转录组测序,平均每个样品获得了42+ M条的reads,总碱基数6+ Gb,Q20超过99%,Q30超过97%,测序结果可靠。痛风雏鹅肾组织基因表达与健康雏鹅差异较大,共筛选出差异表达基因1 749个,其中上调基因501个,下调基因1 248个。GO注释分析结果(图 1)发现,痛风雏鹅与健康雏鹅肾转录差异基因主要富集于趋化因子活性(chemokine activity)、T细胞受体结合(T cell receptor binding)、抗原结合(antigen binding)等分子功能;参与免疫反应(immune response)、G蛋白偶联受体信号通路(G-protein coupled receptor signaling pathway)、炎症反应(inflammatory response)等生物过程。KEGG信号通路分析(表 1)发现,包括细胞因子受体相互作用、肠道IgA免疫网络、细胞黏附在内的131个显著KEGG通路被富集。此外,对差异基因及其主要富集到的KEGG信号通路进行了网络图分析(图 2)发现,肠道IgA免疫网络、细胞黏附、NF-κB信号通路、自然杀伤细胞毒活性等免疫相关信号通路及其差异表达基因关联紧密,互作较为密切。

图 1 健康雏鹅与痛风雏鹅比较mRNA差异表达基因GO功能分类 Fig. 1 GO function classification of mRNA differentially expressed genes of goslings between gout and control groups
表 1 差异基因富集到的前10位的信号通路 Table 1 Top 10 signaling pathways enriched significantly genes
图 2 差异表达基因与主要信号通路的网络图 Fig. 2 The network of mRNA differentially expressed genes ang main signaling pathways of goslings between gout and control groups
3 讨论

本试验中,痛风雏鹅肾组织中肠道IgA免疫网络、NF-κB信号通路、T细胞受体通路等信号传导,及T细胞受体结合、抗原结合、免疫球蛋白受体结合等生物过程被显著富集,说明免疫激活及炎症反应是痛风雏鹅肾组织转录水平上的最显著特征,这与病鹅肾小管上皮细胞出现的炎性浸润的现象相一致[6]。此外,肠道IgA免疫网络、细胞黏附、NF-κB信号通路等传导过程的变化,暗示痛风雏鹅的肾损伤可能与肠源性有害因子沿“肠-肾轴”易位,激活肾炎性反应有关。肠道的某些物质,如细菌、LPS、代谢小分子等,通过自身易位激活肠道及循环系统的免疫应答,参与调节肾功能,影响疾病的发展及并发症的产生[7]。本团队前期也发现,痛风雏鹅肠道微生态紊乱而导致的细菌和LPS可增加雏鹅痛风的发病风险[2]。而循环免疫激活产生的免疫复合物可特异性黏附、沉积于肾小球内,激活巨噬细胞、嗜中性粒细胞、淋巴细胞内NF-κB等信号传导,诱发炎症反应,导致肾组织炎性损伤[8-9]

差异基因细胞分化因子家族(clusters of differentiation,CDs),如CD2、CD4、CD8A等,集中富集于肠道IgA免疫网络、细胞黏附、T细胞受体等信号传导。CD2主要参与T淋巴细胞或胸腺细胞与其他细胞的黏附,CD4分子是辅助T淋巴细胞的主要表面标志物[10],CD8分子是细胞毒性T淋巴细胞的主要表面标志物[11]。因此,CDs家族基因可能通过影响肾细胞对外源物的免疫感应、表面识别、黏附等过程影响雏鹅痛风病程发展。闭合蛋白家族(claudins,CLDNs)在痛风雏鹅肾组织中显著变化,CLDN14、CLDN19及CLDN34表达下调,CLDN11表达上调,这说明肾组织细胞紧密连接结构出现异常。本团队前期研究也发现痛风雏鹅肾组织中紧密连接蛋白ZO1、CLDN5表达下调,组织通透性增加[2]。据报道,CLDN14可关闭由CLDN16和CLDN19形成的通道抑制钙和镁的旁细胞重吸收,是高钙尿症肾结石主要风险因素[12]。因此,在探究雏鹅痛风发病机制的过程中应重视CLDNs家族成员的异常变化。此外,痛风雏鹅肾组织中CXCL12/CXCR4轴受到显著抑制,可能基于患病后机体希望迅速排尿以降低血尿酸浓度的迫切需求[13]。痛风雏鹅肾中解整合素金属蛋白酶ADAMTS18降低,这种炎性介质的下调和缺失可导致新生畜禽肾发育不良、肾皮质萎缩、肾纤维化等肾损伤问题[14],参与雏鹅痛风诱发。

4 结论

利用RNA-seq技术分析了痛风雏鹅与健康雏鹅肾转录组表达差异,筛选出差异表达基因1 749个。这些基因主要富集于细胞因子受体相互作用、肠道IgA免疫网络、细胞黏附等信号通路,参与免疫应答、炎症反应、病原黏附等过程。同时,细胞分化因子CD2、CD4、CD8A等,闭合蛋白CLDN11、CLDN14,趋化因子CXCL12、CXCR4,解整合素金属蛋白酶ADAMTS18等,可作为研究雏鹅痛风分子机制的潜在标志物。

参考文献
[1] 奚雨萌, 闫俊书, 应诗家, 等. 高蛋白质高钙饲粮对雏鹅内脏型痛风发生、肾脏功能及肠道微生物区系的影响[J]. 动物营养学报, 2019, 31(2): 612–621.
XI Y M, YAN J S, YING S J, et al. Effects of high protein and calcium diets on visceral gout development, kidney function and intestinal microbial community of goslings[J]. Chinese Journal of Animal Nutrition, 2019, 31(2): 612–621. DOI: 10.3969/j.issn.1006-267x.2019.02.017 (in Chinese)
[2] XI Y M, YAN J S, LI M Y, et al. Gut microbiota dysbiosis increases the risk of visceral gout in goslings through translocation of gut-derived lipopolysaccharide[J]. Poultry Sci, 2019, 98(11): 5361–5373. DOI: 10.3382/ps/pez357
[3] JIN M L, WANG X Y, NING K, et al. Genetic characterization of a new astrovirus in goslings suffering from gout[J]. Arch Virol, 2018, 163(10): 2865–2869. DOI: 10.1007/s00705-018-3932-5
[4] 朱书梁.高钙和高钙高蛋白日粮对鸡临床病理学及相关基因表达的影响[D].南昌: 江西农业大学, 2014.
ZHU S L. Effects of diets with high calcium and high calcium-high protein on clinical pathology and expression of related genes[D]. Nanchang: Jiangxi Agricultural University, 2014. (in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10410-1014396218.htm
[5] SHAO T J, SHAO L, LI H C, et al. Combined signature of the fecal microbiome and metabolome in patients with gout[J]. Front Microbiol, 2017, 8: 268.
[6] 奚雨萌, 闫俊书, 应诗家, 等. 雏鹅痛风发病原因及其防控技术[J]. 中国家禽, 2018, 40(23): 63–66.
XI Y M, YAN J S, YING S J, et al. Causes and countermeasures of gout in goslings[J]. China Poultry, 2018, 40(23): 63–66. (in Chinese)
[7] GUO Z, ZHANG J C, WANG Z L, et al. Intestinal microbiota distinguish gout patients from healthy humans[J]. Sci Rep, 2016, 6(1): 20602. DOI: 10.1038/srep20602
[8] PENFOLD R S, PRENDECKI M, MCADOO S, et al. Primary IgA nephropathy:current challenges and future prospects[J]. Int J Nephrol Renovasc Dis, 2018, 11: 137–148. DOI: 10.2147/IJNRD.S129227
[9] PRASAD N, PATEL M R. Infection-induced kidney diseases[J]. Front Med (Lausanne), 2018, 5: 327.
[10] CHAWLA R, VAN PUYENBROECK V, PFLUG N C, et al. Tuning side arm electronics in unsymmetrical cyclotriazadisulfonamide (CADA) endoplasmic reticulum (ER) translocation inhibitors to improve their human cluster of differentiation 4(CD4) receptor down-modulating potencies[J]. J Med Chem, 2016, 59(6): 2633–2647. DOI: 10.1021/acs.jmedchem.5b01832
[11] SCHMIDT M E, VARGA S M. The CD8 T cell response to respiratory virus infections[J]. Front Immunol, 2018, 9: 678. DOI: 10.3389/fimmu.2018.00678
[12] FRICK K K, BUSHINSKY D A. Molecular mechanisms of primary hypercalciuria[J]. J Am Soc Nephrol, 2003, 14(4): 1082–1095. DOI: 10.1097/01.ASN.0000062960.26868.17
[13] MACOSKA J A, WANG Z Y, VIRTA J, et al. Inhibition of the CXCL12/CXCR4 axis prevents periurethral collagen accumulation and lower urinary tract dysfunction in vivo[J]. Prostate, 2019, 79(7): 757–767. DOI: 10.1002/pros.23781
[14] MITTAZ L, RICARDO S, MARTINEZ G, et al. Neonatal calyceal dilation and renal fibrosis resulting from loss of Adamts-1 in mouse kidney is due to a developmental dysgenesis[J]. Nephrol Dial Transplant, 2005, 20(2): 419–423. DOI: 10.1093/ndt/gfh603