一直以来,β-内酰胺类抗生素被认为能够有效地治疗和预防由金黄色葡萄球菌(Staphylococcus aureus,S. aureus)引起的感染性疾病。然而,近年该类抗生素在临床生产中不合理的使用,导致耐药菌株迅速增多,耐药率也不断攀升[1-3];出现以MRSA为典型代表的耐药菌株,给临床治疗和用药带来了巨大挑战,已严重威胁到人与动物的公共卫生安全[4-5]。目前,关于S. aureus耐药机制的研究,主要集中于MRSA[6],抑或对大环内酯类药物[7]及生物被膜的耐药[8],对β-内酰胺类抗生素耐药机制的研究,大多聚焦在经典的β-内酰胺酶[9]和作用靶位的改变[10]。此外,β-内酰胺类抗生素能否引起细胞壁(cell wall, CW)增厚,机制如何,仅有少数报道[11]。同时,探究MRSA菌株中是否也存在该种耐药机制,有利于更全面地了解其突出的耐药性。本研究基于2016—2018年间分离得到的牛乳源S. aureus,进行耐药率及多重耐药情况的检测,以基因检测与形态观察结合的手段,揭示本地区S. aureus针对β-内酰胺类抗生素是否存在CW增厚的耐药机制,并进一步确定MRSA菌株是否也具有该种机制,为本地区S. aureus的防控提供一定理论参考。
1 材料与方法 1.1 材料 1.1.1 试验菌株分离自2016—2018年间宁夏石嘴山市、银川市、吴忠市及中卫市等地区部分奶牛养殖场临床及亚临床型乳腺炎乳样。
1.1.2 培养基及试剂氨苄西林、青霉素、头孢唑林、阿米卡星、四环素等14种抗菌药物均购自中国兽医药品监察所;金黄色葡萄球菌显色培养基购自法国CHRO-Magar公司;MH培养基购自青岛海博生物公司;DNA Marker,2×Taq PCR Master Mix,高保真PrimeSTAR® Max DNA Polymerase均购自TaKaRa公司;细菌基因组DNA提取试剂盒购自天根生化科技(北京)有限公司;细菌总RNA提取试剂盒,反转录试剂盒购自诺唯赞(南京)生物科技有限公司;SYBR®Green实时荧光定量PCR预混液购自Thermo Fisher公司;引物由生工生物(上海)股份有限公司合成。
1.1.3 主要设备双槽PCR扩增仪、ABI7500荧光定量PCR扩增仪(美国Applied Biosystems公司);电泳及成像系统(美国Bio-Rad公司);生物型透射电镜(美国Thermo Scientific公司)。
1.2 方法 1.2.1 细菌的分离鉴定从宁夏地区部分奶牛养殖场采集临床及亚临床型乳腺炎乳样,经CHRO-Magar金黄色葡萄球菌显色培养基筛选,挑取紫红色的单菌落进行镜检以及纯化培养。以提取的基因组DNA为模板;利用16S rRNA通用引物(F: 5′-AGAGTTTGATCCTGGCTCAG-3′; R: 5′-ACGGCTACCTTGTTACGACTT-3′), nuc基因引物(F: 5′-GCGATTGATGGTGATACGGTT-3′; R: 5′-AGCCAAGCCTTGACGAACTAAAG-3′),配制20 μL反应体系,以55 ℃为最适退火温度,进行基因片段扩增。测序结果上传至NCBI网站,利用BLAST工具进行序列比对。随后, 以高保真酶扩增mecA基因(F: 5′-AAAATCGATGGTAAAGGTTGGC-3′; R: 5′-AGTTCTGCAGTACCGGATTTGC-3′),检测MRSA菌株。
1.2.2 药敏试验根据美国临床实验室标准委员会(Clinical and Laboratory Standards Institute, CLSI)推荐的微量肉汤稀释法对分离鉴定出的261株 S. aureus进行药敏试验,测定其对14种抗菌药物的最小抑菌浓度(minimal inhibit concentration, MIC)。细菌振荡培养10 h,用PBS稀释至0.5麦氏单位,浓度约1×108 CFU·mL-1;在96微孔板中将所用药液倍比稀释成11个浓度梯度,随后加入稀释菌液至100 μL,并以不含药物的菌液作阳性对照,空白培养基作阴性对照,试验重复3次。MIC结果判定参照CLSI (2013)标准[12]。
1.2.3 qRT-PCR将5株高耐(青霉素MIC≥128 μg·mL-1) S.aureus分别培养于含0和64 μg·mL-1青霉素的培养基中,37 ℃振荡培养10 h。随后,根据总RNA提取试剂盒说明书提取总RNA,-80 ℃保存备用。为减少对后续试验的干扰,对总RNA进行痕量基因组污染去除,以去除痕量基因组的总RNA为模板,逆转录合成cDNA。最终,qRT-PCR检测CW增厚相关基因pbpB、murG、glmU、atlR的转录丰度,并以看家基因pta作为内参[13]。所用引物是利用Primer 5.0软件,以文献引物为基础,进行修改、优化及设计。具体引物序列及片段大小等信息见表 1。
![]() |
表 1 qRT-PCR引物 Table 1 Primers used for qRT-PCR |
选取CW相关基因转录丰度上调较显著的MSSA JY21菌株和MRSA WLD10 (青霉素MIC值均≥128 μg·mL-1)分别培养于含青霉素64、128 μg·mL-1的MH培养基中,经数次传代,待菌株稳定生长。恒温培养后收集细菌,PBS缓冲液漂洗3次,以2.5%戊二醛置于4 ℃低温固定12 h,经1%锇酸染色1 h,50%~90%的乙醇梯度脱水处理,随后依次用不同浓度(1:1和1:2)丙酮与环氧树脂混合液处理。完成后,加100%环氧树脂400 μL置于60 ℃烘箱中聚合48 h,包埋后进行冷冻超薄切片。最终,制备完成的样品在生物型透射电镜下观察并摄片。每个样品选取9个结构典型的菌体,测量其CW厚度。使用IBM SPSS 13.0软件进行数据分析,以P < 0.05作为存在统计学差异。
2 结果 2.1 细菌的分离鉴定从宁夏地区部分奶牛养殖场采集临床及亚临床型乳腺炎的乳样,经金黄色葡萄球菌显色培养基筛选,镜检以及PCR方法扩增16S rRNA、nuc基因和测序比对,共分离鉴定出261株S. aureus。经进一步检测mecA基因,最终确定9株为MRSA。
2.2 耐药率261株S. aureus对14种抗菌药物的耐药情况见表 2。由表可知,分离株对β-内酰胺类抗生素的耐药率最为突出,其中对氨苄西林的耐药率最高,达到79.69%,其次是对青霉素(78.54%);耐药率较高的还有复方新诺明、氟苯尼考、林可霉素。对氨基糖苷类及喹诺酮类药物则比较敏感,敏感率都在60%以上,对万古霉素全部敏感。
![]() |
表 2 261株金黄色葡萄球菌对14种抗菌药物的耐药率 Table 2 The resistant rate of 261 Staphylococcus aureus strains to 14 antimicrobial agents |
261株牛乳源S.aureus对14种抗菌药物的多重耐药情况见图 1。由图可见,多重耐药主要以3、7及8重的菌株居多,所占比例分别为10.73%、16.48%及19.54%。10重及以上耐药的菌株共15株,占5.75%。其中,1株对试验所用的14种药物均表现出耐药。若将同时对3种及以上抗菌药物耐药归为多重耐药,则多重耐药率为69.73%。
![]() |
图 1 金黄色葡萄球菌对14种抗菌药物的多重耐药情况 Fig. 1 Multi-drug resistance of S. aureus to 14 antimicrobial agents |
利用特异的qRT-PCR引物,使用SYBR®Green染料法检测pta、pbpB、murG、glmU、atlR基因在0和64 μg·mL-1青霉素浓度下的转录情况,结果显示(图 2),5株高耐菌株在青霉素浓度为64 μg·mL-1时,相对于无药物培养,pbpB基因表达上调约3.78倍,murG、glmU基因分别上调约4.12和3.58倍,atlR基因上调约2.99倍。经统计分析,可知pbpB、murG、glmU基因转录丰度均发生极显著变化(P < 0.001),atlR基因转录丰度极显著升高(P < 0.01)。内参基因pta的转录丰度没有发生明显变化(P>0.05)。
![]() |
**.P < 0.01;***.P < 0.001 图 2 qRT-PCR检测细胞壁增厚相关基因的转录丰度 Fig. 2 Detection of transcription of genes related to cell wall thickening by qRT-PCR |
选取的两株细菌MSSA JY21和MRSA WLD10 (图 3),JY21在64和128 μg·mL-1药物浓度下均呈现出CW极显著增厚(P < 0.001),但JY21(128) (厚度为64.32 nm±18.77 nm)与JY21(64) (厚度为51.92 nm±5.18 nm)相比,增厚程度并不显著(P>0.05);即CW增厚到一定程度时,便不再继续显著增厚。WLD10(128) (厚度为29.88 nm±1.48 nm)与WLD10(0) (厚度为27.52 nm±1.47 nm)相比,CW厚度无显著性差异(P>0.05);同时,JY21(0) (厚度为25.49 nm±2.3 nm)和WLD10(0) (厚度为27.52 nm±1.47 nm)CW厚度也无显著的差异(P>0.05);即在自然状态下,MSSA JY21和MRSA WLD10的CW厚度接近一致。但在128 μg·mL-1药物浓度下,MSSA JY21的CW要远厚于MRSA WLD10 (P < 0.001)。
![]() |
***.P < 0.001 图 3 细胞壁增厚透射电镜图(A, 98 000×)及厚度比较(B) Fig. 3 Cell wall thickening: transmission electron microscopy (A, 98 000×) and thickness comparison (B) |
JY21(64)和JY21(128)菌株出现CW表面粗糙,松散,有结节状凸起,甚至出现不均匀的增厚,呈现出“花瓣状”(图 4A、B)。JY21菌株在128 μg·mL-1青霉素浓度下,形态由球形变为梭形、椭球形及杆状;由图 3知,CW厚度增加到一定程度就不再显著增加,开始出现裂隙(图 4C),并在视野中极少见到横隔膜或是处于分裂期的细菌个体(图 4D~F)。
![]() |
A.细胞壁表面粗糙,有结节状凸起(98 000×);B.细胞壁不均匀增厚(98 000×);C.细胞壁出现皲裂(98 000×);D~E. (49 000×); F. JY21(128)细菌形态改变(98 000×) A. Rough cell wall with nodular protuberances (98 000×); B. Uneven thickening of cell wall (98 000×); C. Chapped cell wall (98 000×); D-E. (49 000×); F. Morphological changes of bacteria JY21(128)(98 000×) 图 4 金黄色葡萄球菌形态结构变化 Fig. 4 Morphological and structural changes of S. aureus |
S. aureus作为引起奶牛乳腺炎的重要病原之一,因具有较高的临床分离率和突出的耐药性,备受人们关注。有关S.aureus针对β-内酰胺类抗生素耐药机制的研究,主要集中于以往经典的耐药方式。对于其他潜在机制的发现以及引起CW增厚的分子机制的研究还很不足。此外,药敏试验呈现出对氨苄西林和青霉素高度的耐药,该情况已经不容忽视。关注MRSA菌株是否也具有该种机制,对其严重耐药性的分析具有重要的意义。因此,基于分离得到的261株牛乳源S.aureus,选取药敏试验中青霉素MIC≥128 μg·mL-1的菌株,以qRT-PCR方法检测CW合成及增厚相关的基因在青霉素浓度为0和64 μg·mL-1的培养环境下转录丰度的变化;并结合透射电镜进行形态观察。结果显示,MSSA JY21菌株的CW出现显著的增厚。一定程度上,说明存在该种针对β-内酰胺类抗生素的耐药机制。
同时,MSSA JY21菌株对β-内酰胺类抗生素具有高耐药值,且多重耐药达9重之多;在青霉素亚MIC浓度(64 μg·mL-1)下,较无药物时出现CW显著增厚;将药物浓度增至MIC (128 μg·mL-1)时,未出现连续的显著增厚,但与无药物时相比,依然显著。即在一定范围内,CW的厚度随细菌所能耐受药物浓度的升高而显著增加,但超出这一范围,增厚依然发生,而差异不再显著。而耐药值和多重耐药数量均高于JY21的MRSA WLD10菌株,处于同等药物浓度下,却未出现明显的CW增厚。该现象提示,对于MRSA WLD10来说,CW增厚并非重要的耐药机制,很大程度是因其特有的mecA耐药基因以及编码的低亲和力青霉素结合蛋白PBP2a[14],使其本身作为青霉素类药物的固有耐药菌株却不发生CW增厚,可被认为进化出了一种更加“高级”的耐药方式。但对于MSSA JY21来说,CW增厚依然对其高度耐药作出了重要贡献。这与Yuan等[15]的结果不完全一致,很大可能是药物种类不同所致。CW增厚对细菌来说,是一种很不经济的代偿方式,这也就决定撤去药物压力后,细菌将出现一定程度的“返祖现象”[16];将JY21(128)与去抗培养30代的JY21(128)共培养,试验结果也证实了这一观点。因此,CW增厚可被认为是一种适应性耐药的表现形式,且一般介导中低水平的耐药[17-18];而耐药基因介导较高水平的耐药[19-22]。由于耐药基因存在和转移,使具有该类基因菌株的耐药性得以稳定维持。
研究发现,青霉素引起CW增厚的原因与万古霉素引起的增厚不尽相同,后者主要是通过“亲和捕获”和“孔隙阻塞”的方式使CW增厚[23-24]。试验发现的增厚机制主要是肽聚糖的过度合成及细胞自溶素(autolysin, Atl)的合成减少。由于CW的形成受到精确且严格的基因调控,其中glmU和murG基因控制CW中肽聚糖合成所必需的前体物[25-26],pbpB基因编码的青霉素结合蛋白(penicillin-binding proteins, PBPs)能促进肽聚糖单体交联形成致密的网状结构[27]。Atl是维持CW始终处于适宜厚度的关键,其编码基因座中的atlR基因能抑制Atl的合成[28],防止正常细胞发生自溶。当基因的转录水平变化时,可反映细胞内与之相关生命活动的变化[29]。即较强的药物选择压力,致使pbpB基因转录丰度上调了约3.78倍,其编码的青霉素结合蛋白PBP2具有转肽酶活性,在肽聚糖合成后期发挥着重要的作用[27]。PBP2转肽作用增强;引起CW深部的肽聚糖交联度升高,肽聚糖层由深部向外增厚。随着glmU和murG基因转录丰度的上调,肽聚糖单体UDP-GlcNAc合成增多[25],更多的Lipid Ⅰ经MurG催化而形成Lipid Ⅱ[26],参与肽聚糖的合成,同样导致肽聚糖层显著地增多增厚,阻碍药物分子进入CW深部,从而实现细菌对药物的耐受。Atl编码基因座中atlR基因的转录丰度显著上调,可抑制其下游的atl基因,进而引起Atl合成减少[28],造成CW厚度增加。同时,表面陈旧的肽聚糖层不能被及时清除,出现不均匀的堆积[30-31],因而出现CW表面粗糙,有结节状凸起(图 4A、5)。
![]() |
图 5 细胞壁增厚机制示意图 Fig. 5 Schematic diagram of cell wall thickening mechanism |
值得注意的是,细菌在128 μg·mL-1的药物浓度下,CW不再显著增厚,推测该种方式已不能很好地拮抗高浓度药物形成的胁迫压力,此时很可能启动其他更为“高级”的耐药机制。该种表现也与CW增厚介导中低水平耐药的结论相契合。转而出现其他方面的形态改变。包括:(1) S. aureus由球形变为梭形、椭球形及杆状。推测可能是较高的环境压力引起细菌生长放缓,分裂过程受到抑制;即过于坚厚的CW及低水平的Atl,使得CW难以向内凹陷并形成横隔膜,阻碍细胞正常分裂成两个子细胞[31]。将JY21(0)与JY21(128)共培养,发现JY21(128)生长缓慢,且形成的菌落很小;振荡培养的菌液离心后,重悬时发现,细菌呈现团块状。(2)处于该浓度下的细菌,视野中很少见到横隔膜,也印证了细菌的分裂受到抑制的观点。(3) JY21(128)相比于JY21(64),CW除不再显著增厚外,其增厚也不均匀,呈现出“花瓣状”,但原因尚不清楚。(4) 图 4C表现出CW与细胞膜的间隙略微增大,且CW出现皲裂;推测是由于肽聚糖层过厚而难以稳定地维持,交联发生断裂,故而出现裂隙(图 5),其机制还有待进一步研究。
4 结论从宁夏地区分离得到261株牛乳源S. aureus,对β-内酰胺类抗生素表现出较强的耐药性;对14种抗菌药物具有较高的多重耐药率;试验结果表明,针对β-内酰胺类抗生素,存在细胞壁增厚的耐药机制,属于适应性耐药。增厚的原因主要是肽聚糖的过度合成及细胞自溶的减少。对于MSSA JY21菌株来说,细胞壁增厚是针对β-内酰胺类抗生素重要的耐药机制;而对于MRSA WLD10并非如此。
[1] | LOWY F D. Antimicrobial resistance: the example of Staphylococcus aureus[J]. J Clin Invest, 2003, 111(9): 1265–1273. DOI: 10.1172/JCI18535 |
[2] | HAU S J, HAAN J S, DAVIES P R, et al. Antimicrobial resistance distribution differs among methicillin resistant Staphylococcus aureus Sequence Type (ST) 5 isolates from health care and agricultural sources[J]. Front Microbiol, 2018, 9: 2102. DOI: 10.3389/fmicb.2018.02102 |
[3] | OLIVEIRA W F, SILVA P M S, SILVA R C S, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants[J]. J Hosp Infect, 2018, 98(2): 111–117. DOI: 10.1016/j.jhin.2017.11.008 |
[4] | ROUARD C, GARNIER F, LERAUT J, et al. Emergence and within-host genetic evolution of methicillin-resistant Staphylococcus aureus resistant to linezolid in a cystic fibrosis patient[J]. Antimicrob Agents Chemother, 2018, 62(12): e00720–18. |
[5] | JUNIE L M, JEICAN I I, MATROŞ L, et al. Molecular epidemiology of the community-associated methicillin-resistant staphylococcus aureus clones:a synthetic review[J]. Clujul Med, 2018, 91(1): 7–11. |
[6] | LI L, CHEUNG A, BAYER A S, et al. The global regulon sarA regulates β-lactam antibiotic resistance in methicillin-resistant Staphylococcus aureus in vitro and in endovascular infections[J]. J Infect Dis, 2016, 214(9): 1421–1429. DOI: 10.1093/infdis/jiw386 |
[7] | ADHIKARI R, PANT N D, NEUPANE S, et al. Detection of methicillin resistant Staphylococcus aureus and Determination of minimum inhibitory concentration of vancomycin for Staphylococcus aureus isolated from pus/wound swab samples of the patients attending a tertiary care hospital in Kathmandu, Nepal[J]. Can J Infect Dis Med Microbiol, 2017, 2017: 2191532. |
[8] | LUTHER M, PARENTE D M, CAFFREY A R, et al. Clinical and genetic risk factors for biofilm-forming Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2018, 62(5): e02252–17. |
[9] | TAKAYAMA Y, TANAKA T, OIKAWA K, et al. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus isolates from Japan[J]. Ann Lab Med, 2018, 38(2): 155–159. DOI: 10.3343/alm.2018.38.2.155 |
[10] | PINHO M G, FILIPE S R, De LENCASTRE H, et al. Complementation of the essential peptidoglycan transpeptidase function of Penicillin-Binding Protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus[J]. J Bacteriol, 2001, 183(22): 6525–6531. DOI: 10.1128/JB.183.22.6525-6531.2001 |
[11] | MIRELMAN D, SHARON N. Biosynthesis of peptidoglycan by a cell wall preparation of Staphylococcus aureus and its inhibition by penicillin[J]. Biochem Biophys Res Commun, 1972, 46(5): 1909–1917. DOI: 10.1016/0006-291X(72)90069-1 |
[12] | WATTS J L, SHRYOCK T R, APLEY M, et al. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals:approved standard[M]. Pennsylvania: Clinical and Laboratory Standards Institute, 2013. |
[13] | SOLYMAN S M, BLACK C C, DUIM B, et al. Multilocus sequence typing for characterization of Staphylococcus pseudintermedius[J]. J Clin Microbiol, 2013, 51(1): 306–310. DOI: 10.1128/JCM.02421-12 |
[14] | HACKBARTH C J, CHAMBERS H F. Methicillin-resistant staphylococci:genetics and mechanisms of resistance[J]. Antimicrob Agents Chemother, 1989, 33(7): 991–994. DOI: 10.1128/AAC.33.7.991 |
[15] | YUAN W C, HU Q W, CHENG H, et al. Cell wall thickening is associated with adaptive resistance to amikacin in methicillin-resistant Staphylococcus aureus clinical isolates[J]. J Antimicrob Chemother, 2013, 68(5): 1089–1096. DOI: 10.1093/jac/dks522 |
[16] | SINGH A, SINGH S, SINGH J, et al. Survivability and fitness cost of heterogeneous vancomycin-intermediate Staphylococcus aureus[J]. Indian J Med Microbiol, 2017, 35(3): 415–416. DOI: 10.4103/ijmm.IJMM_17_311 |
[17] | ENG R H K, SMITH S M, BUCCINI F J, et al. Differences in ability of cell-wall antibiotics to suppress emergence of rifampicin resistance in Staphylococcus aureus[J]. J Antimicrob Chemother, 1985, 15(2): 201–207. DOI: 10.1093/jac/15.2.201 |
[18] | WILKINSON B J, SISSON S P, KIM Y, et al. Localization of the third component of complement on the cell wall of encapsulated Staphylococcus aureus M:implications for the mechanism of resistance to phagocytosis[J]. Infect Immun, 1979, 26(3): 1159–1563. DOI: 10.1128/IAI.26.3.1159-1163.1979 |
[19] | FOOLADVAND S, SARMADIAN H, HABIBI D, et al. High prevalence of methicillin resistant and enterotoxin gene-positive Staphylococcus aureus among nasally colonized food handlers in central Iran[J]. Eur J Clin Microbiol Infect Dis, 2019, 38: 87–92. DOI: 10.1007/s10096-018-3398-0 |
[20] | UDO E E, AL-SWEIH N, NORONHA B C. A chromosomal location of the mupA gene in Staphylococcus aureus expressing high-level mupirocin resistance[J]. J Antimicrob Chemother, 2003, 51(5): 1283–1286. DOI: 10.1093/jac/dkg188 |
[21] | WEIGEL L M, CLEWELL D B, GILL S R, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus[J]. Science, 2003, 302(5650): 1569–1571. DOI: 10.1126/science.1090956 |
[22] | GALLAGHER L A, COUGHLAN S, BLACK N S, et al. Tandem amplification of the staphylococcal cassette chromosome MEC element can drive high-level methicillin resistance in methicillin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2017, 61(9): e00869–17. |
[23] | HIRAMATSU K. Vancomycin-resistant Staphylococcus aureus:a new model of antibiotic resistance[J]. Lancet Infect Dis, 2001, 1(3): 147–155. DOI: 10.1016/S1473-3099(01)00091-3 |
[24] | HANAKI H, KUWAHARA-ARAI K, BOYLE-VAVRA S, et al. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50[J]. J Antimicrob Chemother, 1998, 42(2): 199–209. DOI: 10.1093/jac/42.2.199 |
[25] | SHARMA R, RANI C, MEHRA R, et al. Identification and characterization of novel small molecule inhibitors of the acetyltransferase activity of Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU)[J]. Appl Microbiol Biotechnol, 2016, 100(7): 3071–3085. DOI: 10.1007/s00253-015-7123-y |
[26] | AUGER G, VAN HEIJENOORT J, MENGIN-LECREULX D, et al. A MurG assay which utilises a synthetic analogue of lipid I[J]. FEMS Microbiol Lett, 2003, 219(1): 115–119. DOI: 10.1016/S0378-1097(02)01203-X |
[27] | ŁĘSKI T A, TOMASZA. Role of Penicillin-Binding Protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus:evidence for the cooperative functioning of PBP2, PBP4, and PBP2A[J]. J Bacteriol, 2005, 187(5): 1815–1824. |
[28] | HOUSTON P, ROWE S E, POZZI C, et al. Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype[J]. Infect Immun, 2011, 79(3): 1153–1165. DOI: 10.1128/IAI.00364-10 |
[29] | GARDETE S, WU S W, GILL S, et al. Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2006, 50(10): 3424–3434. DOI: 10.1128/AAC.00356-06 |
[30] | BISWAS R, VOGGU L, SIMON U K, et al. Activity of the major staphylococcal autolysin Atl[J]. FEMS Microbiol Lett, 2006, 259(2): 260–268. DOI: 10.1111/j.1574-6968.2006.00281.x |
[31] | SCHLAG M, BISWAS R, KRISMER B, et al. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl[J]. Mol Microbiol, 2010, 75(4): 864–873. DOI: 10.1111/j.1365-2958.2009.07007.x |