2. 沈阳博阳饲料股份有限公司, 沈阳 110218
2. Shenyang Boyang Feed co. LTD, Shenyang 110218, China
北极狐(Alopex lagopus)是一种环极地的物种[1],其能耐受极地高寒环境条件的原因,归结于厚厚的毛皮发挥的重要作用。北极狐皮以奢华、轻盈、保暖著称,是制作高档裘皮服饰的优质原料。近些年,我国北极狐的养殖规模逐渐扩大,养殖数量和狐皮产量均位居世界前列。然而,我国狐的营养标准尚未建立,还缺少对北极狐不同生理阶段营养物质的维持需要和增重需要的数据,致使北极狐优良的生产性能尚未充分发挥。
在畜牧生产中,通常采用限饲作为一种饲养管理和营养调控手段。限饲有2种方式,一种是数量限饲,即在营养平衡的日粮上进行数量上的限饲;另一种是质量限饲,即对营养不平衡的日粮在营养水平上的限饲。近几年来,较多试验报道采取数量限饲来研究不同动物对于营养物质的需要量[2-6],但在北极狐上尚未见研究报道,育成生长期是狐快速增长期,对营养物质需求量较高,但在实际生产中由于仔狐食入过多导致的急性胃扩张,致死率较高,严重影响生产效益。因此,本试验旨在研究不同饲喂水平对育成生长期北极狐生长性能、血清生化指标及机体能量沉积的影响,以期为北极狐的营养需要与科学饲养的研究提供理论依据,进而为制定北极狐的饲养标准提供基础参数。
1 材料与方法 1.1 试验动物、试验设计与饲养管理本试验在中国农业科学院特产研究所毛皮动物试验基地完成。选用的是地产芬系北极狐,即引进的芬兰种狐经过几年改良后形成的地方品种。选取46只85日龄平均体重为(3 198±281)g的健康雄性北极狐,其中6只用作试验初屠宰试验对照,另外40只随机分成4组,每组设10个重复,每个重复1只北极狐。同一种饲粮4个水平饲喂,分别是自由采食组(AL)、自由采食量的80%组(IR80)、自由采食量的60%组(IR60)和自由采食量的40%组(IR40)。试验动物单笼饲养。
试验期为2017年7月24日—9月23日,预试期7 d,正式期55 d,每天08:00和15:00各饲喂1次,自由饮水。
1.2 试验日粮以膨化玉米、豆粕、玉米蛋白粉、鱼粉、肉骨粉、豆油等为主要原料,同时添加由矿物质元素、维生素等组成的营养性添加剂配制的试验饲粮。饲粮配制参考美国National Research Council(NRC, 1982)[7]和芬兰Nordic Association of Agricultural Scientists(NJF,2012)[8]标准,其组成及营养水平详见表 1。
|
|
表 1 试验饲粮组成及营养水平(风干基础) Table 1 Ingredients and nutrient composition of the basal diet (air-dried basis) |
正式开始试验时,以第1天晨饲前的空腹体重作为初重,根据仔狐日龄推算初重为85日龄,100、115、130日龄当天晨饲前空腹称量体重即100日龄、115日龄和130日龄体重,试验结束(145日龄)空腹体重为145日龄体重即末重,计算试验初至试验结束平均日增重即育成生长期平均日增重(ADG)。记录每天的干物质采食量(DMI)和剩料量,计算整个试验期的料重比(F/G)。
1.3.2 血清生化指标于试验结束时(145日龄),每组选择8只健康的试验狐晨饲前空腹后腿静脉采血5 ml,4 000 r·min-1离心10 min,收集血清于1.5 mL EP管中,置于-80 ℃低温冰箱保存,待测血清相关指标。血清中总蛋白(TP)、白蛋白(ALB)、甘油三酯(TG)、胆固醇(CHO)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、血糖(GLU)含量采用全自动生化分析仪(Selectra E, 荷兰)测定,试剂盒购自中生北控生物科技有限公司。球蛋白(GLOB)含量是总蛋白与白蛋白的计算差值。血清中的免疫球蛋白A (IgA)、G (IgG)、M (IgM)、补体3 (C3)、补体4 (C4)和胰岛素(INS)含量均采用酶联免疫吸附法测定,试剂盒购自上海双赢生物科技有限公司。
1.3.3 毛皮和胴体蛋白、脂肪沉积及其能量沉积试验初选取6只北极狐作为对照,晨饲前空腹全部处死,剥皮称重为试验初毛皮重;去毛皮的胴体先冷冻防止血液流失, 然后弃掉肠道内容物, 称量狐胴体重量为试验初胴体重, 然后将狐胴体剁碎, 绞肉机绞成肉酱后, 制成风干样。检测分析试验初狐胴体中蛋白质和脂肪含量。试验末40只北极狐全部处死,剥皮称重为试验末毛皮重,胴体称重为试验末胴体重,计算皮增重和胴体增重,然后绞碎、烘干处理后分别检测毛皮和胴体的蛋白质和脂肪含量,分别计算毛皮与胴体脂肪和蛋白沉积及其产热量。具体计算公式如下:
毛皮增重(kg)=试验末毛皮重(kg)-试验初毛皮重(kg);
胴体增重(kg)=试验末胴体重(kg)-试验初胴体重(kg);
毛皮脂肪沉积(g)=[试验末毛皮重(g)×皮粗脂肪含量(%)]-[试验初毛皮重(g)×皮粗脂肪含量(%)];
毛皮蛋白沉积(g)=[试验末毛皮重(g)×皮粗蛋白含量(%)]-[试验初毛皮重(g)×皮粗蛋白含量(%)];
毛皮以脂肪形式沉积能量(MJ)=[毛皮脂肪沉积(g)×39.76 kJ·g-1]/1 000;
毛皮以蛋白形式沉积能量(MJ)=[毛皮蛋白沉积(g)×23.86 kJ·g-1]/1 000;
毛皮沉积总能量(MJ)=毛皮以脂肪形式沉积能量+毛皮以蛋白形式沉积能量;
胴体脂肪沉积(g)=[试验末胴体重(g)×胴体粗脂肪含量(%)]-[试验初胴体重(g)×胴体粗脂肪含量(%)];
胴体蛋白沉积(g)=[试验末胴体重(g)×胴体粗蛋白含量(%)]-[试验初胴体重(g)×胴体粗蛋白含量(%)];
胴体以脂肪形式沉积能量(MJ)=[胴体脂肪沉积(g)×39.76 kJ·g-1]/1 000;
胴体以蛋白形式沉积能量(MJ)=[胴体蛋白沉积(g)×23.86 kJ·g-1]/1 000;
胴体沉积总能量(MJ)=胴体以脂肪形式沉积能量+胴体以蛋白形式沉积能量;
其中,39.76和23.86分别是每g脂肪和蛋白燃烧产热常数。
1.3.4 饲料、毛皮及胴体养分的测定饲粮、毛皮、胴体中的粗蛋白质和粗脂肪含量及饲粮中水分、粗灰分、钙、磷含量测定参考张丽英[9]的方法。饲粮中总能和氨基酸含量分别采用氧弹量热仪(C2000, IKA Works Inc., Staufen, 德国)和全自动氨基酸分析仪(HITACHI,L-8900,日本)测定。
1.3.5 数据整理与统计分析试验数据采用EXCEL 2010进行整理,采用SAS 8.0软件中的GLM程序进行统计与分析,多重比较采用Duncan’s法进行,P < 0.01表示差异极显著,P<0.05表示差异显著,P>0.05表示差异不显著;结果均以“平均值±标准差”表示。
2 结果 2.1 饲喂水平对育成生长期北极狐生长性能的影响由表 2可知,饲喂水平显著影响育成生长期北极狐的生长性能,Ⅳ组100日龄体重极显著低于Ⅰ和Ⅱ组(P < 0.01),与Ⅲ组差异不显著(P>0.05),Ⅰ和Ⅱ组间差异不显著(P>0.05)。115日龄、130日龄和145日龄Ⅳ组体重极显著低于I、IⅠ和Ⅲ组(P < 0.01),Ⅰ、Ⅱ和Ⅲ组间差异不显著(P>0.05)。随饲喂水平降低,平均干物质采食量(ADMI)极显著降低(P < 0.01)。Ⅳ组平均日增重(ADG)极显著低于Ⅰ、Ⅱ和Ⅲ组(P < 0.01),Ⅰ、Ⅱ和Ⅲ组间差异不显著(P>0.05)。Ⅲ组料重比极显著低于Ⅰ和Ⅱ组(P < 0.01),与Ⅳ组差异不显著(P>0.05),Ⅰ组显著高于Ⅱ组(P < 0.05)。
|
|
表 2 饲喂水平对育成生长期北极狐生长性能的影响 Table 2 Effects of different feeding levels on growth performance of Arctic fox during the growth period |
由表 3可知,饲喂水平显著或极显著影响了育成生长期北极狐血清GLU、CHO和LDL-C含量(P < 0.05或P < 0.01),Ⅲ组血清GLU极显著低于Ⅰ组(P < 0.01),显著低于Ⅳ组(P < 0.05),与Ⅱ组差异不显著(P>0.05),Ⅰ、Ⅱ和Ⅳ组间差异不显著(P>0.05)。Ⅰ、Ⅱ和Ⅲ组血清CHO和LDL-C极显著低于Ⅳ组(P < 0.01),Ⅰ、Ⅱ和Ⅲ组间差异不显著(P>0.05)。饲喂水平显著影响了育成生长期北极狐血清TP和ALB含量(P < 0.05),Ⅰ和Ⅲ组显著低于Ⅳ组(P < 0.05),与Ⅱ组差异不显著(P>0.05),Ⅰ和Ⅲ组间差异不显著(P>0.05),Ⅱ与Ⅳ组间差异不显著(P>0.05)。育成生长期北极狐血清中HDL-C、TG和GLOB含量均不受饲喂水平的影响(P>0.05)。由表 4可知,饲喂水平对育成生长期北极狐血清中IgA、IgG、IgM、C3、C4和INS含量均无显著影响(P>0.05)。
|
|
表 3 饲喂水平对育成生长期北极狐血清生化指标的影响 Table 3 Effects of different feeding levels on serum biochemical parameters of Arctic fox during the growth period |
|
|
表 4 饲喂水平对育成生长期北极狐血清免疫指标的影响 Table 4 Effects of different feeding levels on serum immune parameters of Arctic fox during the growth period |
由表 5可知,饲喂水平显著影响了育成生长期北极狐毛皮增重、毛皮脂肪沉积及其产热和毛皮沉积总能量(P < 0.05),随饲喂水平减少,毛皮脂肪沉积及其产热显著降低,Ⅰ和Ⅱ组显著高于Ⅲ和Ⅳ组(P < 0.05),Ⅰ和Ⅱ组间差异不显著,Ⅲ和Ⅳ组间差异不显著(P>0.05)。Ⅱ组毛皮增重和沉积总能量显著高于Ⅳ组(P < 0.05),与Ⅰ和Ⅲ组间差异不显著(P>0.05)。饲喂水平对毛皮蛋白沉积及其产热量无显著影响(P>0.05)。由表 6可知,随饲喂水平降低,育成生长期北极狐胴体增重极显著下降(P < 0.01),Ⅳ组极显著低于Ⅰ、Ⅱ和Ⅲ组,Ⅰ、Ⅱ和Ⅲ组间差异不显著(P>0.05)。饲喂水平对胴体脂肪沉积及其产热量、蛋白沉积及其产热量和胴体沉积总能量均无显著影响(P>0.05),但随饲喂水平降低,胴体脂肪沉积及其产热呈逐渐降低趋势,而Ⅱ组胴体蛋白沉积及其产热、胴体沉积总能量稍高于其他组,其他组呈逐渐降低趋势。
|
|
表 5 饲喂水平对育成生长期北极狐毛皮脂肪与蛋白沉积及其能量沉积的影响 Table 5 Effects of different feeding levels on fat and protein deposition and their energy deposition of Arctic fox pelt during the growth period |
|
|
表 6 饲喂水平对育成生长期北极狐胴体脂肪和蛋白沉积及其能量沉积的影响 Table 6 Effects of different feeding levels on carcass fat and protein deposition and their energy deposition of Arctic fox during the growth period |
畜牧生产中通常采用数量限饲的方式来提高饲料的转化效率,促进动物生产性能的发挥。研究表明,适当限饲可提高家兔饲料转化效率并降低氮的排放[10],显著降低仔猪腹泻率且不影响后期生长[11],可减少生长肥育猪胴体脂肪沉积量,降低生长成本[12], 适当限饲能提高产蛋期种鸭产蛋率,降低体增重[13],提高山羊和杂交肉羊的饲料转化效率[14-15]。本试验结果显示,适当限饲(IR60)不影响育成生长期雄性北极狐体重的增长和ADG,但当限饲至60%(IR40),显著降低了北极狐的体重和ADG,从料重比结果分析,限饲至40%(IR60)饲料转化效率最高,这与上述研究结果相一致,说明人工饲养条件下,采用适当限饲的方式,不影响育成生长期北极狐的生长发育,降低了饲养成本,提高了饲料转化效率。
3.2 饲喂水平对育成生长期北极狐血清生化指标的影响血清生化指标能反映出不同生理状况下机体正常代谢或疾病的状态,可作为判定机体健康或疾病的依据[16-17]。养殖生产中采用限饲的方式在不影响生产性能的前提下,可以减少一些疾病的发生,降低死亡率。但关于限饲对动物血清生化指标影响的研究结果不一。有研究报道,限饲组家兔血清蛋白和总胆固醇含量显著高于自由采食组[18],限饲会增加马血清中的甘油三酯的浓度[19],但会降低水貂血清蛋白、血糖及胆固醇的含量[20]和鸡血清蛋白、胆固醇和高密度脂蛋白胆固醇含量[21-22],也有研究报道,限饲对鸡血清甘油三酯、胆固醇、高密度脂蛋白及血清蛋白无显著影响[17, 23],本试验结果显示,AL组的血糖水平高于限饲组,而限饲60%组(IR40)CHO、LDL-C、TP和ALB含量均高于AL组及其他限饲组,与上述文献结果不尽一致,一方面可能与限饲时间、动物品种及基因型、年龄、所处生理时期等因素有关[16, 24-27],另一方面可能由于过度限饲时,营养物质摄入不足且不能满足机体需求时,就会加快动员与分解自身的储备,增加肝脏的能量转换代谢,改善葡萄糖代谢,调节全身能量代谢[28-29],从而提高了血清中部分指标的含量。在饥饿条件下,北极狐体内营养物质代谢与其他物种存在差异[30],机体含有22%脂肪就能不摄入食物维持30 d[31],这也可能是血清生化指标变化的原因。研究证明,对人和大鼠短期限食后,血清免疫球蛋白IgG、IgM含量基本不受影响,但会降低血清C3和C4含量[32-33]。本试验结果显示,限饲对育成生长期北极狐血清IgA、IgM和IgG,C3和C4和胰岛素指标均无显著影响,与上述文献报道也不尽一致,可能由于北极狐物种的特异性,长期进化已适应严寒地区食物匮乏的环境条件,当处于饥饿条件下,动物的内脏脂肪组织和皮下脂肪组织中瘦素、脂联素基因表达的降低会刺激脂肪分解,加强动员身体储备,激活多种细胞内的脂肪酸氧化,以保护身体免受饥饿的威胁[34],进而减少对其健康造成损害[19]。
3.3 饲喂水平对育成生长期北极狐毛皮和胴体能量沉积的影响处于育成生长期的北极狐生长速度较快,摄入的营养物质主要是满足机体骨骼和肌肉的生长。随着饲喂水平降低,胴体增重、脂肪沉积及其产热、毛皮脂肪沉积及其产热和毛皮沉积总能量均呈降低趋势,说明限饲会影响北极狐的脂肪沉积,研究报道当北极狐处于饥饿时,首先动员皮下脂肪,因其皮下脂肪不饱和脂肪酸约占77%[35],更易氧化分解供应能源[36-37]。然而,胴体蛋白沉积及其产热和胴体沉积总能量,适当限饲(IR80)组略高于AL组和其他限饲组,毛皮蛋白沉积及其产热量IR60组略高于AL和IR80组,但差异不显著,这表明适当限饲(IR60)不影响机体蛋白沉积即北极狐的生长发育,生长性能的结果可以验证这一点,也与其他动物研究结果相一致。本试验结果显示,育成生长期北极狐胴体脂肪产热和蛋白产热分别占胴体沉积总能量的57.18%、42.82%,毛皮脂肪产热和蛋白产热占毛皮沉积总能量的57.64%、42.36%,表明无论是脂肪还是蛋白在胴体和毛皮中产热是相近的,这与冬毛生长期北极狐毛皮脂肪和蛋白产热占毛皮沉积总能量比例有较大差异(71%和29%),但与胴体脂肪和蛋白产热占胴体沉积总能量比例相近(57.99%和42.01%)[38],说明不同生理时期的北极狐机体发育需求不同,但限饲程度越高,机体能量沉积越低。
4 结论从本试验结果综合分析,适当限饲(IR60)降低了育成生长期北极狐血清中糖脂类指标含量,保证了机体正常的生长和健康状态,提高了饲料转化效率,增加了养殖效益。
| [1] | DALÉN L, FUGLEI E, HERSTEINSSON P, et al. Population history and genetic structure of a circumpolar species:the arctic fox[J]. Biol J Linn Soc, 2005, 84(1): 79–89. |
| [2] | ZHANG G F, LIU D W, WANG F L, et al. Estimation of the net energy requirements for maintenance in growing and finishing pigs[J]. J Anim Sci, 2014, 92(7): 2987–2995. DOI: 10.2527/jas.2013-7002 |
| [3] | LIU W, LIN C H, WU Z K, et al. Estimation of the net energy requirement for maintenance in broilers[J]. Asian-Australas J Anim Sci, 2017, 30(6): 849–856. |
| [4] |
许贵善, 刁其玉, 纪守坤, 等. 不同饲喂水平对肉用绵羊生长性能、屠宰性能及器官指数的影响[J]. 动物营养学报, 2012, 24(5): 953–960.
XU G S, DIAO Q Y, JI S K, et al. Effects of different feeding levels on growth performance, slaughter performance and organ indexes of Mutton Sheep[J]. Chinese Journal of Animal Nutrition, 2012, 24(5): 953–960. DOI: 10.3969/j.issn.1006-267x.2012.05.022 (in Chinese) |
| [5] |
冯昕炜, 马绍楠, 周艳, 等. 饲喂水平对多浪羊生产性能及内脏器官发育的影响[J]. 饲料工业, 2017, 38(15): 36–39.
FENG X W, MA S N, ZHOU Y, et al. Effect of different feeding level on production performance and visceral organ development of Duolang sheep[J]. Feed Industry, 2017, 38(15): 36–39. (in Chinese) |
| [6] | ZHANG H, SUN L W, WANG Z Y, et al. Energy and protein requirements for maintenance of Hu sheep during pregnancy[J]. J Integr Agric, 2018, 17(1): 173–183. DOI: 10.1016/S2095-3119(17)61691-5 |
| [7] | National Research Council (NRC). Nutrient requirements of mink and foxes[M]. 2th ed. Washington DC: National Academies Press, 1982. |
| [8] | Nordic Association of Agricultural Scientists (NJF). Energy and main nutrients in feed for mink and foxes[M]. 2th ed. Finland: Fur Animals Nutrition and Feeding Committee, 2012. |
| [9] |
张丽英.
饲料分析及饲料质量检测技术[M]. 3版. 北京: 中国农业大学出版社, 2007.
ZHANG L Y. Feed analysis and feed quality detection technology[M]. 3rd ed. Beijing: Chinese Agricultural University Press, 2007. (in Chinese) |
| [10] | BIROLO M, TROCINO A, TAZZOLI M, et al. Effect of feed restriction and feeding plans on performance, slaughter traits and body composition of growing rabbits[J]. World Rabbit Sci, 2017, 25(2): 113–122. DOI: 10.4995/wrs.2017.6748 |
| [11] |
殷宗俊, 卞国保, 王中才, 等. 合理限饲可减少早期断奶对仔猪的影响[J]. 动物科学与动物医学, 2005, 22(9): 38–39.
YIN Z J, BIAN G B, WANG Z C, et al. Rational feeding restriction can reduce the effect of early weaning on piglets[J]. Animal Science and Veterinary Medicine, 2005, 22(9): 38–39. DOI: 10.3969/j.issn.1673-5358.2005.09.015 (in Chinese) |
| [12] |
叶耀辉, 许培文. 限饲对猪皮下各脂肪层脂肪沉积及胴体组成的影响[J]. 福建农业学报, 1998(4): 39–40, 52.
YE Y H, XU P W. Effect of limited feeding on various fat layers of back fat and carcass composition in pigs[J]. Fujian Journal of Agricultural Sciences, 1998(4): 39–40, 52. (in Chinese) |
| [13] |
王生雨, 李惠敏, 占志平, 等. 不同限饲水平对产蛋期肉种鸭生产性能的影响[J]. 动物营养学报, 2012, 24(3): 447–452.
WANG S Y, LI H M, ZHAN Z P, et al. Different restricted feeding amounts affect performance of meat-type breeder ducks during the laying period[J]. Chinese Journal of Animal Nutrition, 2012, 24(3): 447–452. DOI: 10.3969/j.issn.1006-267x.2012.03.010 (in Chinese) |
| [14] |
魏炳栋, 刁其玉, 陈群, 等. 饲喂水平对杂交肉羊(公)营养物质代谢及能量需要量的影响[J]. 动物营养学报, 2017, 29(10): 3551–3562.
WEI B D, DIAO Q Y, CHEN Q, et al. Effects of feeding level on nutrient metabolism and energy requirement parameters of Crossbred Male Sheep[J]. Chinese Journal of Animal Nutrition, 2017, 29(10): 3551–3562. DOI: 10.3969/j.issn.1006-267X.2017.10.016 (in Chinese) |
| [15] | RAJAEI SHARIFABADI H, NASERIAN A A, VALIZADEH R, et al. Growth performance, feed digestibility, body composition, and feeding behavior of high-and low-residual feed intake fat-tailed lambs under moderate feed restriction[J]. J Anim Sci, 2016, 94(8): 3382–3388. DOI: 10.2527/jas.2015-0196 |
| [16] | HARR K E. Clinical chemistry of companion avian species:a review[J]. Vet Clin Pathol, 2002, 31(3): 140–151. DOI: 10.1111/j.1939-165X.2002.tb00295.x |
| [17] | RAJMAN M, JURÁNI M, LAMOŠOVÁ D, et al. The effects of feed restriction on plasma biochemistry in growing meat type chickens (Gallus gallus)[J]. Comp Biochem Physiol A Mol Integr Physiol, 2006, 145(3): 363–371. DOI: 10.1016/j.cbpa.2006.07.004 |
| [18] | LU J, SHEN Y, HE Z, et al. Effects of a short-term feed restriction on growth performance, blood metabolites and hepatic IGF-1 levels in growing rabbits[J]. World Rabbit Sci, 2017, 25(3): 233. DOI: 10.4995/wrs.2017.6478 |
| [19] | BRINKMANN L, RIEK A, GERKEN M. Long-term adaptation capacity of ponies:effect of season and feed restriction on blood and physiological parameters[J]. Animal, 2018, 12(1): 88–97. DOI: 10.1017/S1751731117001392 |
| [20] | DAMGAARD B M, DALGAARD T S, LARSEN T, et al. The effects of feed restriction on physical activity, body weight, physiology, haematology and immunology in female mink[J]. Res Vet Sci, 2012, 93(2): 936–942. DOI: 10.1016/j.rvsc.2011.10.014 |
| [21] | YAMAN M A, KITA K, OKUMURA J. Different responses of protein synthesis to refeeding in various muscles of fasted chicks[J]. Br Poult Sci, 2000, 41(2): 224–228. DOI: 10.1080/00071660050022317 |
| [22] | YAMAN M A, KITA K, OKUMURA J I. Various macronutrient intakes additively stimulate protein synthesis in liver and muscle of food-deprived chicks[J]. J Nutr, 2000, 130(1): 70–76. DOI: 10.1093/jn/130.1.70 |
| [23] | MOHAMMADALIPOUR R, RAHMANI H R, JAHANIAN R, et al. Effect of early feed restriction on physiological responses, performance and ascites incidence in broiler chickens raised in normal or cold environment[J]. Animal, 2017, 11(2): 219–226. DOI: 10.1017/S1751731116001555 |
| [24] | MELUZZI A, PRIMICERI G, GIORDANI R, et al. Determination of blood constituents reference values in broilers[J]. Poult Sci, 1992, 71(2): 337–345. DOI: 10.3382/ps.0710337 |
| [25] | GAYATHRI K L, SHENOY K B, HEGDE S N. Blood profile of pigeons (Columba livia) during growth and breeding[J]. Comp Biochem Physiol A:Mol Integr Physiol, 2004, 138(2): 187–192. DOI: 10.1016/j.cbpb.2004.03.013 |
| [26] | JURÁNI M, VYBOH P, ZEMAN M, et al. Post-hatching dynamics of plasma biochemistry in free-living European starlings (Sturnus vulgaris)[J]. Comp Biochem Physiol A:Mol Integr Physiol, 2004, 138(1): 89–95. DOI: 10.1016/j.cbpb.2004.03.005 |
| [27] | ALONSO-ALVAREZ C. Age-dependent changes in plasma biochemistry of yellow-legged gulls (Larus cachinnans)[J]. Comp Biochem Physiol A:Mol Integr Physiol, 2005, 140(4): 512–518. DOI: 10.1016/j.cbpb.2005.03.001 |
| [28] | GUERRE-MILLO M. Adiponectin:an update[J]. Diabetes Metab, 2008, 34(1): 12–18. DOI: 10.1016/j.diabet.2007.08.002 |
| [29] | SAVINO F, PETRUCCI E, NANNI G E. Adiponectin:an intriguing hormone for paediatricians[J]. Acta Paediatr, 2008, 97(6): 701–705. DOI: 10.1111/j.1651-2227.2008.00750.x |
| [30] | FUGLESTEG B N, HAGA Ø E, FOLKOW L P, et al. Seasonal variations in basal metabolic rate, lower critical temperature and responses to temporary starvation in the arctic fox (Alopex lagopus) from Svalbard[J]. Polar Biol, 2006, 29(4): 308–319. DOI: 10.1007/s00300-005-0054-9 |
| [31] | PRESTRUD P.Årstidsvariasjoner i basalmetabolisme og fettlagring hos fjellreven (Alopex lagopus) på Svalbard[D].Norway: University of Oslo, 1982. |
| [32] |
吴健全, 金宏, 南文考, 等. 短期能量限制对人体免疫功能的影响[J]. 解放军预防医学杂志, 2008, 26(3): 183–185.
WU J Q, JIN H, NAN W K, et al. Effect of short term energy restriction on immune function[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2008, 26(3): 183–185. DOI: 10.3969/j.issn.1001-5248.2008.03.008 (in Chinese) |
| [33] |
王先远, 金宏, 许志勤, 等. 补充蛋白饮食对饥饿大鼠免疫功能的影响[J]. 解放军预防医学杂志, 2005, 23(4): 238–241.
WANG X Y, JIN H, XU Z Q, et al. Effect of supplementation of protein diet on immune function in starvation rat[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2005, 23(4): 238–241. DOI: 10.3969/j.issn.1001-5248.2005.04.002 (in Chinese) |
| [34] | YANG J L, LU X X, HOU X Z, et al. Feed restriction alters lipogenic and adipokine gene expression in visceral and subcutaneous fat depots in lamb[J]. Livestock Sci, 2016, 188: 48–54. DOI: 10.1016/j.livsci.2016.04.007 |
| [35] |
钟伟, 张婷, 罗婧, 等. 饲粮n-6/n-3多不饱和脂肪酸配比对北极狐冬毛期体脂沉积、体脂肪酸组成及血液生化指标的影响[J]. 畜牧兽医学报, 2017, 48(6): 1054–1065.
ZHONG W, ZHANG T, LUO J, et al. Effects of dietary n-6/n-3 PUFA ratio on the body fat deposition, body fatty acid composition and serum biochemical parameters in male arctic foxes during the winter fur-growing period[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(6): 1054–1065. (in Chinese) |
| [36] | PRESTRUD P, NILSSEN K. Fat deposition and seasonal variation in body composition of arctic foxes in Svalbard[J]. J Wildl Manage, 1992, 56(2): 221–233. DOI: 10.2307/3808816 |
| [37] | RINGBERG T, NILSSEN K, STRØM E.Do Svalbard reindeer use their subcutaneous fat as insulation?[C].//Proceedings of the 2nd International Reindeer/Caribou Symposium.Røros, Norway, 1980: 392-395. |
| [38] |
钟伟, 孙伟丽, 穆琳琳, 等. 饲喂水平对冬毛生长期雄性北极狐生产性能、器官发育及机体能量沉积的影响[J]. 畜牧兽医学报, 2020, 51(1): 90–98.
ZHONG W, SUN W L, MU L L, et al. Effects of feeding level on productive performance, organ development and body energy deposition of male Arctic foxes during the winter fur growth period[J]. Acta Veterinaria et Zootechnica Sinica,, 2020, 51(1): 90–98. (in Chinese) |


